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Abstract—A finite element-boundary integral-domain decomposition
method is presented for analyzing electromagnetic scattering problems
involving multiple three-dimensional cavities. Specifically, the edge-
based finite element method is applied inside each cavity to derive
a linear system of equations associated with unknown fields. The
boundary integral equation is then applied on the apertures of all
the cavities to truncate the computational domain and to connect
the matrix subsystem generated from each cavity. With the help of
an iterative domain decomposition method, the coupling system of
equations is reduced to a small one which only includes the unknowns
on the apertures. To further reduce computational burdens, the
multilevel fast multipole algorithm is adopted to solve the reduced
system. The numerical results for the near and far fields of several
selected multi-cavity problems are presented to demonstrate the
validity and capability of the proposed method.

1. INTRODUCTION

The electromagnetic characterization of cavities is important in many
applications, such as radar cross section control, patch antenna design
and surface defect detection. In recent years, there has been a growing
interest in studying the scattering behavior of multiple cavities in
conducting structures.

The problem of electromagnetic scattering by multiple two-
dimensional (2-D) cavities in conducting plane has been considered
by many authors. Kok [1] solved the problem using boundary value
techniques in vector-field diffraction theories. Depine and Skigin [2]
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developed a modal method for solving the problem. Reed and Byrne [3]
later applied the modal method to analyze frequency-selective surfaces
consisting of an array of multiple apertures within a periodic cell.
Schiavone et al. [4] adopted the scattering patterns approach to
investigate the electromagnetic scattering of multiple 2-D cavities
recessed in a perfectly conducting plane. Recently, Alavikia and
Ramahi [5] studied the problem of scattering from multiple 2-D cavities
in a perfectly conducting plane by means of a novel finite element
method (FEM) that uses the surface integral equation with the free-
space Green’s function as the boundary constraint. While much work
has been done in the area of solving the problems of electromagnetic
scattering by multiple 2-D cavities, little work on the solution of
three dimensional (3-D) problems have been reported in the previous
literature. The purpose of this work is to present a general, robust,
and efficient approach for analyzing electromagnetic scattering from
multiple 3-D cavities in conducting structures. In what follows, we
first propose a powerful and versatile general numerical method for
solving the problem of scattering by a 3-D single cavity. Then we
extend the method to the case of multiple cavities.

Traditionally, the problem of scattering by a 3-D single cavity in
a perfect conducting plane is solved by decoupling the fields inside
the cavity from those outside by closing the aperture with a perfect
conductor and introducing equivalent magnetic current over the over
the extent of the aperture. The fields in the free space outside the
cavity due to the equivalent magnetic currents can be easily formulated
by using free-space Green’s function. However, to explicitly express
the fields inside the cavity in terms of the equivalent magnetic current,
we require knowledge of the Green’s function inside the cavity. For
rectangular or circular cavities filled with homogeneous material, this
is usually found in modal form [6, 7], but there is no available closed
form of the associated Green’s function for the case of arbitrarily
shaped cavities. Although the methods based on integral equations [8–
10] can be used to calculate the magnetic currents on the apertures
of arbitrarily shaped cavities, it cannot be used when encountering
cavities having inhomogeneous fillings. To overcome these difficulties,
Jin and Volakis [11] employed the FEM to formulate the fields
inside the cavity region. Specifically, the fields within the cavity,
usually containing inhomogeneous materials, are modeled employing
a finite element formulation, whereas the fields external to the cavity,
filled with a homogeneous medium (most frequently, free space), are
expressed by some sort of boundary integral equations (BIE) with free-
space Green’s function. The fields are then coupled across the aperture
by means of the appropriate boundary conditions. Such hybrid method
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is commonly termed hybrid finite element-boundary integral (FE-BI)
method [11–14], which has been widely proved to be a general, robust,
and accurate numerical method for electromagnetic scattering from
general-shape cavities with inhomogeneous fillings.

As is well-known, there is no direct coupling between the fields
of any two independent FEM computational domains. Additionally,
the Green’s function relates the field at one point on the boundary
to the fields at all other points of the boundary. Therefore, the
hybrid FE-BI method is capable of being extended to the solution of
electromagnetic scattering problems involving multiple cavities. This
paper presents a domain decomposition of the hybrid FE-BI method to
analyze scattering by multiple 3-D cavities. The idea of the method can
be summarized as follows. The edge-based FEM is used to obtain the
solution of vector wave equation inside each cavity. The BIE using the
free-space Green’s function is applied on the surfaces of the objects as
a global boundary condition. To reduce computational burdens, the
domain decomposition method (DDM) [15–17] in combination with
the multilevel fast multipole algorithm (MLFMA) [18–23] is utilized
to solve the coupling system of equations. In the following sections the
theoretical and implementation of the proposed method are discussed
in detail. The numerical results for the near and far fields of several
selected multi-cavity problems are then presented to demonstrate the
validity and capability of the proposed method.

2. FORMULATION

2.1. FE-BI Formulation for Scattering from a Single Cavity

As shown Figure 1, we first consider the problem of scattering by a
3-D single cavity in an infinite conducting plane. In accordance with
the hybrid FE-BI method, the electric field inside the cavity and at
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Figure 1. Geometry of a 3-D cavity in an infinite conducting plane.
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the aperture of the cavity can be obtained by seeking the stationary
point of the functional [24]
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where V denotes the volume of the cavity, Sa denotes the area of the
aperture and Hinc denotes the incident magnetic field. M = ES × n̂
is the equivalent magnetic current over the aperture, in which ES is
the electric fields over the aperture and n̂ is the outward unit vector
normal to the aperture. Also, k0, Z0 and G0 are the free-space wave
number, wave impedance and scalar Green’s function, respectively.

To discretize the functional F , the cavity volume is subdivided
into a number of small tetrahedral elements. Consequently, the
aperture of the cavity is divided into triangular elements. By using the
Whitney vector basis functions defined on tetrahedral elements [24],
the unknown electric field can be approximated as

E =
NV∑

j=1

NjEj (2)

where Nj denote the vector basis functions associated with the
tetrahedral element edges, Ej denote the unknown expansion
coefficients equal to the tangential electric fields at the tetrahedral
element edges, and NV denotes the total number of element edges
resulting from the subdivision, including those on the aperture surface
Sa. Accordingly, the magnetic current on the aperture can be expressed
in terms of the unknown coefficients associated with the electric field
as

M = −n̂×ES = −
NS∑

j=1

gjES,j (3)

where NS is the total number of triangular element edges on the
aperture surface Sa, gj are the Rao-Wilton-Glisson (RWG) [25] vector
basis functions, which are completely compatible with the Whitney
vector basis functions for the tetrahedral elements, i.e., gj = n̂ × Nj ,
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and ES,j are the unknown expansion coefficients on the aperture of the
cavity.

Substituting (2) and (3) into (1) and performing the standard
Rayleigh-Ritz procedure [24], we obtain a system of equations[

KII KIS

KSI KSS + P

]{
EI

ES

}
=

{
0
b

}
(4)

where {EI} denotes the unknowns in the interior cavity, {ES} denotes
the unknowns on the aperture of the cavity, and [K] that consists
of [KII ] , [KIS ] , [KSI ] and [KSS ] is contributed by the volume integral
in (1), whereas [P ] is contributed by the dual surface integral. The
elements of matrices [K] and [P ], and the vector {b} are given by
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For the sake of clear description, we define an integral operator
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With the integral operator, the elements of matrix [P ] can be expressed
as

Pij =
∫∫

Sa

gi · L (gj) dS (9)

where gi and gj denote the testing and expansion basis functions,
respectively. In this notation, the testing and expansion locations are
both on the aperture of the same cavity.

2.2. Extension to Multiple Cavities

To extend the method described above to case of multiple cavities,
we propose an expanded system of equations with individual [P ] sub-
matrices. The new [P ] sub-matrices take on the form

[Pij ]
mn =
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The new integral operators Lmn is defined as
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where the subscript “S” represents the surface integration in (11) is
performed over the apertures of all the cavities, and the indices [m, n]
represent the testing and expansion cavities, respectively. Thus, the
notation

[
P 11

]
implies that the testing and expansion locations are

both on the aperture of the cavity 1, whereas
[
P 12

]
indicates that the

testing locations are on the aperture of the cavity 1, but the expansion
locations are on the aperture of the cavity 2.

According to the principle of FEM, there is no direct coupling
between the unknowns of any two independent cavities. Therefore,
the FEM matrix [K] is only defined when m = n. In other words,
the cavities are coupled to each other only through the surface integral
equation based on the Green’s function. Without loss of generality,
we consider the scattering problem for two cavities in an infinite
conducting plane, as shown in Figure 2. If the unknowns on the
apertures are numbered last, the coupling system of equations can
be expressed as
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Generalizing the formulation to m cavities results in the following
equation system

[
K̃II K̃IS

K̃SI K̃SS + P̃
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ẼI

ẼS

}
=

{
0
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}
(13)
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Figure 2. Geometry of two 3-D cavities in a conducting plane.
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2.3. Iterative Domain Decomposition Solver

To efficiently solve Equation (13), we develop a hybrid domain
decomposition algorithm based on the iterative substructuring
method [15] and the MLFMA In the implementation of the algorithm,
we first eliminate the unknowns in the interior of each cavity according
to the following equation

{
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I

}
= − [

Ki
II

]−1 [
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IS

] {
Ei

S

}
(i = 1, 2, . . . ,m) (17)

Once all the interior unknowns are eliminated, the original
equation system is reduced to a small one which only includes the
unknowns on the apertures of the cavities, as follows[
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The computation (20) can be performed with the following procedure
[
Ki

II

]
= [L] [U ] (21)

[M ] = [L]−1 [
Ki

IS

]
(22)[

Si
]

=
[
Ki

SS

]− [U ]−1 [M ] (23)

where [L] is the lower triangular matrix and [U ] is the upper
triangular matrix. To reduce the memory requirement, we employ
the multifrontal method [26, 27] to factorize the matrix

[
Ki

II

]
. The

multifrontal method is an advanced version of the frontal method
proposed by Irons [28], which partitions the whole factorization process
into the factorization of a number of small dense frontal matrices [29].
During factorization, only the frontal matrix remains in the core
memory. The factorized equations are stored in the out-of-core
memory. Through this strategy, the memory needed can be reduced
to minimal.

Before further proceeding, it should be noted that the
computation from (21) to (23) in each cavity is independent, and can be
completely parallelized. Furthermore, all the cavities can be classified
into a few building blocks according to the geometrical features, in such
a manner only

[
Si

]
for different types of cavities need to be evaluated

rather than all the cavities. If the cavities are all the same, only one
sub-matrix

[
Si

]
needs to be evaluated to assemble the global matrix

[S].
Usually, the reduced system (18) can be solved by an

iterative solver such as the generalized minimum residual (GMRES)
method [30]. However, traditional GMRES iteration method incurs
very high computational cost and memory requirements with the
increasing of the unknowns. In addition, the conventional approaches
to computing the BIE matrix elements consume a considerable
portion of the total solution time, and this, in turn, can place an
inordinately heavy burden on the CPU regarding memory and time. To
overcome these difficulties, we employ the MLFMA to the BIE matrix
to significantly reduce the memory requirement and computational
complexity. The detailed description of MLFMA is given in [18] and
is not repeated here.

3. NUMERICAL RESULTS

Once the unknown coefficients for the electric fields at the apertures
are solved from (18), the magnetic currents at the apertures and the
scattered field in the free space region above the conducting plane can
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be computed. The near-zone scattered fields can be calculated from

Esca
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where the surface integration in (24) and (25) is performed over the
apertures of all cavities. In the far-field region, the free-space scalar
Green’s function can be approximated by

G0

(
r, r′

) ∼= e−jk0r

4πr
ejk0r′·r̂ (26)

Substituting (26) back into (24) and (25), the far-zone scattered fields
can be expressed as
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In what follows, we present some numerical results to demonstrate the
validity and capability of the proposed hybrid FE-BI-DDM technique.
The results to be presented are in terms of magnitude and scattering
cross section. The magnitude of the scattered field in the near-field
region is defined by

ψ= |Esca
near| or ψ= |Hsca

near| (29)

The scattering cross section in the far-field region is defined as

σ = lim
r→∞ 4πr2

∣∣∣Esca
far

∣∣∣
2

|Einc|2 = lim
r→∞ 4πr2

∣∣∣Hsca
far

∣∣∣
2

|Hinc|2 (30)

Without loss of generality, the magnitude of the incident electric field
is assumed to be unity throughout this work. To discretize the solution
domain, we use first-order tetrahedral elements with mesh density of
approximately 12 parts per wavelength. All calculations are carried
out on a personal computer with 3.0 GHz CPU and 4 GB memory.
Here the GMRES iteration method with a relative error norm of 0.001
is adopted.

The first example considered is the scattering by two identical
rectangular cavities in a conducting plane. Both cavities are
rectangular with dimension of 1.0λ× 1.0λ× 0.5λ and are separated by
distances of 0.5λ in x-direction, λ being the operating wavelength. The
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(a) (b)

Figure 3. Monostatic scattering cross section of two identical
1.0λ × 1.0λ × 0.5λ rectangular cavities: (a) θθ polarization; (b) ϕϕ
polarization.

monostatic scattering cross section computed by the proposed method
are plotted in Figure 3, and compared with those from the method of
moments (MOM) based on the surface boundary integral equation. As
is evident from the figure, good agreement is obtained between the two
methods. This demonstrates the validity of the FE-BI-DDM method
In this example, each cavity is discretized independently into 3485
tetrahedral elements. As a result, a total of 7420 FEM unknowns and
626 BIE unknowns are generated. Although the number of unknowns
is large, the memory needed can be reduced to minimal by virtue of
the iterative domain decomposition solver described in Section 2.3. For
the problem considered here, the memory required is only about 9 MB.

In the second example, we investigate the scattering behavior of
four identical 2.0λ × 2.0λ × 3.0λ rectangular cavities recessed in a
conducting plane. The cavities are arranged in three ways and are
separated by distances of 0.5λ. In the first, the cavities are placed
along y-axis. In the second, the cavities are placed along x-axis. In
the last, the cavities are arranged periodically in both the x and y
directions, i.e., a 2×2 array. Figure 4 depicts the computed scattering
cross section as a function of the angle of incidence in the xoz plane. As
can be seen, when the cavities are placed along y-axis, the scattering
cross section curve in the xoz plane is relatively smooth, whereas the
curves corresponding to the other two ways have several peaks. This
indicates that the coupling effects among the cavities are stronger in
the last two ways than that in the first one. Furthermore, we can
observe that the locations and the values of the peaks in the last two
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(a) (b)

Figure 4. Monostatic scattering cross section of four identical
2.0λ × 2.0λ × 3.0λ rectangular cavities: (a) θθ polarization; (b) ϕϕ
polarization.

(a) (b)

Figure 5. Ten long and narrow rectangular cavities embedded in an
infinite conducting plane: (a) geometrical configuration; (b) magnitude
of electric field.

curves are the same.
The third example to consider is the scattering of a plane wave

from ten long and narrow rectangular cavities embedded in an infinite
conducting plane, as shown in Figure 5(a). All these cavities are
assumed to be identical with a rectangular 0.2λ × 4.0λ aperture and
a depth 0.6λ. The cavities are arranged periodically with a spacing of
0.2λ in the x-direction. The plane wave with the electric field parallel
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x

y

(a) (b)

Figure 6. A 10 × 10 array of rectangular cavities: (a) geometrical
configuration; (b) monostatic scattering cross section.

to the x-axis is incident in the normal direction. Figure 5(b) shows the
magnitude of electric field calculated at a plane located at a distance
of z = 0.2λ above the apertures.

The final example used to demonstrate the capability of the
proposed method is a 10 × 10 cavity array depicted in Figure 6(a).
Each cavity of the array has a square 1.0λ × 1.0λ aperture and is
0.6λ deep. Periodicities in both x and y directions of the array are
2.0λ. The cavities are assumed to be filled with lossy dielectric having
εr = 2.0− j2.0 and µr = 1.0. For numerical solution, a total of 418200
tetrahedral elements are used to discretize the array cavities, which
result in 1012700 FEM unknowns and 61700 BIE unknowns Although
the number of FEM unknowns is very large, only one percent of those
need to be dealt with. Furthermore, the reduced full system can be
converted into a sparse one by virtue of MLFMA. In this problem, 5-
level MLFMA is used, and the memory required is about 850 MB. The
computed scattering cross section is given in Figure 6(b) as a function
of the angle of incidence.

4. CONCLUSION

In this paper, the FE-BI method was extended to analyze
electromagnetic scattering from multiple 3-D cavities in an infinite
perfectly conducting plane. To reduce the computational burdens of
the method, an iterative substructuring method was employed to solve
the coupling system of equations. As a result, the original problem
was reduced to a small one which only includes the unknowns on the
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apertures. Furthermore, the reduced system was solved by the GMRES
method, where the MLFMA can be employed to reduce the memory
requirement and computational complexity. Some of our preliminary
numerical results are presented to illustrate the validity and capability
of the proposed method on dealing with multi-cavity problems. In the
future, we will extend the method to solution of the electromagnetic
scattering problems involving multiple 3-D holes.
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