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Abstract—We discuss the applicability of the Linear Sampling
Method (LSM) to GPR surveys carried out using array-based
configurations. Since the images achieved via LSM are known to get
worse when using a small number of antennas and a limited aperture,
we introduce an analytic tool to foresee the expected LSM performance
for a fixed array size and number of antennas. Notably, such a tool
allows us to support (and appraise) the adoption of LSM to data
collected with short arrays moved above the investigated domain,
which is the configuration most viable in applications.

1. INTRODUCTION

The imaging of buried targets, underground structures and concealed
objects is a challenging problem, which is relevant to geophysics,
archaeology and civil engineering. In this framework, Ground
Penetrating Radar (GPR) is a widely adopted tool [1], as it allows
fast non-destructive and non-invasive surveys.

Traditional GPR images are obtained by joining radar echoes
collected while moving the antennas along the measurement scan.
However this simple procedure often does not provide detailed
information on the subsurface and requires expert users interpretation.
For this reason, several efforts have been addressed to develop
GPR systems with improved performances, that is devices able to
collect large amount of data by adopting multi-channel and/or array
configurations [2–4] and imaging processing tools which not only allow
to detect the targets, but also to reconstruct their morphology and, in
very favorable conditions, their electromagnetic features [5–14].

An inverse scattering method of particular interest in this
framework is the Linear Sampling Method (LSM) [15–17]. The
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LSM can image the morphological features of single or multiple
objects (dielectric and/or metallic) from single frequency scattered
field data, without requiring approximations and a priori information.
In addition, the LSM is based on the solution of a linear inverse
problem [18], so that it is free from so-called “false” solutions,
which affect non-linear approaches and is very effective in terms of
computational requirements. On the other hand, the LSM requires
that scattered field data are collected under a multi-view multi-static
(MV-MS) arrangement, in which multiple positions of the transmitting
antennas are exploited and, for each of them, the backscattered field
is recorded at several locations.

The aforementioned recent development of array based systems
allows MV-MS data collection also in GPR, thus making the adoption
of LSM feasible in such a framework. On the other hand, the
reconstruction capabilities of LSM are extremely good when a
large number of antennas is considered, while they deteriorate as
long as the number of antennas or the aperture of the array are
reduced [8, 15, 17, 19]. Hence, it is important to devise the constraints
to follow in the design of the measurement setup, and in particular to
understand the conditions under which LSM can achieve satisfactory
results, while keeping the system’s complexity low.

To this end, we introduce an “expected performance index”
based on the spectral analysis of the integral operators relevant to
the scattering phenomenon at hand, which allows us to foresee the
reconstruction capabilities of the LSM as a function of the array
aperture. In particular, the proposed tool provides information on
the spatial region that can be actually imaged via LSM by means
of an array having fixed size and number of elements. Notably, the
proposed index also supports the feasibility of a strategy to apply the
LSM when the GPR data are collected by moving the array above the
investigated region, thus allowing a further reduction of the complexity
of the measurement set-up.

The paper is organized as follows. In the next Section, the LSM
is briefly reviewed. The performance expectation tool is introduced
in Section 3 and the strategy to apply LSM to data collected with a
moving array is described in Section 4. In Section 5, some numerical
examples are provided, followed by concluding remarks.

2. THE LINEAR SAMPLING METHOD

2.1. Mathematical Formulation

The reference scenario considered for the formulation of the
electromagnetic scattering problem at hand is shown in Fig. 1.
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Figure 1. Geometry of the problem: the dashes represent the
antennas of the GPR array.

The investigated region Ω is embedded into a lossy soil with
complex permittivity εb and hosts targets having arbitrary complex
permittivities εs, whose support is denoted as Σ. All the considered
materials are non magnetic.

Since linearly polarized antennas are commonly used in GPR
surveys, the LSM formulation is here reviewed with respect to
this configuration, while we address the reader to [20] for a multi-
polarization formulation of the LSM for a half-space geometry.

Let p be the considered polarization, the single frequency scattered
field data are gathered under a MV-MS configuration by means of a 2-
D antennas array in which the antennas positions correspond to a 2-D
grid of points that partitions the measurement surface Γ. Assuming N
transmitting and receiving antennas, the whole measurement process
provides the N × N multistatic response data matrix (MRM), Es,
whose generic element Es

mn is the p component of the scattered field
at the m-th receiver when the n-th source is transmitting.

To image the buried targets by using the LSM, one has first to
sample the investigated domain Ω into an arbitrary (finite) set of
sampling points, rs ∈ Ω. Then, in each of them, one has to solve
the linear ill-conditioned system:

Es [x(rs)] = gBG(rs), (1)
where x is the N dimensional unknown vector and gBG is the N -
dimensional vector that contains the values of the p-component of the
Green’s function for the assumed reference scenario [21], that is the
field radiated at the N receivers on Γ by an elementary source located
at rs in Ω (when the targets are not present).

The regularized solution of (1) on the sampling grid provides an
estimate of the unknown targets’ shapes since, in each sampling point,
the L2-norm of the vector, ‖x(rs)‖, exhibits a different behavior if the
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point is inside or outside of the targets [15]. In particular, ‖x(rs)‖
assumes its largest values when rs /∈ Σ, whereas it assumes low values
in points which are internal to the targets. As such it plays the role of
a support indicator.

The expression of this indicator, in the following refereed as LSM
indicator, can be obtained by solving Eq. (1) via Singular Value
Decomposition (SVD) [18], that is:

X(rs)=‖x(rs)‖2 =
1

‖gBG(rs)‖2

N∑

n=1

(
σn

σ2
n + α

)2

‖〈gBG(rs),un〉‖2, (2)

where σn denote the singular values of the matrix Es ordered for
decreasing magnitudes and accumulating to zero as N → ∞, un

are the corresponding left singular vectors and < ·, · > denotes the
scalar product for the complex vectors. The Tikhonov regularization
parameter α is computed according to the empirical criterion proposed
in [22], which does not require an explicit knowledge of the noise level.
The normalization factor in front of the summation is introduced to
compensate for the effect of limitation in aspect [20].

It is worth to remark that the main computational effort required
by LSM is the evaluation of the SVD of Es. However, since the matrix
dimension is dictated by the number of antennas, such an effort would
be almost negligible even for a full 3-D reconstruction.

Finally, note that the orientation of the elementary source
radiating the field at the right-hand side of (1) is arbitrary.
Accordingly, Eq. (1) is representative of three equations, one for each
orientation of the source [20]. However, in the following we only
consider a right-hand side parallel to the incident field polarization.
Based on our experience, this is the main contribution to the
indicator [20].

3. LSM PERFORMANCE FOR A LIMITED APERTURE

As mentioned in the Introduction, the performance of LSM becomes
quite poor when simplified measurement configurations are used. The
analogy between LSM and focusing problems [17] allows to explain
this circumstance. As a matter of fact, if the number of antennas
constituting the array is low or if they are not properly spaced, it will
be not possible to correctly focus the incident field. Moreover, using
few receivers corresponds to match the two sides of Eq. (1) only in a
few points. As a consequence, the indicator may not provide reliable
images of the investigated scenario.

As far as the antennas spacing is concerned, the peculiar nature
of the GPR configuration at hand, in which the antennas work at a
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single frequency and are located very close to the air-soil interface,
suggests that a practical (sub-optimal) sampling rule is to fix the
antennas’ spacing ∆ according to the Nyquist-Shannon criteria. In
particular, one can sample the field considering that propagation
occurs in a homogeneous medium having the electric properties of the
soil. Accordingly, ∆ = λb/2, λb being the wavelength in the probed
soil at the considered frequency.

Assuming such a criterion, the number of antennas uniquely
identifies the array aperture, and the question arises of understanding
which is the spatial region that can be properly imaged via LSM with
such an array. To this end, we will consider two figures of merit which
can be used to characterize the scattering phenomenon underlying the
GPR survey and the LSM processing:
• the first one is the probing wave footprint, which identifies the

region wherein the array is able to radiate a significant (in energy)
incident field, that is obviously a necessary condition to induce a
backscattering from the buried targets;

• the second one is the “sampling point footprint”, that represents
the capability of an elementary source located in the sampling
point to radiate a significant field (in energy) at the receivers. As
detailed in Section 3.2 the observation of this quantity allows us
to determine the region which can be imaged via LSM.
In the following, we introduce these quantities by relying on the

spectral properties of the two semi-discrete integral operators that
describe the scattering phenomenon in the configuration at hand.

3.1. The Probing Wave Footprint T
The first operator we consider relates the currents feeding the N
antennas located on Γ to the incident fields they radiate in Ω. Such
an operator is defined as:

App
i : ipTX → Ep

inc(r) =
N∑

m=1

Gpp(rm, r)ipTX(rm) (3)

where Ep
inc denotes the p-component of the incident field radiated in Ω

by N p-oriented sources located in rm ∈ Γ, m = 1, . . . , N , fed by the
N dimensional current vector ipTX .

Let {sn, ζn, fn} be the SVD ofApp
i , the generic p polarized incident

field in Ω can be expressed as a linear combination of the singular
functions {fn}:

Ep
inc(r) = App

i

[
ipTX

]
=

N∑

n=1

ζN
n

〈
ipTX , sn

〉
fn(r). (4)
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Accordingly, its square amplitude in each r ∈ Ω is:

|Ep
inc(r)|2 =

∣∣∣∣∣
N∑

n=1

〈Ep
inc, fn〉fn(r)

∣∣∣∣∣

2

=

∣∣∣∣∣
N∑

n=1

aN
n fn(r)

∣∣∣∣∣

2

≤
N∑

n=1

∣∣aN
n

∣∣2
N∑

n=1

|fn(r)|2 . (5)

Hence, the singular functions {fn} can be used to determine the portion
of Ω that can be investigated by means of N transmitting antennas.
As a matter of fact, their “spatial content” [23]:

T (N, r) =
N∑

n=1

|fn(r)|2 (6)

provides information on the energy radiated in any r ∈ Ω by the N
transmitters and therefore represents the array footprint. In particular,
objects located in those parts of Ω wherein T (N, r) is negligible are
expected to be weakly involved in the scattering phenomenon and thus
their contribution to the MRM data matrix will be almost negligible
and/or overwhelmed by noise.

3.2. The Sampling Point Footprint R
Let us define as:

App
e : Jp(r) → ep

RX(rm) =
∫

Ω
Gpp(r, rm)Jp(r)d(r) (7)

the integral operator that relates the volumetric currents induced in
the investigated region to the field they radiate at the receivers. This
operator gives the values of the p-component of the scattered field at
N points rm on Γ, due to a p-oriented current induced in Ω.

Since we are assuming that the transmitting and receiving
antennas are located at the same positions, Lorentz reciprocity entails
that the SVD of App

e is the same as that of App
i , but for an exchange in

the role of the left and right singular functions. Accordingly, the field
radiated in the generic point rm on Γ can be expressed as:

ep
RX(rm) = App

e [Jp(r)] =
N∑

n=1

ζN
n 〈Jp, fn〉sn(rm). (8)

By taking advantage of this decomposition, it is possible to express
the volumetric current corresponding to a p-oriented elementary dipole
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located in rs, Jδ(r) = δ(r − rs), as:

Jδ(r) =
N∑

n=1

〈Jδ, fn〉fn(r) =
N∑

n=1

[fn(rs)]
∗fn(r), (9)

where ∗ stands for the conjugation.
Then, we can compute the energy of the field radiated by Jδ(r),

applied in rs, at the N measurement points on Γ, that is, the
footprint of the sampling point. In particular, taking into account
the orthonormality of the singular vectors {sn}:

R(N, rs) =
∥∥ep

RX

∥∥2 = 〈App[Jδ],App[Jδ]〉 =
N∑

n=1

[ζn]2 |fn(rs)|2 (10)

The observation of this function ∀r ∈ Ω allows to appraise which
parts of the investigated domain can be imaged via LSM. As a matter
of fact, when the sampling point is located in the sub-domain D of Ω
where R(N, r) is negligible, the field radiated on Γ by Jδ(r) will vanish.
Since this field is the right hand side of Eq. (1), the linear system
to solve in each rs ∈ D becomes homogeneous, so that any linear
combination of the measured data with vanishing coefficients will be
able to provide a solution of the LSM equation. As a consequence, the
LSM indicator X(rs ∈ D) will not be anymore able to discriminate
between points belonging to the targets and points lying outside of
them, being vanishing everywhere in D without any relation to the
target support.

3.3. The LSM Expected Performance Index E
The quantities introduced in the previous sub-sections take into
account two different aspects which come into play in the processing
underlying the application of LSM to GPR surveys. Hence, when
considering a sampling point in the region under test, the LSM will
be capable of imaging that point if both the footprints are therein
meaningful. As such, we introduce the expected performance index
defined as:

E(N, r) = 10 log10

[ T (N, r)R(N, r)
maxr∈Ω[T (N ′, r)R(N ′, r)]

] 1
2

, (11)

which allows to foresee which sub-domain of Ω can be properly imaged
by means of an array of N elements evenly spaced by λb/2. In (11),
N ′ denotes the number of antennas of an array having the same size
as the transverse dimension of Ω, which we assume as the maximum
array aperture.
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4. DATA COLLECTED WITH A MOVING ARRAY

With the aim of reducing as much as possible the complexity of the
measurement set-up, in this Section we introduce a strategy to apply
the LSM when data are collected by means of an array of fixed length
smaller than the transverse extent of the investigated region, which is
moved above this region. Such an arrangement is of interest when 3-D
GPR surveys are performed, as often in practice, by means of a linear
array (rather than using a 2-D one) or when, in the 2-D geometry, a
short array is used to collect data along a profile.

A possible way to apply LSM in this case would be to evaluate
the support indicator in the region below the physical array and
then juxtapose the maps. However, such an approach requires the
interpolation of the obtained slices (in the 3-D case) and the definition
of a rule to combine maps corresponding to different indicators.

To avoid both issues, we propose a strategy in which Eq. (1) is still
considered and the elements of the MRM corresponding to transmitter
receiver pairs for which the scattered field is not measured are simply
replaced with zeroes. By doing so, we can achieve a single indicator
map, at the cost of a slight increase of the computational cost. As
it will be shown through numerical examples, this strategy allows to
achieve satisfactory performances when applying the LSM to extremely
simplified configurations.

To appraise the imaging capabilities of LSM in this configuration,
we can again take advantage of the previously introduced tools. By
denoting with P the number of positions in which the N elements array
is moved, we can build the probing wave footprint Tj(N, r) for each
array position j = 1, . . . , P and obtain the overall area spanned by the
probing waves through the combined map:

T̃ (N,P, r) =
1
P

P∑

j=1

Tj(N, r). (12)

Conversely, a single footprint with respect to all the receivers’ positions
has to be considered for each sampling point, R(N × P, r).

The resulting expected performance index is then:

Ẽ(N, P, r) = 10 log10

[
T̃ (N, P, r)R(N × P, r)

maxr∈Ω[T (N ′, r)R(N ′, r)]

] 1
2

. (13)

5. NUMERICAL EXAMPLES

In the following, we show some numerical examples concerning the
imaging of buried voids. In particular, an example in the 2-D case
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is given to describe the use of the above tools, while an example
concerning a full 3-D survey is given to assess the reconstruction
capabilities of the LSM in a problem relevant to GPR surveys.

5.1. 2-D Scalar Case

The region under test Ω is a rectangular domain embedded in a lossy
soil, whose complex permittivity has average value εb = 4 − i0.06.
This investigated domain is 10λb×5λb large, λb being the wavelength at
300MHz with respect to the real part of the soil’s average permittivity.
Such a domain is discretized in a grid of 100×50 sampling points. The
transmitting and receiving antennas are located at the air-soil interface
on a rectilinear domain Γ and are spaced of λb/2.

First of all, let us observe the maps of E(N, r), defined in (11),
obtained in this scenario for different values of N , Figs. 2(a)–(d),
related to arrays centered with respect to the investigation domain.

(a) (b)

(c) (d)

Figure 2. 2-D expected LSM performance index for different values
of N : (a) E(21, r); (b) E(11, r); (c) E(5, r); (d) E(3, r).
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Leaving aside feasibility considerations, from these plots one can notice
that an array having N = 21 antennas is expected to be suitable to
image the whole region under test Ω, whereas using N = 3 antennas
it is only possible to reliably image a very reduced portion of Ω
(just underneath the array). Moreover, due to the quickly decreasing
behavior of E(N, r) in depth, when reducing N , one expects to miss
the detection of objects located far from the measurement line Γ.

To verify these indications, we have considered the imaging of six
air-gaps having different size and location, see Fig. 3(a). Synthetic
scattered field data have been generated by using a method of moment
forward solver and corrupted by additive Gaussian noise, with signal-
to-noise ratio SNR = 25 dB.

Figure 3(b) shows the map of the normalized logarithmic LSM
indicator, defined as in (2), for N = 21 and confirms that a 10λb

long measurement line allows to detect and locate all the objects in

(a) (b)

(c) (d)

Figure 3. (a) Reference scenario; LSM indicator map for various
values of N : (b) N = 21; (c) N = 11; (d) N = 3. The plotted function
is [X/Xmax]

−1
dB.
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Ω. In particular, one can appraise the different size and position of
the various targets even if a slight error occurs on the localization of
deeper ones. It is also interesting to observe the LSM indicators for
N = 11 and N = 3, Figs. 3(c), (d), respectively. In these cases, not
all targets are detected and the properly imaged ones indeed lie in
those regions where E(11, rs) and E(3, rs) are larger than −10 dB (see
Figs. 2(c), (d)). It is worth to note that similar results are observed
considering a larger amount of noise (but for an obvious degradation
of the images).

The same imaging problem has been also tackled with data
collected by means of 3 antennas array swiped along the air-soil
interface. The 10λb profile is covered by shifting the 3-elements array

(a) (b)

(c)

Figure 4. LSM via a moving array: (a) Expected performance index
Ẽ(3, 7, r); (b) map of [X/Xmax]

−1
dB; (c) processed MRM data matrix,

the black pixels represent the measured data. The other elements of
the matrix are equal to zero.
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in 7 different positions. The expected performance index Ẽ(3, 7, rs),
Eq. (13), pertaining to this configuration is shown in Fig. 4(a). From
this plot, one can foresee that the proposed simple strategy allows
to enlarge the area that can be imaged, even if, due to the reduced
aperture of the moving array, the deeper part of Ω is still not properly
probed. This expectation is confirmed by the obtained LSM indicator
map, Fig. 4(b). As a matter of fact, only the targets located in the
shallower portion of Ω are successfully imaged, while the other ones,
being located in the subregion D ⊂ Ω where Ẽ(3, 7, rs) is negligible,
are either missed or not accurately localized. To further appraise
the obtained result, the processed MRM data matrix is displayed in
Fig. 4(c), to show that indeed only a few elements of the complete
matrix (N = 21) are actually exploited with the proposed strategy.

5.2. 3-D Vectorial Case

Let us now consider the application of the LSM to a 3-D GPR survey.
At the frequency of 200MHz, we consider a cubic region embedded
in a soil of complex permittivity εb = 5 − i0.09. The investigated
region has side 2.2λb and it is probed by means of N × N y-oriented
electric dipoles. The y-component of the scattered field is collected in
the same N ×N positions. The domain Ω is discretized into a grid of
22 × 22 × 22 sampling points and, in each of them Eq. (1) is solved,
taking as right hand side the y-component of the field radiated by
an y-oriented electric dipole located in sampling point. Under these
hypotheses, the SVD ofAyy

i (Ayy
e ) is exploited to determine the portion

of Ω which can be actually imaged in this configuration.

(a) (b)

Figure 5. Expected performance index E(N, r): (a) N = 25 antennas;
(b) N = 5 antennas.



Progress In Electromagnetics Research, Vol. 118, 2011 197

(a) (b)

(c) (d)

Figure 6. Reference scenario: (a) 3-D view; (b) slice at z = −0.3λb;
(c) slice at z = −0.7λb; (d) slice at z = −1.6λb.

The plot of E(N, r) corresponding to a 2-D array using N = 25
antennas evenly spaced by λb/2 is shown in Fig. 5(a), while the one of
a linear array of N = 5 antennas at x = 0 is shown in Fig. 5(b).

These figures suggests that only a very reduced portion of the
domain under test can be imaged by using a linear array of N = 5
elements. In particular, deeper objects are expected to be missed
and, due to the lack of illumination and measurement diversity, a loss
of accuracy in the direction orthogonal to the measurement line is
expected.

To verify these indications we have considered the scenario
sketched in Fig. 6, in which three empty cavities are embedded in
the background medium. The cavities have size 0.5λb × 0.3λb × 0.2λb,
0.3λb × 0.5λb × 0.2λb and 0.4λb × 0.4λb × 0.2λb, respectively, and their
centers are at 0.3λb, 0.7λb and 1.6λb below the interface (Figs. 6(b)–(d)
show the central slice of the targets). As in the 2-D case, synthetic data
have been generated by means of a method of moment forward solver
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and corrupted by means of an additive Gaussian noise, SNR = 25dB.
Figure 7(a) shows the 3-D map of the normalized logarithmic

support indicator X achieved by processing data collecting by using
the full grid (N = 25), while its slices corresponding to the center of the
targets are given in Figs. 7(b)–(d). In these figures, as in the following
ones, the dashed lines represent the actual contours. In agreement with
the performance expected from Fig. 7(a), the LSM is able to detect all
the objects and provides an accurate morphological reconstruction of
the shallower ones, while the shape of the deeper target is roughly
retrieved.

On the other hand, as suggested by Fig. 5(b), the performances
worsen when a linear array of N = 5 antennas is used, see Figs. 8(a)–
(d). As a matter of fact, the deep target is completely missed and the
size of the shallower objects in the (x-y) plane is overestimated.

When considering data gathered when moving the 5 antennas

(a) (b)

(c) (d)

Figure 7. LSM indicator [X/Xmax]
−1
dB for N = 25: (a) 3-D view; (b)

slice at z = −0.3λb; (c) slice at z = −0.7λb; (d) slice at z = −1.6λb.
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(a) (b)

(c) (d)

Figure 8. LSM indicator [X/Xmax]
−1
dB for a linear array (N = 5): (a)

3-D view; (b) slice at z = −0.3λb; (c) slice at z = −0.7λb; (d) slice at
z = −1.6λb.

linear array into 5 positions, with a λb/2 spacing, so to cover the
whole 2-D measurement surface, the expected performance index is
the one given in Fig. 9. As can it be observed, the map of Ẽ(5, 5, r)
suggests that an improved result can be achieved in the shallower part
of Ω, as compared to the single linear array case. This is confirmed
by the plot of the support indicator X given in Figs. 10(a)–(d), which
shows that results comparable to those achieved using the 2-D array
can be obtained as far as the shallowest target is concerned. On the
other hand, the reconstruction accuracy get worsen with depth, as the
deeper target is still missed and the shape of the second target is only
slightly improved compared to the single array case.

Finally, it is worth to remark that all the presented results require
a processing time of a few seconds on a standard PC. Moreover, a good
robustness against the noise affecting the data has been observed. As
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Figure 9. 3-D LSM expected performance index Ẽ(5, 5, rs).

(a) (b)

(c) (d)

Figure 10. LSM indicator [X/Xmax]
−1
dB for a moving a linear array

(N = 5): (a) 3-D view; (b) slice at z = −0.3λb; (c) slice at z = −0.7λb;
(d) slice at z = −1.6λb.
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a matter of fact, results comparable to those shown in Figs. 7, 8, 10
have been obtained by assuming SNR values lower than 25 dB.

6. DISCUSSION AND CONCLUSIONS

The ongoing development of GPR systems based on antennas array has
motivated us to consider the feasibility of the LSM for GPR surveys
carried out in this configuration. In particular, we have exploited
the spectral properties of integral operators describing the scattering
phenomenon to derive tools, which allow to relate the performance
of the LSM to the array aperture. Then, by means of 2-D and
3-D numerical examples, we have shown the effectiveness of these
tools and assessed the capability of the LSM of operating (within the
foreseen limits) also when very simple, though properly designed, array
configurations are exploited. This is an interesting result, as LSM may
represent a simple way to proceed towards actual 3-D surveys with
feasible, almost negligible, computational cost.

As far as the observed limitation in the imaging of deeper targets
is concerned, a possible way to counteract it is to juxtapose LSM
reconstructions obtained at (few) different frequencies, so to combine
the features of low frequency data in terms penetration with those of
high frequency data in terms of achievable spatial resolution [20].

Finally, it is worth to note that the reasonings exploited to
introduce the performance index and the footprints have a general
validity, which makes them useful also in other cases.
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