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Abstract—In this paper, a recursive computation method is
developed to derive the multiple reflections of nonuniform transmission
lines. The true impedance profiles of the nonuniform transmission lines
are then reconstructed with the help of this method. This method is
more efficient than other algorithm. To validate this method, two
nonuniform microstrip lines are designed and measured using Agilent
vector network analyzer E8363B from 10MHz to 20 GHz with 10MHz
interval. The reflection coefficients of these nonuniform microstrip
lines in time domain are attained from the scattering parameters
using inverse Chirp-Z transform. The reconstructed characteristic
impedance profiles of the nonuniform lines are compared with those
reconstructed by Izydorczyk’s algorithm. The agreements of the results
illustrate the validity of the recursive multiple reflection computation
method in this paper.

1. INTRODUCTION

Planar microwave transmission lines such as microstrip lines and
coplanar waveguides are widely used in microwave circuits and high-
speed digital circuits, for example, antenna [1], power dividers [2] and
filters [3]. The performances of microwave circuits and high-speed
digital circuits in time domain are much concerned by designers [4–10].
As a basic measurement technique in time domain, the Time Domain
Reflectometry (TDR) is widely used to acquire the transient response
of the circuits [8, 9] in time domain. And as a basic measurement
instrument in frequency domain, Vector Network Analyzer (VNA),
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with the help of inverse Fourier transform algorithm, is also able
to obtain the time-domain response the same as TDR if sufficient
bandwidth is provided [11, 12]. Therefore, the time domain responses
of microwave circuits and high-speed digital circuits can be attained by
both TDR and VNA. And the impedance profiles of the circuits then
can be calculated according to their time-domain responses. However,
multiple reflections of a nonuniform transmission line always result in
incorrect impedance readouts [13, 14]. The true impedance profiles
need to be reconstructed from the confusing measurement results.

Many authors have made significant contributions to the study of
reconstructing the true impedance profiles of nonuniform transmission
lines from the data acquired by TDR or VNA [13–19]. The
literature [15] used a recursive method with only three variables
Γtable, Γopen and Γmatched. However, the processing time of this
algorithm is in the order of o(N3), that is if the number of data
doubles, the computation time will be roughly eight times longer.
The literature [16] used the extended peeling algorithm to extract the
circuit model of lossy interconnects from the TDR/T measurement
data. However, to implement this algorithm, the resistance per unit
length of the circuits must be measured by TDR firstly. Hsue and
Pan [13] divided the reflected wave into many time durations with
equal length and decomposed the reflected wave into ‘wavefront’ and
‘nonwavefront’ components, which make it intuitional to reconstruct
the nonuniform transmission lines. However, the expression of the
reflected wave Vr(t) in [13] and [19] is complicated and difficult to
realize. Izydorczyk [20, 21] proposed an algorithm to reconstruct the
impedances of nonuniform transmission lines, which is simple and easy
to use. The Izydorczyk’s algorithm used the relationship between the
voltages at the nth layer and the (n + 1)th layer and the algorithm is
in the order of o(N2).

In this paper, a lattice diagram [14, 15] that is used to illustrate
the process of the injected step voltage generated by TDR propagating
in a nonuniform transmission line is studied. Then a recursive
algorithm is developed to calculate the reflected wave Vr(t). This
algorithm calculates the voltages injected into the lattices recursively
from the unit step response of the nonuniform transmission line.
The response is acquired by TDR or VNA and includes multiple
reflections. The true impedance profile of the transmission line can
be reconstructed with the help of this algorithm. To validate the
algorithm, two nonuniform microstrip lines are designed and measured
using Agilent VNA E8363B from 10 MHz to 20 GHz with 10 MHz
interval. The unit step responses are attained from S11 of the
circuits using inverse Chirp-Z transform (ICZT). The reconstructed
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characteristic impedance profiles of the nonuniform lines are compared
with those reconstructed by Izydorczyk’s algorithm. The agreements of
the reconstructed results illustrate the validity of the recursive multiple
reflection computation method in this paper.

2. THEORY

2.1. An Improved Recursive Method for Multiple Reflection
Computation

The first step of analyzing a nonuniform transmission line is to divide
it. Suppose a nonuniform transmission line can be decomposed into
a series of uniform transmission line segments. This assumption is
reasonable if the number of segments is large enough. And suppose
the time that it takes for the voltage traveling through each segment
are the same. The lattice diagram that illustrates the injected
voltage traveling back and forth in the nonuniform transmission line
is shown in Figure 1. In Figure 1 the nonuniform transmission line is
decomposed into n uniform transmission line segments, each of which
holds a impedance of Zi, (i = 1, 2, . . . , n). Z0 is the characteristic
impedance of measurement instruments. As to TDR and VNA, Z0

is the characteristic impedance of the test ports. Therefore, there is
a discontinuity between adjacent uniform segments. For two adjacent
segments, sometimes, the impedances of which are equal to each other,
but we still think there is a discontinuity which can not cause any
reflections. Therefore, there are n discontinuities along the nonuniform

Figure 1. A lattice diagram that illustrates the injected voltage
traveling back and forth in a nonuniform transmission line.
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transmission line. The TDR samples the reflected voltage at equal time
intervals, say ∆t. Let the time that it takes for the voltage traveling
through each uniform segment be τ , therefore, ∆t is equal to 2τ . In the
procedure of construction, which is illustrated in Section 2.2, the reflect
voltages are sampled by TDR with equal time interval. If the reflect
voltages at the test port are known, the lattice diagram in Figure 1
are established. Therefore, the nonuniform transmission lines are not
divided actually.

A basic lattice that is also called a cell [16] is defined in Figure 1.
Let i denote the ith discontinuity and j denote the jth time interval, in
other words, the time of j∆t. All lattices in Figure 1 are indexed with
i and j. The voltage injected into the lattice (i, j) can be denoted as
(V L

i,j , V R
i,j), where V L

i,j denotes the voltage that injected into the lattice
(i, j) from its left lattice and V R

i,j denotes the voltage that injected into
the lattice (i, j) from its right lattice. It is clear in Figure 1 that the
left lattice and the right lattice of lattice (i, j) are lattice (i− 1, j) and
lattice (i + 1, j − 1) respectively. As shown in Figure 1, part of V L

i,j

is reflected back to the left side by the ith discontinuity and the rest
passes through. Just as V L

i,j , part of V R
i,j is reflected back to the right

side and the rest passes through and travels to the test port.
Therefore, the relationship of the lattices can be determined. For

2 ≤ i < n and j ≥ 2, the voltage V L
i,j that is injected into the lattice

(i, j) contains two parts: the first part is portion of V L
i−1,j that travels

through lattice (i − 1, j) and the other is portion of V R
i−1,j that is

reflected back by the (i − 1)th discontinuity. Therefore, V L
i,j can be

expressed by (1a). V R
i,j can be derived in the same way, just shown

in (1b).

V L
i,j = Ti−2,i−1V

L
i−1,j + Γi−1,i−2V

R
i−1,j (1a)

V R
i,j = Γi,i+1V

L
i+1,j−1 + Ti+1,iV

R
i+1,j−1 (1b)

where Ti,i+1 and Ti+1,i are the transmission coefficients; Γi,i+1 and
Γi+1,i are the reflection coefficients between Zi and Zi+1. Γi,i+1, Γi+1,i,
Ti,i+1 and Ti+1,i are defined as follows.

Γi,i+1 =
Zi+1 − Zi

Zi+1 + Zi
= −Γi+1,i (2a)

Ti,i+1 = 1 + Γi,i+1 (2b)
Ti+1,i = 1 + Γi+1,i (2c)

For the lattices such that i = 1 and j ≥ 2, the voltage injected into
the lattices from left side is generated by TDR and remains constant,
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therefore

V L
i,j = V (3a)

V R
i,j = Γi,i+1V

L
i+1,j−1 + Ti+1,iV

R
i+1,j−1 (3b)

where the value of V in (3a) and (6a) which is shown later is the
magnitude of the step voltage generated by TDR. To normalize the
reflected voltage, the value of V is assigned to be 1 V.

For the lattices such that 2 ≤ i < n and j = 1, there are no
voltages injecting into their left lattices indexed with i− 1 and j from
the right sides and there are no right lattices indexed with i + 1 and
j − 1. Therefore, (1a) and (1b) are rewritten as follows.

V L
i,j = Ti−2,i−1V

L
i−1,j (4a)

V R
i,j = 0 (4b)

For the lattices such that i = n and j ≥ 2, there are no right
lattices which are indexed with i+1 and i− 1. Therefore, V L

i,j and V R
i,j

are represented as follows.

V L
i,j = Ti−2,i−1V

L
i−1,j + Γi−1,i−2V

R
i−1,j (5a)

V R
i,j = 0 (5b)

For the lattice such that i = 1 and j = 1,

V L
i,j = V (6a)

V R
i,j = 0 (6b)

And for i > n and j ≥ 1, the lattices indexed with i and j are
viewed as ‘virtual’ lattices and V L

i,j and V R
i,j are assigned to be zero,

which may be useful for programming.
The analysis above can be summarized by the equations as follows.

V L
i,j =





Ti−2,i−1V
L
i−1,j , 2 ≤ i ≤ n, j = 1

Ti−2,i−1V
L
i−1,j + Γi−1,i−2V

R
i−1,j , 2 ≤ i ≤ n, j ≥ 2

1, i = 1, j ≥ 1
0, otherwise

(7)

V R
i,j =

{
Γi,i+1V

L
i+1,j−1 + Ti+1,iV

R
i+1,j−1, 1 ≤ i < n, j ≥ 2

0, otherwise
(8)

The reflected voltage measured by TDR at the time of j∆t can
be expressed by

Vr(j) = T1,0V
R
1,j + Γ0,1V

L
1,j (9)

where j = 1, 2, 3, . . ..
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The process of multiple reflection computation is to calculate the
reflect voltages at the test port according to the impedances of the
uniform line segments. But by contrast, the process of impedance
reconstruction is to obtain the impedance of the uniform line sections
under the condition that Vr is measured by TDR or VNA.

2.2. Impedance Reconstruction

For i = 1, the reflected coefficient Γ0,1 and impedance Z1 can be
obtained directly from the measured data.

Γ0,1 = Vr(1) (10)

Z1 = Z0
1 + Γ0,1

1− Γ0,1
(11)

The reflected voltage Vr(t) in literature [13] was decomposed
into ‘wavefront’ and ‘nonwavefront’ components and the reflection
coefficient Γi−1,i between Zi−1 and Zi such that i ≥ 2 was expressed
as follows [13].

Γi−1,i =
Vr(i)− Vref (nonwavefront, i)

j=i−1∏

j=1

Tj−1,j

j=i−1∏

j=1

Tj,j−1

=
Vr(i)− Vref (nonwavefront, i)

j=i−1∏

j=1

(1− Γ2
j−1,j)

(12)

Therefore, the characteristic impedance Zi of the ith uniform segment
can be calculated according to Zi−1 and Γi−1,i, as shown in (13).

Zi = Zi−1
1 + Γi−1,i

1− Γi−1,i
(13)

The term Vref (nonwavefront, i) in (12) is the reflected voltage that
experiences multiple reflection processes at the discontinuities formed
by Z0, Z1, . . . , Zi−1 at the time of i∆t. If Z0, Z1, . . . , Zi−1 are known,
Vref (nonwavefront, i) can be calculated by (7)∼ (9) recursively.

The impedances Z2, Z3, . . . , Zn then can be figured out according
to (11)∼ (13) iteratively with the help of the recursive multiple
reflection algorithm proposed in Section 2.1.
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3. EXPERIMENTS AND RESULTS

3.1. Circuits Design

To certify the multiple reflection computation method, two nonuniform
microstrip lines are designed. The size of the circuit boards and the
signal lines are shown in Figures 2 and 3, respectively. The impedance
of the microstrip line in Figure 2 is step change and that of the
microstrip line in Figure 3 is gradual change. To make sure those lines
can be connected to the coaxial ports of the vector network analyzer,
two location holes are designed at each side of the circuit boards.
Two launchers are used in order to connect the circuits under test to
vector network analyzer. The substrate of the both nonuniform lines
is RO4350B, of which the relative dielectric constant and loss tangent
are 3.48 and 0.004 respectively. The thickness of the substrate is 30 mil
and that of the strips is 0.7 mil. The characteristic impedances of the
uniform transmission line sections are computed according to [22] and
shown in Table 1.

(a)

(b)

Figure 2. Nonuniform microstrip transmission line with coaxial-to-
microstrip launchers. The impedance is step change. (a) Widths and
lengths of the strip line sections. (b) The designed circuit board with
launchers.
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(a)

(b)

Figure 3. Nonuniform microstrip transmission line with coaxial-to-
microstrip launchers. The impedance is gradual change. (a) Widths
and lengths of the strip line sections. (b) The designed circuit board
with launchers.

Table 1. Characteristic impedances of uniform microstrip line sections
with different widths. The thickness of the strips is 0.7mil.

Strip Width (mil) 66 220 450
Impedance (Ω) 50.6 21.3 11.6

3.2. Reconstruction Results

The microstrip lines in Figures 2 and 3 are measured from 10 MHz to
20GHz with 10 MHz interval via Agilent vector network analyzer PNA
E8363B. Usually the unit step responses of the circuits are obtained
using inverse Fast Fourier Transform (IFFT). To improve the resolution
of the responses of the microstrip lines in time domain, inverse Chirp-
Z transform (ICZT) is used actually instead of IFFT [23]. Since the
Chirp-Z transform (CZT) has been realized in MATLAB as function
czt, the ICZT transform of scattering parameters of the microstrip
lines can be determined according to the relationship between CZT



Progress In Electromagnetics Research, Vol. 117, 2011 157

and ICZT [24], just as (14).
ICZT[X(k)] = (CZT[X∗(k)])∗ (14)

where the “∗” means complex conjugate.
The unit step responses of the microstrip lines in Figures 2 and 3

can be obtained according to (15).

R(k) = ICZT
[

S11(k)
1− e−jk(2π/(N+1))

]
(15)

where k = 0, 1, 2, . . . , N , and N is the number of S11. The value of
S11(k)

1− e−jk(2π/(N+1))

at k = 0 is obtained by extrapolating.
The hanning window [25] is used to smooth the results when

employing ICZT to compute the unit step response. The unit step
responses are actually corresponding to the reflection coefficients of
the microstrip lines measured by TDR. Therefore the impedances of
the microstrip lines can be derived according to TDR principle shown
in (16).

Z = Z0 · 1 + ρ

1− ρ
(16)

where ρ is the reflection coefficient of the device under test in time
domain and Z0 is the characteristic impedance of the test port of TDR.

The reflection coefficients of the two nonuniform lines in Figures 2
and 3 are shown in Figure 4. To ensure the resolution in time domain,
the time interval is set 1.25 ps and the data number is 2000. If the
incident voltage V which is shown in (3a), is assumed to be 1V, the
reflection coefficient is the same as the reflected voltage Vr attained by
TDR. The impedances of the nonuniform microstrip lines are computed
from the corresponding reflection coefficients according to (16) and the
results are shown in Figure 5. Comparing with the data in Table 1,
the impedance profiles of the microstrip lines in Figure 5 don’t reflect
the true profiles of the nonuniform transmission lines. The multiple-
reflection effect is included in the data shown in Figures 4 and 5.

To get the true impedance profiles, both the reconstruction
method in this paper and Izydorczyk’s algorithm are implemented to
the reflection coefficients in Figure 4 and the reconstructed impedance
profiles of the nonuniform microstrip lines are shown in Figures 6 and 7.
The black dashed lines represent the reconstructed characteristic
impedance profiles using the method in this paper; the green dash-
dotted lines represent the reconstructed results using the Izydorczyk’s
algorithm; and the blue dotted lines represent the impedance profiles
computed according to TDR principle.
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The reconstructed impedance profiles agree with those computed
according to the TDR principle in the first part of the traces. This is
because the multiple reflection does not affect the impedance profiles of
the first part. From the reconstructed characteristic impedance profiles
of the microstrip lines in Figures 6 and 7, the ripples at 0.19 ns and
2.19 ns in Figure 6 and those at 0.19 ns and 2.14 ns in Figure 7 are due
to mismatch of the coaxial-to-microstrip launches that are shown in
Figures 2 and 3.
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Figure 4. Reflection coefficients
of the microstrip lines in Figures 2
and 3.
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Figure 5. Impedance profiles of
the nonuniform microstrip lines
before reconstruction. The traces
are calculated according to TDR
principle.
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and after reconstruction.
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Comparing with the impedance profiles reconstructed by the
method in this paper and the Izydorczyk’s algorithm, the consistency
of the results validates the method in this paper.

3.3. Discussion

To make the recursive multiple reflection computation algorithm in (7)
and (8) more efficient, the recursive algorithm of multiple reflection
computation is realized using iterative procedure. The pseudocode
of the multiple reflection computation and impedance reconstruction
procedures is illustrated in Appendix A. The processing time of the
algorithm is in the order of o(N2), namely if the number of uniform
line segments becomes 2N from N , the computation time will be
roughly four times longer. The Izydorczyk algorithm in literatures [20]
and [21] is also in the order of o(N2). Comparing with o(Nb(N +
1)2 − N − 1c) which can be expressed by o(N3) in literature [15],
the multiple reflection computation algorithm in this paper and
Izydorczyk’s algorithm are more efficient. The time consumption of the
method in this paper and Izydorczyk’s algorithm for different numbers
of data are compared in Table 2. The computation time in Table 2 may
change slightly for different programmers. The results in Table 2 show
that the method in this paper is faster than Izydorczyk’s algorithm.

In Figure 6, the reconstructed impedance profile after t =
1.7 ns, and that in Figure 7 after t = 1.9 ns are not recovered
totally from the raw reflection coefficients according to Table 1.
To fully understand the multiple reflection computation algorithm,
the characteristic impedance profiles of the nonuniform lines are
reconstructed again according to the reflection coefficients in time
domain measured from the both ports of each circuit board. The
two impedance profiles of each microstrip lines are compared and
shown in Figures 8 and 9, respectively. In Figure 8, the dash-dotted
line represents the characteristic impedance which is reconstructed
according to the reflection coefficients in time domain measured from
prot 2 (the right port in Figure 2). The dash-dotted impedance profile

Table 2. Computation time comparison for different data points
(CPU: AMD Sempron (tm) 3000+, 1.61 GHz. DDR 896 MB). The
time may change for different computers and different programmers.

Data Number 2000 5000 10000
Method in this paper 104ms 319 ms 993 ms
Izydorczyk algorithm 114 ms 408 ms 1990 ms
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Figure 8. Impedance profiles of
the microstrip line in Figure 2
after reconstruction. The traces
are figured out according to coef-
ficients from the two ports of the
circuit respectively.
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Figure 9. Impedance profiles of
the microstrip line in Figure 3
after reconstruction. The traces
are figured out according to coef-
ficients from the two ports of the
circuit respectively.

after t = 1.7 ns is also not recovered totally. This situation also happens
in Figure 9.

In this paper, the relationship of transmission coefficient T and the
reflection coefficient Γ between adjacent uniform sections is defined as

T = 1 + Γ (17)

In (17) the loss of the nonuniform transmission lines is not considered.
This relationship is also used in [13] and [15]. However, the circuits
in the experiments are not entirely lossless. The loss tangent of the
substrate RO4350B is 0.004. The dielectric loss makes the differences
between the reconstructed results and computed results in Table 1.
Besides, the conductor loss and radiation loss [26] of the circuits also
affect the process of true impedance profile reconstruction. Therefore,
as well as [13] and [15], the recursive algorithm for multiple reflection
computation is only suitable for lossless and low lossy nonuniform
transmission lines.

4. CONCLUSION

In this paper, an explicit and effective recursive method for multiple
reflection computation is present. This recursive algorithm is realized
using iterative procedure and the processing time of this algorithm is in
the order of o(N2). In TDR measurements, to improved the resolution
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in time domain, more data are need. This algorithm is especially useful
in this situation.
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APPENDIX A. PSEUDOCODE OF MULTIPLE
REFLECTION COMPUTATION AND IMPEDANCE
RECONSTRUCTION

The recursive algorithm of multiple reflection computation and
impedance reconstruction can be represented as the following
piece of pseudocode. This algorithm is realized by the way of
iteration.

for all i = 0 to Datanum do
Lattice[i].l ← 0
Lattice[i].r ← 0
Gamma[i] ← 0
ZLine[i] ← 0

end for
Gproduct ← 1
Z0 ← 50
vr temp ← 0
if Datanum ≥ 1 then

Gamma[1] ← V tdr[1]{Voltage measured by TDR}
Lattice[1].l ← STEPVOLTAGE{STEPVOLTAGE=1}
Gproduct ← Gproduct ∗ (1−Gamma[1] ∗Gamma[1])

else
return

end if
if Datanum ≥ 2 then

vr temp ← (1−Gamma[1])∗Lattice[1].r+Gamma[1]∗Lattice[1].l
Gamma[2] ← (V tdr[2]− vr temp)/Gproduct
Lattice[2].l ← Lattice[1].l ∗ (1 + Gamma[1])
Lattice[1].r ← Lattice[2].l ∗Gamma[2]
Gproduct ← Gproduct ∗ (1−Gamma[2] ∗Gamma[2])

else
return

end if
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for i = 3 to Datanum do
Lattice[i].l ← Lattice[i− 1].l ∗ (1 + Gamma[i− 1])
Lattice[i−1].l ← Lattice[i−2].l∗(1+Gamma[i−2])+Lattice[i−
2].r ∗ (−Gamma[i− 2])
for k = i− 2 to 2 do

Lattice[k].r ← Gamma[k+1]∗Lattice[k+1].l+(1−Gamma[k+
1]) ∗ Lattice[k + 1].r
Lattice[k].l ← (1 + Gamma[k − 1]) ∗ Lattice[k − 1].l +
(−Gamma[k − 1]) ∗ Lattice[k − 1].r

end for
Lattice[1].r ← Lattice[2].l ∗ Gamma[2] + Lattice[2].r ∗ (1 −
Gamma[2])
vr temp ← (1−Gamma[1])∗Lattice[1].r+Gamma[1]∗Lattice[1].l
Gamma[i] ← (V tdr[i]− vr temp)/Gproduct
Gproduct ← Gproduct ∗ (1−Gamma[i] ∗Gamma[i])
Dincrese ← Lattice[i].l ∗Gamma[i]
Lattice[i− 1].r ← Lattice[i− 1].r + Dincrese
for k = i− 2 to 1 do

Dincrese ← Dincrese ∗ (1−Gamma[k + 1])
Lattice[k].r ← Lattice[k].r + Dincrese

end for
end for
ZLine[0] ← Z0
for i = 1 to Datanum do

ZLine[i] ← (1 + Gamma[i])/(1−Gamma[i]) ∗ ZLine[i− 1]
end for
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