
Progress In Electromagnetics Research, Vol. 117, 409–423, 2011

COUPLING MATRIX DECOMPOSITION IN DESIGNS
AND APPLICATIONS OF MICROWAVE FILTERS

K. Xiao 1, *, L. F. Ye 1, F. Zhao 1, S. L. Chai 1, and L.-W. Li 2

1College of Electronic Science and Engineering, National University of
Defense Technology, Changsha 410073, China
2Institute of Electromagnetics, University of Electronic Science and
Technology of China, Chengdu 611731, China

Abstract—The relationship between the immittance inverter co-
efficients and the coupling coefficients is obtained under the non-
resonating coupling condition. With the relationship and the deter-
minant properties of the transformation matrix, the coupling matrix
could be decomposed to many sub-matrixes for filter designs. The
physical significance of the decomposition is discussed. Using this idea,
a filter can be decomposed to a number of sub-filters, which could be
connected by sections of transmission lines with the same characteris-
tics kept.

1. INTRODUCTION

Several techniques and methodologies are available nowadays for
designing microwave filters with sharp cutoff at the edge of the
passband. For some applications, such as space communication
systems, it is desirable to sacrifice some signal to improve the close-
to-band rejection slopes. A commonly adopted method used for
achieving the high selectivity is to increase the degree of filters.
Among some smart ideas used, transfer functions such as the elliptic
function have been used to design filters with attenuation poles and
sharp cutoff at the edge of the passband [1]. Multipath effects can
be used to achieve transmission zeros [2], which depending on the
phasing of the signal, may cause attenuation poles at finite frequencies.
Multipath effects can be achieved by using cross coupling between
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modes in nonadjacent cavities [3–8]. After the multi-mode cavities are
considered, multipath effects can be achieved by cross coupling between
multi-mode cavities [9–12]. Bypass coupling is utilized to achieve the
multipath effect [13–15], where the non-resonating (NRN) modes were
used to realize the bypass coupling, although NRN is not proper for
wideband design since the resonance of the NRN can not be allocated
far from the passband, it is also a disadvantage of the use of NRN that
the design produce longer filters but not increase the filter order or
selectivity [7].

A matrix decomposition method in this paper is proposed to
design high-order filters. The idea is to divide the coupling between
two resonators into two NRN coupling, so that some large coupling
values can be made more physically realizable. From the determinant
properties of transformation matrix and the expressions of the filter
response getting from the coupling matrix, the high-degree coupling
matrix can be mathematically divided into a number of sub-matrices
(which are associated with NRN coupling). So, the original proposed
high-degree filter can be physically decomposed to sub-filters which
can be designed separately and individually.

2. INVERTER AND COUPLING NETWORKS

Three cases are usually considered to analyze the relationships between
immittance inverter coefficients and coupling coefficients, namely,

(1) Coupling between resonating modes,
(2) Coupling between resonating and NRN modes,
(3) Coupling between NRN modes.

The relationship in Case 2 was analyzed by means of external quality
factor [13, 16], where Amari designed the filter using the coupling
between the NRN TE10/01 modes and source/load as the bypass
coupling, then the bypass coupling effects can be described by coupling
matrix. As the relationship in Case 1 is very similar to that in Case 3,
so we will only address the issues in Case 3 herein.

The NRN modes are defined as these modes whose resonating
frequencies are far away from their pass bandwidths of the respective
filters. Within the bandpass of filters, the coupling between NRN
modes is equivalent to the transmission line coupling, and the presumed
NRN modes become equivalent to transmission loads. So, we consider
a two-port network comprising of the NRN coupling circuits as shown
in Fig. 1(a), two sections (characterized by {G1, φ1}) and {G2, φ2})
of transmission lines are added to the two sides (denoted by A and B)
of the immittance inverter.
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(a) (b)

Figure 1. Layout of admittance inverter network. (a) Immittance
inverter with two transmission lines. (b) Equivalent two-port network.

In Fig. 1(a), the two parameters, G1 and G2, represent the
characteristic admittances of the two NRN transmission lines while
the other two, φ1 and φ2, denote the related phase-shifts of the
transmission lines, respectively. The scattering parameters of the two-
port network shown in Fig. 1(b) can be calculated as follows:

S′′11 =
(G1G2)

/
J2 − 1

(G1G2)
/
J2 + 1

e−2jφ1 =
∣∣S′′11

∣∣ e
jθ′′S11 (1)

where θ′′S11
denotes the phase of S′′11. In a similar fashion to the

S-parameter in (1), another expression can be obtained for the S-
parameter S′′22. From (1), we have:

for
G1G2

J2
< 1

∣∣S′′11

∣∣ =
∣∣S′′22

∣∣ =
1− (G1G2)

/
J2

1 + (G1G2)
/
J2

, (2)

φi = −1
2
θ′′Sii

+
(2m + 1)

2
π (3)

where i = 1, 2, and m ∈ Z; while for
G1G2

J2
> 1

∣∣S′′11

∣∣ =
∣∣S′′22

∣∣ =
(G1G2)

/
J2 − 1

(G1G2)
/
J2 + 1

, (4)

φi = −1
2
θ′′Sii

+ nπ, where n ∈ Z. (5)

To obtain the scattering characteristics of the network without the
phase-shift-segment, we set φ1 = φ2 = 0 for the two cases, yielding

θ′′S11
= (2p + 1)π

θ′′S22
= (2q + 1)π

}
, where {p, q} ∈ Z, (6)



412 Xiao et al.

Figure 2. Geometry of cascaded two-port networks.

θ′′S11
= 2tπ

θ′′S22
= 2sπ

}
, where {t, s} ∈ Z. (7)

Both of two cases are possible, the scattering parameters of the
admittance inverter are derived, then in order to yield the equivalent
relation between the admittance inverter coefficient and the coupling
coefficient, we need to know the scattering parameters of the coupling
network, so we consider a two-port network shown in Fig. 2.

Define the coupling between the non-resonators characterized by
the coefficient MSL [13]. According to the relationship between the
filter’s response and coupling matrix, we have

MSL =
jS21

1− S11
, (8)

where S21 and S11 are the scattering parameters of the two-port
network S in Fig. 2. As the coupling parameter MSL defined in (8)
is a complex number, the phase shift section is added in each side in
order to obtain a real part of MSL. Define the cascaded networks as
S′ in Fig. 2. The scattering parameter of S′ in Fig. 2 can be expressed
as

S′ =
[

e−j2θ1S11 e−jθ1e−jθ2S12

e−jθ1e−jθ2S21 e−j2θ2S22

]
. (9)

The coupling coefficient M ′
SL after cascading becomes

M ′
SL =

S′21

j (S′11 − 1)
=

e−j(θ1+θ2−θ21−π
2 ) |S21|

1− e−j(2θ1−θ11) |S11|
(10)

where θ11 and θ21 denote the phases of S11 and S21 respectively, while
|S′11| and |S′21| stand for the scattering parameters after cascading. To
obtain a real value of M ′

SL, we have

θ1 + θ2 − θ21 +
π

2
= pπ, p ∈ Z, (11)

θ1 − θ11 = qπ, q ∈ Z. (12)
Assuming that all the network systems analyzed and considered are
lossless and of reciprocity, we then have

θ21 = θ12 =
1
2

(θ11 + θ22 − π) . (13)
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Substituting (13) into (11) and (12) yields

θ1 =
θ11

2
+

nπ

2
θ2 =

θ22

2
+

mπ

2





, where {n,m} ∈ Z. (14)

With the phase condition given in (14), two sets of coupling coefficients
can be obtained. The first set of coefficients is given by

M ′
SL1 =

± |S21|
1 + |S11| =

± |S′21|
1 + |S′11|

(15)

θ1 =
θ11

2
+

(2n + 1)π

2
θ2 =

θ22

2
+

(2m + 1)π

2





, where {n,m} ∈ Z, (16)

θS′11 = (2e + 1)π
θS′22 = (2f + 1)π

}
, where {e, f} ∈ Z. (17)

The second set of coefficients is expressed as

M ′
SL2 =

± |S21|
1− |S11| =

± |S′21|
1− |S′11|

(18)

θ1 =
θ11

2
+ nπ

θ2 =
θ22

2
+ mπ





, where {n, m} ∈ Z, (19)

θS′11 = 2eπ
θS′22 = 2fπ

}
, where {e, f} ∈ Z (20)

where S′11 and S′22 denote the scattering parameters of the network S′,
while θS′11 and θS′22 stand for the phases of S′11 and S′22, respectively.

The phase conditions defined in (6) and (17) are found to be
equivalent. And by comparing the scattering parameters given by (2),
(3) and (6) versus (15), (16) and (17), the relation between the coupling
and the admittance inverter coefficients can be derived as

M ′
SL =

√
G1G2

J
=

± |S′′21|
1 + |S′′11|

=
± |S′21|

1 + |S′11|
. (21)

Using the same method, the phase conditions of (7) and (20) are also
found to be equivalent. And using (4), (5) and (7) versus (18), (19)
and (20), we obtain another relation expressed as

M ′
SL =

J√
G1G2

=
± |S21|

1− |S11| =
± |S′21|

1− |S′11|
. (22)

The methods proposed above can be used to obtain similar relations
for the impedance inverter coefficients and the coupling coefficients.
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3. COUPLING DECOMPOSITION SCHEME

Considering the admittance inverters on the left-hand side of Fig. 3,
we have J = −(J1J3)/J2. On the right-hand side of Fig. 3, the
inverter coefficients of three cascaded admittance inverters are J1, J2

and J3, respectively, and G1, G2, G3 and G4 represent characteristic
admittances of the transmission lines connected. The transfer matrices
of the two networks shown in Fig. 3 are equivalent.

From (22), coupling coefficients corresponding to the four inverter
networks are expressed as M = −J/

√
G1G4, M1 = J1/

√
G1G2,

M2 = J2/
√

G2G3, and M3 = J/
√

G3G4, respectively. They are found
to satisfy the equation M = −(M1M3)/M2. By using the equation,
the coupling coefficients can be decomposed, e.g., when M2 = 1,
M = −M1M3. Considering the coupling matrix B̄ in (23) and using
the determinant transforming, we have a coupling matrix Ā as shown
in (24) with the same filter response of B̄ [13, 16].

B̄ =




−j M12 · · · M1,i

M12 p · · · ...
...

...
. . . Mi−1,i

M1,i · · · Mi−1,i p
M1,i+1 · · · Mi−1,i+1 −Mi,i+1M

′
i,i+1

M1,i+2
...

... Mi,i+2
...

...
...

...
M1,N+2 · · · · · · · · ·

M1,i+1 M1,i+2 · · · M1,N+2
...

... · · · ...

Mi−1,i+1
... · · · ...

−Mi,i+1M
′
i,i+1 Mi,i+2 · · · Mi,N+2

p Mi+1,i+2 · · · Mi+1,N+2

Mi+1,i+2
. . .

...
...

... · · · p MN+1,N+2

Mi+1,N+2 · · · MN+1,N+2 −j




(23)

Figure 3. Two equivalent admittance inverter networks.
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In which, p means the complex lowpass frequency variable, expressed as
p = j (ω/ω0 − ω0/ω) /FBW , where FBW = ∆ω/ω0 is the fractional
bandwidth of filter [16].

Ā =




−j M12 · · · M1,i 0

M12 p · · · ...
...

...
...

. . . Mi−1,i 0
M1,i · · · Mi−1,i p Mi,i+1

0 · · · 0 Mi,i+1 0
0 · · · 0 0 1

M1,i+1 · · · Mi−1,i+1 0 0
M1,i+2 · · · · · · Mi,i+2 0

...
...

...
...

...
M1,N+2 · · · · · · Mi,N+2 0
0 M1,i+1 M1,i+2 · · · M1,N+2
...

...
... · · · ...

0 Mi−1,i+1
... · · · ...

0 0 Mi,i+2 · · · Mi,N+2

1 0 0 · · · 0
0 M ′

i,i+1 0 · · · 0
M ′

i,i+1 p Mi+1,i+2 · · · Mi+1,N+2

0 Mi+1,i+2
. . .

...
...

...
...

... p MN+1,N+2

0 Mi+1,N+2 · · · MN+1,N+2 −j




(24)

From the determinant transforming, we obtain
∣∣Ā∣∣ = − ∣∣B̄∣∣ and

Ā∗N+2,1 = −B̄∗
N,1, in which, Ā∗ij means the cofactor of the element aij .

Equations used to calculate the transmission and reflection coefficients
(or scattering parameters) of the filters from the coupling matrix Ā or
B̄ are given as follows

S11 = 1− 2RSI1 = 1 + 2j
[
Ā−1

]
11

(25)

S21 = 2
√

RSRLIn = −2j
[
Ā−1

]
n1

(26)

where [
Ā−1

]
n1

=
1∣∣Ā∣∣Ā

∗
n1. (27)

From (25), (26) and (27), the ideal filter responses corresponding to
coupling matrices Ā and B̄ are equivalent. Especially when Mn,i+1 = 0
(1 ≤ n ≤ i−1) and Mi,m = 0 (i+2 ≤ m ≤ N+2) in the coupling matrix
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B̄, the response of matrix Ā will have independent transmission zeros
between sub-matrices, which will be demonstrated in the following
examples.

4. NRN COUPLING OF MATCHING NETWORKS

In Fig. 4, the impedance inverter coefficient of the network highlighted
by the elliptical circular is ZC , and the characteristic impedance of the
transmission lines with phase-shifts of φ1 and φ2 is also ZC .

Figure 4. NRN coupling between two networks.

From equations obtained in Section 2, the coupling coefficient of
the inverter network is equal to 1, so the inverter of “ZC” can be
replaced by a section of λg/4 transmission line whose characteristic
impedance is also ZC . In Fig. 4, ZX and ZY represent the equivalent
loads to sub-filter circuits, while ZX and ZY denote actually complex
impedances dependant upon the frequency. In the pass-band of the
filter, ZX and ZY trend to ZC . The input impedances of the ports
indicated in Fig. 4 are expressed as

Z1 = ZC
ZX + jZC tanφ1

ZC + jZX tanφ1
, (28)

Z3 = ZC
ZY + jZC tanφ2

ZC + jZY tanφ2
, (29)

Z2 = ZC
ZC + jZX tanφ1

ZX + jZC tanφ1
= ZC

ZX + jZC tan (φ1 + π/2)
ZC + jZX tan (φ1 + π/2)

(30)

Consider the matching of Ports 3 and 4. As the conjugate
matching is obtained exactly in pass-band, namely, Z2 = Z̄3, so a
non-linear relation between φ1 and φ2 can be deduced. The general
expression of the relation is very complicated, so it is impractical to
express it explicitly herewith. We could consider, however, a simplified
case at first, that is, a symmetry filter of even degree whose NRN
coupling part is just located in the symmetric position.

Due to the symmetry assumed, so ZX = ZY and φ1 = φ2 can be
obtained. Therefore, we have Z1 = Z3. As mentioned earlier, the “1”
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coupling section can be equivalent to a section of λg/4 transmission
line, so the phase difference between the reflection coefficients S′33
and S′44 is π. From the conjugate matching condition Z2 = Z̄3, we
should obtain S′33 = S̄′44, which means at a frequency, f and within
its pass-band, the reflection coefficients S′33(f) and S′44(f) should be
symmetrical with respect to the real axis on the Smith Chart. Together
with the phase difference condition of S′33(f) and S′44(f), the ideal
conjugate matching implies that by choosing a proper φ1 [or φ2 for
instance], the track of reflection coefficient S′33(f) [or S′44(f)] within
the frequency pass-band should be perpendicular to the real axis and
should pass through the Smith Chart center. It is, however, impossible
to find such a linear relation of φ1 to satisfy this ideal condition due to
the frequency dependence. Only an approximate matching condition
can be used by tuning φ1 to match the track of S′33(f) [or S′44(f)] to the
imaginary axis on Smith Chart. Some examples will be considered later
to show the applicability of the matching and coupling decomposition
methods. Take a symmetrical four degree coupling matrix as an
example to illustrate the application of the “1” coupling matching,
where the coupling matrix is expressed as

Ā =




−j MS1 0 0 0 0
MS1 p M12 0 0 0

0 M12 p M23 0 0
0 0 M23 p M34 0
0 0 0 M34 p M4L

0 0 0 0 M4L −j




(31)

where MS1 = M4L = 1.1055, M12 = M34 = 0.9860, and M23 = 0.7410.
The central frequency of the filter designed is chosen as 10.48GHz, and

Unit: mm
(Symmetical dimention)

18.767
19.922

1
6

20

4.22

1.5

8.19

3.87

(a) Physical geometry (b) Frequency response

Figure 5. Physical configuration and frequency response of the filter.
Solid line: Ideal response; Dashed line: Simulated response.
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the equal-ripple bandwidth is 55.5 MHz.
Figure 5 shows the model and response of the waveguide filter.

The ideal responses are calculated using MatLab software package, and
the simulated results are calculated using the commercial microwave
software HFSS.

5. SPECIFIC APPLICATIONS

By taking reference to the transformation of (23), the filter responses
corresponding to the coupling matrix of (31) and B̄ shown in (32) are
the same.

B̄ =




−j MS1 0 0 0 0 0 0
MS1 p M12 0 0 0 0 0

0 M12 p
√

M23 0 0 0 0
0 0

√
M23 0 1 0 0 0

0 0 0 1 0 −√M23 0 0
0 0 0 0 −√M23 p M34 0
0 0 0 0 0 M34 p M4L

0 0 0 0 0 0 M4L −j




(32)
Additionally, (32) can be decomposed to the following two sub-matrices

A1 =




−j MS1 0 0
MS1 p M12 0

0 M12 p
√

M23

0 0
√

M23 −j


 (33)

A2 =




−j
√

M23 0 0√
M23 p M34 0
0 M34 p M4L

0 0 M4L −j


 . (34)

From (25), (26) and (27), the ideal filter responses corresponding to
coupling matrices Ā in (31) and cascade connected coupling matrices
(33) and (34) are equivalent. The two sub-matrices have the same ideal
responses which are compared and shown in Fig. 6.

We can use a transmission line to achieve the “1” coupling
matching section. Changing the output waveguide length L, we can
obtain the responses of reflection to the sub-filters, which are plotted
in Fig. 7 using the smith chart.

When the reflection chart of every sub-filter is perpendicular to
the real axis of the smith chart, and their phase difference is π,
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of sub-filterInput

Output of sub-filter

L: length of output port
unit: mm

L

Figure 6. Ideal (solid line) and simulated (dashed line) responses used
for the sub-filters.

(a) (b)

Figure 7. The port-reflection-coefficient smith charts of sub-filters in
Fig. 6 by changing the input waveguide length L: (a) L = 8.7mm, (b)
L = 18.9 mm.

then the approximate conjugate matching of the two sub-filters is
realized in the passband. As a result, the length of the transmission
line corresponding to the NRN matching is 27.6 mm, the length is
about λg (φ1 + φ2 + π/4) [at the center frequency of the pass-band,
λg = 40.98mm]. In the first chart of Fig. 7, L1 = 8.7mm; and in the
second chart, L2 = 18.9mm, the difference of L1 and L2 is about one
quarter waveguide wavelength.
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The physical model depicted in Fig. 8 is the filter combined with
the two sub-filters, whose responses are shown in Fig. 7. The second
figure shown is its response chart.

The NRN waveguide transmission lines can be substituted with
coaxial transmission lines, the dielectric constant is εr = 2.08. The
reflection coefficient tracks of the two sub-filters are shown in Fig. 9.

(a) (b)Physical geometry Frequency response

Unit: mm
(Symmetical dimention)

27.6

4.25 5

19.0
4

8.21

1
6

7.52

20

18.7
6

1.5

Figure 8. Physical configuration and frequency response of the filter
with NRN section, solid line: ideal response; dashed line: simulated
response.

(a) (b)

Figure 9. Frequency responses of two coaxial transmission lines.
The lengths of the coaxial lines are (a) 3.55 mm and (b) 8.6 mm,
respectively.
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The response of the filter, after combination, is shown in Fig. 10(b).
The length of the transmission coaxial line is 12.01mm, and the
physical model or geometry of the filter is also shown in Fig. 10(a).

In order to investigate the influence of the NRN structures,
simulated wideband responses are compared in Fig. 11, from which,
filters using coaxial-line or waveguide as NRN structures have similar
responses in a wide frequency band from 8 GHz to 10 GHz. However,
in frequency band below 9.5 GHz or above 11.5GHz, the ideal insertion
loss of the filters using NRN structures is about 40 dB higher than that
of the original response, because the NRN resonates in outband.

(a) (b)Physical geometry Frequency response

             Unit: mm
(Symmetical dimention)

Port1

Port2

Coaxial-line 

20

18.755 8.23

4.29

1
6

19.845

1.5

1
2

.0
1

Figure 10. Physical configuration and response of the filter with NRN
coaxial connection.

Figure 11. Compared results of wideband responses.
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6. CONCLUSION

The decomposition of the coupling coefficients is proposed and carried
out in this paper so as to decompose the coupling matrix to multiple
sub-matrices. The physical significance of NRN coupling is then
analyzed using the conjugated matching method, and the original filter
can be decomposed into many sub-filters. The method proposed in the
paper can be used to make coupling values more physically realizable,
although it may cause a more flexible topology. It is obvious that
by increasing the length of NRN coupling coaxial line by nλg/2, the
response of the filter does not change. This is an important feature
and may lead to many potential applications in the filter designs.
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