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Abstract—Although automatic and robust cluster identification
is crucial for ultra-wideband propagation modeling, the existing
schemes may either require interactions with analyst, or fail to
produce reasonable clustering results in more universal propagation
environments. In this article, we suggest a novel cluster identification
algorithm. Rather than assuming the limited exponential power
decay characteristics on UWB channels, from a novel perspective
cluster identification is formulated as the local discontinuity detection
based on wavelet analysis. Firstly, in order to comprehensively
reflect the prevailing amplitude changes induced by new clusters,
the moving averaging ratio is extracted from the measured UWB
channel impulse responses. Subsequently, the appealing local-transient
analysis ability of wavelet transform is properly exploited, and a
computationally efficient cluster extraction method is developed.
Distinguished from the subjective visual inspection and excluding any
analyst interaction, the presented scheme can automatically discover
multiple clusters. Our algorithm is premised on the general amplitude
discontinuity and hence is applicable to various complicated operation
environments. Moreover, the produced clustering results, essentially
depicting realistic physical propagations, are basically independent of
parameter configurations. Experiments on both simulated channels
and the measured data in typical vehicle cabin validate the proposed
method.
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1. INTRODUCTION

The growing interests in ultra-wideband (UWB) are stimulated by
both the significant military applications, such as UWB radars
and high-resolution positioning [1, 2], and the promising commercial
applications, such as high speed transmissions in wireless personal
area networks (WPANs) [3] and low-power wireless sensor networks
(WSNs) [4]. In essence, the extremely large bandwidth (> 500MHz)
leads to the appealing characteristics of UWB systems, including
the fine temporal resolution, immune to multipath fading, high
transmission capacity and extremely low power emission [1, 5, 6].

Due to excellent time resolution typically on a nanosecond
(ns) scale, UWB propagations remarkably differ from traditional
narrowband channels. The intensive multipath components (MPCs)
can be observed in measured UWB channels [7–9]. The resolvable
trajectories, which are reflected from different large objects in
operation environments, (e.g., walls and desks), usually arrive in
a discontinuous manner, i.e., grouped into several distinguishing
clusters [8, 9]. This tendency was originally reported by the well-
known Saleh-Valenzuela (S-V) indoor channel modeling [10]. Lately, a
modified S-V model was adopted by the IEEE 802.15.3a and 802.15.4a
WPAN task groups (TGs) for UWB propagations [11, 12].

Intending for fair comparison of physical (PHY) and media access
control (MAC) designing, the works in [11] and [12] have contributed
greatly to the understanding of the nature and structure of UWB
channel impulse responses (CIRs). However, there still exists an
ongoing need to analyze and model the detailed structure of UWB
CIRs, which usually plays a significant role in design signaling scheme
and receiver architecture [6, 9]. Practically, cluster identification of
CIRs is much crucial for UWB research. First, cluster identification
is of great importance to channel modeling, since cluster extraction
serves as a basis for parameters extraction of S-V channel. Second,
clustering property can be properly exploited in receiver designing,
for example in channel estimation [13], low-complexity detector [14]
and synchronization [15]. Unfortunately, most current literatures
still identify cluster through the time-consuming “visual inspection”
technique [9, 16]. Such a method significantly relies upon subjective
assessments of analysts, which on one hand is considerably susceptible
to inconsistency for different observers, and on the other hand, becomes
impractical for a large amount of measurement data, hence preventing
us from drawing more profound conclusions on UWB propagations.

Recently, a computer-assisted cluster identification scheme is
proposed in [17, 18]. By exploiting the exponential decay profile of
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cluster power and the multivariate adaptive regression spline technique
(MARS), the least-squares (LS) linear regression is utilized to provide
a user-interactive solution to identify clusters, in a relatively objective
manner [18]. This method iteratively discovers possible clusters that
best fit UWB CIRs, until a pre-specified minimum square error
(MSE) between the extracted clusters and UWB channel is fulfilled.
Nevertheless, this cluster extraction scheme can only be applied to
some special line-of-sight (LOS) environments where each cluster
strictly follows an exponential decay rule. Hence, the generality of
this algorithm cannot be guaranteed. Besides, the computational
complexity of the intensive trial searching is also impractical. More
importantly, the scheme involves many parameters, such as MSE
threshold and a prior MPC interval [18], which should be interactively
determined by analyst to obtain a reasonable clustering result. Due
to this assisted essence, it still cannot be applied automatic data
analysis. Additionally, this mathematical fitting inspired cluster
identification may ignore the nature of physical propagations, and
sometimes may produce numerous clusters by misunderstanding local
amplitude discontinuity aroused by small-scale fading [17].

Motivated by the considerations above and relying on our
recent UWB channel measurement campaign, an efficient cluster
identification algorithm based on wavelet analysis is presented in
this paper. After data pre-processing, i.e., antenna calibration and
deconvolution [8, 9], the discrete UWB CIRs are extracted from
the frequency-domain measurements. Subsequently, a novel moving
averaging ratio (MAR) is used to reinforce the amplitude discontinuity
in UWB CIRs. The powerful local-transient analysis ability of
continuous wavelet transform (CWT) is then exploited. Finally,
the local breakpoints/discontinuities in MAR signal, indicating the
possible cluster locations, are accurately discovered in parallel. This
suggested algorithm is basically premised on the physical nature
of UWB propagations, e.g., the general amplitude discontinuity
introduced by different clusters. Hence, it can identify clusters
in UWB CIRs automatically without any assistance from analysts,
which also shows remarkable robustness to parameter configurations.
Strikingly in contrast to the other existing schemes, e.g., linear-
regression technique, even if the intercluster MPCs does not follow
exponential decay as is in complicated operation environments, (e.g.,
the measured vehicle cabin), this algorithm can still efficiently discover
multiple clusters. Further taking its efficient computation into
consideration, our presented algorithm may provide an appealing
framework for cluster identification, which can significantly facilitate a
large amount of data analysis and further give us a more comprehensive
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understanding to UWB propagations.
The rest of this paper is structured as following. The classical

S-V channel modeling is briefly introduced in Section 2. Then,
the frequency-domain UWB propagations measurement is depicted in
Section 3, accompanying the data pre-processing by which discrete
CIRs can be extracted. Subsequently, a new cluster identification
algorithm based on wavelet analysis is developed in Section 4.
Experiments on both the measured propagations and simulated CIRs
are presented in Section 5. Finally, we conclude the whole work in
Section 6.

2. UWB CHANNEL MODELING

Attributed to the excellent temporal resolution of transmitted short
pulses and the rich scatters in typical indoor environments, the short-
range UWB channel is known to be linearly dispersive with tens or
hundreds of resolved MPCs [8, 9]. Based on the modified S-V channel
modeling, the IEEE 802.15.3a TG defines several channel types for
UWB applications in dense multipath environments [11]. The unified
time domain expression of UWB CIRs can be expressed as

h(t) = X
L−1∑

l=0

K−1∑

k=0

αk,lδ (t− Tl − τk,l) (1)

where L is the number of clusters, K is the number of rays of each
cluster, αk,l is the fading coefficient of the kth path of the lth cluster,
X is the channel fading factor, Tl is the arrival time of the l cluster
and τk,l is the delay of the kth path of the lth cluster relative to Tl. Tl

and τk,l has a Poisson distribution, αk,l and X are log-normal random
variables [11].

After the small-scale fading has been suppressed, the power delay
profile (PDP) can be well described by the product of two exponential
functions [9, 16].

E
{
|ak,l|2

}
∝ exp (−Tl/Γ) exp (−τk,l/γ) (2)

where Γ and γ denote the cluster and intercluster decay constants,
respectively [9, 11]. Notice that, many measurements also reveal that
the UWB PDP shape may not be strictly monotonic, but exhibit a
soft-onset shape in non-line-of-sight cases (NLOS) [16]. Specially, the
cluster PDP increases firstly until a local maximum, and then shows
decease. Hence, the following PDP has been suggested to depict the
observed phenomenon.

E
{
|ak,l|2

}
∝ (1− χ exp (−τk,l/γrise)) exp (−τk,l/γ1) (3)



Progress In Electromagnetics Research, Vol. 117, 2011 125

where χ denotes the attenuation of the first component, γrise

determines how fast the PDP rises to its local maximum, and γ1

represents the decay at later times.

3. UWB CHANNEL MEASUREMENT

Many experiments on channel measurement have been reported since
the birth of the first literature on UWB propagations [7, 8, 18–20].
To deepen our understanding of UWB propagations, as is suggested
by [16, 18], many experimental works are still needed currently.
Meanwhile, it is also noted that few existing works on experiment
measurement can occupy all the whole authorized UWB bands, i.e.,
3.1–10.6GHz. Recently, we launched a new UWB measurement
campaign in frequency-domain by using a much wider sweeping
bandwidth of 8.7GHz, i.e., 2.3–11 GHz, which considerably helps
us draw some more profound conclusions on UWB propagations.
Moreover, by using the frequency-domain windowing technique on
measured data, our research can also easily cover the prevailing working
band of 6–9 GHz with a worldwide overlap [21], which may hence
provide more practical instructions for UWB product designing.

3.1. Measurements

UWB channel measurements aim to determine the realistic CIRs. In
our experiments, the popular frequency-domain technique by using
a vector network analyzer (VNA) is adopted, which measures the
transfer function by exciting the channel with slowly frequency-
sweeping sinusoidal waveform [16]. A typical setup for frequency-
domain measurement has been illustrated in Figure 1(a), the channel
sounder mainly consists of the Agilent N5269 VNA, which sweeps the
frequency response from 2.3GHz to 11 GHz in 5600 linearly distributed
points, i.e., the frequency sweeping interval is about 1.55 MHz.

Our measurements have been conducted in residential, commercial
and industrial environments. In this investigation, however, we
mainly focus on measured data from vehicle passenger cabin. The
UWB propagation in typical vehicle environments involves numerous
reflections, i.e., passenger seats and walls, by which the efficient clusters
identification algorithm can be developed and tested. As is shown in
Figure 1(b), the measured vehicle is 10.4 m long and 2.5 m wide, having
50 passenger seats. The distance from ceiling to floor is about 2 m. The
vehicle walls are made of metallic materials. The topology is shown
in Figure 1(c), in which the measurement equipments deployment is
illustrated. Two omni-directional UWB antennas working in 2.3GHz–
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(a)

(b) (c)

Figure 1. (a) Typical setup for the frequency-domain measurement.
(b) The testing scene in vehicle cabin. (c) The topology of vehicle
cabin and measurement antennas deployment.

11GHz are used, whose amplitude frequency response (AFR) is given
in Figure 2(a). In fact, remarkable advances have been made in
UWB antenna designing within the past few years. The main stream
technologies include monopole antenna [22–24], slot antenna [25–28]
and printed antenna [29, 30]. In experiment, UWB planar antenna is
based on the popular triangular monopole design technology [31–33],
with the voltage standing wave ratio (VSWR) less than 2.25 across the
working band. The azimuth gain variation (AGV) is about ±1.25 dB,
and the dimension is 50×20×20mm3. The measured transfer function
of UWB propagation is shown in Figure 2(b).

3.2. Pre-processing

After obtaining the frequency-domain measured data, we have to
perform data pre-processing to further extract the discrete UWB
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Figure 2. (a) Amplitude frequency response A(f) of the omni-
directional UWB antennas. (b) The amplitude of measured UWB
channel transfer function, i.e., S(f).

CIRs. Usually, this process mainly includes two steps, that is, antenna
calibration and time-domain deconvolution [9, 16].

Notice that, the frequency response of radio frequency (RF )
cable connecting the transmitter antenna (or receiver antenna) and
VNA can be conveniently compensated by VNA itself. Thus, the
antenna response may have a significant impact on the measurement
results. On one hand, the non-flat antenna AFR will attenuate
the arriving signals, and on the other hand, the directional pattern
weights the MPCs arriving from different directions, introducing
remarkable distortion on measured data [9, 16]. In our experiment,
however, the direction-independent UWB antennas are used, and
hence the directional distortion can be reasonably ignored. Hence,
only the antenna frequency response shown in Figure 2(a) should be
calibrated. Specifically, denote the antenna frequency response by
A(f) exp[−j2πθa(f)], where A(f) is amplitude response and θa(f)
accounts for antenna phase response, and the measured frequency-
domain data by S(f) exp[−j2πθs(f)], where S(f) is Fourier transform
of UWB CIRs and θs(f) is the corresponding phase response. Then,
the calibrated transfer function Sc(f) can be given by:

Sc(f) = S(f)/A(f) exp [−j2π (θs(f)− θa(f))] (4)

Additionally, in order to extract the measured data of interest, a
windowing process is usually applied to specified frequency band [f1,
f2]. In our analysis, we set f1 = 6 GHz and f2 = 9 GHz, and a Gaussian
windowing is used in transition bands, as shown in Figure 3(a). Then,
the time-domain UWB CIR can be obtained after inverse discrete



128 Li et al.

x 1010

0

1

2

3

4

5

6
x 10

-3

x 10
-7

-4

-3

-2

-1

0

1

2

3

x 10
-4

Frequency/Hz Time/sec

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0.5 1 1.5 2 2.5 3

(a) (b)

Figure 3. (a) Measured transfer function in [6 9] GHz without antenna
calibration. Notice that, a conjugate symmetric spectrum has been
constructed. (b) The extracted discrete UWB CIR after windowing,
antenna calibration and time-domain deconvolution.

Fourier transform (IDFT) has been performed on the windowed data,
i.e., h(t) = IDFT (Sc(f)). Subsequently, a deconvolution process is
necessary in order to extract the discrete CIR h(n) [9]. Usually, the
well-known CLEAN algorithm is used to perform this function [16].
The CLEAN method is generally a serial-interference cancellation
algorithm (SIC). The basic premise is that, the observed signal is a
sum of pulse with known shape p(t) [34]. It first finds the largest
pulse by determining the correlation of received signal with p(t), and
identifies the highest peak. This discovered pulse is then subtracted
from the total signal, and hence the pulse is correlated with the clear-
up signal. This process is repeated until the energy of cleaned-up
signal falls below a threshold [9, 34]. Notice that, the pulse shape p(t)
can be numerically derived, given the adopted windowing function and
frequency band.

In our experiment, the stopping threshold is set to 0.1% of
the maximum MPC. After antenna calibration, windowing and
deconvolution, one of the recovered discrete UWB CIR has been shown
in Figure 3(b). In order to evaluate the accuracy of deconvolution
process, we further convolute this discrete CIR with the used pulse
shape, and the MSE between reconstructed signal and h(t) is 3%,
i.e., with a energy capture ratio of 97%. So, the recovered CIRs can
be regarded as an accurate discrete representation of measured UWB
channels.
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4. CLUSTER IDENTIFICATION

For the issue of cluster identification in UWB CIRs, firstly a crucial
question is that how we can reasonably define a cluster. Although it
is widely recognized that clusters are groups of MPCs having similar
larger-scale property, such as time of arrival (ToA), angle of arrival
(AoA) and amplitude decay [20, 35, 36], there still is a surprising
lack of agreement concerning of a cluster definition. In [37], ToA
is assumed to be a hidden Markova modeling (HMM), based on
which cluster identification for S-V channel is realized. However,
by ignoring amplitude discontinuity the recovered clusters overlap
with each other, in which channel response is also impractically
supposed to be sparse [37]. Hence, although significant theoretical
contributions, this cluster identification can be hardly applied to
UWB channel modeling and practical system designing, e.g., the PDP
weighted noncoherent detector [14]. Assuming that different clusters
with exponential PDP introduce remarkable amplitude discontinuity,
Ref. [17] uses a piecewise linear regression to identify involved clusters.
Nevertheless, this mathematical trial-fitting technique consumes much
computation resources, and also requires the aid from analyst to
develop a reasonable result, making it impractical for automatic data
analysis. More importantly, for the more general soft-onset PDP [15],
this method may even fail due to the obscure breakpoints in measured
CIRs.

In order to develop an efficient cluster identification algorithm,
two practical difficulties must be taken into considerations. First, due
to specula reflections or shadowing effects, many UWB measurements
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Figure 4. The obtained MAR signal with an averaging length M of
50.
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have shown strong components for later clusters or the soft-onset
phenomenon [16, 20]. Hence, the search algorithm should identify
exact cluster start-points rather than local maximums, by ensuring the
intercluster MPCs having similar property. Second, as is suggested by
the IEEE 802.11n TG [38], a cluster may begin and even continue
indefinitely. Although the overlapped MPCs fallen into subsequent
clusters do not affect the new breakpoints, identifying these small
MPCs may become a rather ambiguous procedure, which also has no
reward in system designing [14]. In fact, these overlapped small MPCs
may even be added to new arrived clusters.

As the cluster start-points are essentially significant to both
channel parameters extraction and system designing, we establish an
appealing cluster identification method based on the discontinuity
detection. It should be stressed that, following our discussions above,
the breakpoints to be detected should explain the overall MPCs
tendency, rather than the single MPC amplitude singularity [16, 17].
The philosophy behind is rather straightforward. That is, irrespective
of small-scale fading, the cluster group generated from a large reflection
object should be noticeably distinguished from the former clusters
reflected from other different objects [9]. Our cluster identification
technique mainly involves two steps. A moving average ratio (MAR)
of UWB CIRs is firstly suggested to exploit such local discontinuity
property, and then, wavelet analysis is applied to the MAR signal,
which further identifies multiple clusters of UWB CIRs in parallel.

4.1. Moving Averaging Ratio

As is well known, moving average (MA) operations have found broad
applications in voice signal processing [39], which can efficiently
suppress temporal changes (small-scale fading) and also enhance long-
term characteristic of a signal. Nevertheless, as a low-pass filter,
unfortunately this process may also smooth local breakpoints, leading
to the failure of discontinuity detection. In this cluster identification
problem, we further suggest a novel MAR to suppress the small-scale
effects, and simultaneously preserve the overall singularity of UWB
CIRs. Assume the extracted discrete CIR is denoted by h(n) and
MAR by s(k), we have:

s(k) =
i=k+M−1∑

i=k

h2(i)
/ i=k−1∑

i=k−M

h2(i), k = M,M +1, . . . , N−1−M (5)

Here, N is the length of the discrete CIR h(n), while M denotes the
average length. For k = 0, 1, 2, . . . , M − 1, we set s(k) = 1. In
practice, the selection of M may have some impact on subsequent
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processing, which will be elaborated in Section 4.4. Due to arrival of
strong signals in the first cluster, it is obvious that the first breakpoint
is dramatically larger than the other ones. In order to minimize the
discontinuity difference and facilitate subsequent cluster identification,
we further perform the logarithmic transform on s(k), then we have
g(k) = 10×log(s(k)). The obtained MAR signal g(k) is also illustrated
in Figure 4 with M = 50.

We can note that there indeed exist many pronounced local
rises (or discontinuities) in g(k). Usually, these local-transients
are aroused by the soft-onset property of UWB CIRs. This may
considerably differs from the first cluster in LOS case, where strong
MPCs appear in the near beginning, and a sharp amplitude change can
be observed. The breakpoints in g(k), exhibiting noticeable amplitude
jump, are essentially related with successive MPCs groups, which have
experienced different reflections before arriving.

Apparently the discontinuity areas give us an initial estimation of
cluster locations. Nevertheless, there are two considerations remained
in the local-discontinuity inspired cluster identification. First, although
the discontinuities are relatively conspicuous from visual inspection,
exact breakpoints still cannot be discovered automatically, as there
is a lack of quantifiable criterion of singularities. Second, there exist
many small-region rises in g(k), which are mainly caused by random
noise. Hence, the efficient cluster identification should cautiously find
realistic clusters, while exclude fake clusters aroused by noise or specula
reflections.

4.2. Wavelet Analysis

4.2.1. Wavelet Analysis

Following the elaborations above, the problem of cluster identification
can be transformed into searching local amplitude transients in the
developed MAR, which is also known to be discontinuity or singularity
detection [40]. It has been shown that analyzing a signal at different
scales may considerably increase the accuracy and reliability of
discontinuity detection [41]. As is well known, wavelet analysis is
capable of revealing data characteristics such as trends, breakdown
points and self-similarity, which may be usually missed by other signal
analysis techniques. One major advantage afforded by wavelet analysis
is the ability to analyze a localized area of input signal. Focusing on
signal’s local-transient behaviors, with a zooming procedure enables
simultaneous analysis from a rough to a fine shape. Attributed to
this powerful ability, wavelet transform has been widely adopted to
perform edge detection in different applications [42–44], which can be
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also properly used to detect local breakpoint in MAR signal and hence
realize cluster identification.

In general, wavelets are characterized by scale α and position τ ,
where the parameter α scales the wavelet function by compressing or
stretching it, while τ brings a translation on wavelet function along
time axis. Consequently, wavelet transform can focus on localized
signal structures with a zooming procedure, which progressively
reduces the scale parameter α. In such a way, both rough and fine
signal structures can be simultaneously analyzed at different scales,
which is of great significance to realistic discontinuity detections.
Wavelet transform of the MAR signal g(k) can be expressed as [45]:

Wg(α, τ) =
N−M∑

n=0

1√
α

g(n)ψ
(

n− τ

α

)
(6)

where ψ(t) is referred to as the mother wavelet, which serves as a
prototype wavelet from which all other wavelets can be generated.
A scaling function φ(t) is usually associated with wavelet function
ψ(t), and the elegant wavelet analysis framework can be established
by combining them together [45–47]. Usually, they should satisfy the
following conditions:

∫ +∞

−∞
ψ(t)dt = 0,

∫ +∞

−∞
|ψ(t)|2 dt = 1 (7)

∫ +∞

−∞
φ(t)dt = 1,

∫ +∞

−∞
|φ(t)|2 dt = 1 (8)

4.2.2. Daubechies Wavelets

In practice, the selection of mother wavelet depends on the properties of
local signal structures to be detected. In our analysis, the Daubechies
wavelet is adopted [45], whose advantages in discontinuity detection
will be elaborated shortly. According to the multi-resolution analysis
(MRA) theory [48], we may have

φ(t) =
∑

k∈Z
ck

√
2φ(2t− k) (9)

for a group coefficients {ck}, and Z denotes a set of integers
[0, 1, . . . , N − 1]. A wavelet ψ(t) can be then defined by:

ψ(t) =
∑

k∈Z
(−1)kc1−k

√
2φ(2t− k) (10)

The orthogonality of φ(t) and ψ(t) also leads to [45]:
∑

k∈Z
(−1)kckc1−k = 0 (11)
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Figure 5. Daubechies wavelet functions. (a) The 2nd order
Daubechies wavelet, n = 10; and (b) the 4th order Daubechies wavelet,
n = 5.

In order to obtain the wavelet bases that provide considerably
powerful local analysis ability, for the Daubechies wavelet, the high-
order moments are supposed to be equal to zero [45, 49]

∫ +∞

−∞
tlψ(t)dt = 0, for l = 0, 1, 2, . . . , L− 1 (12)

where L refers to as the moment order. Combining above equations
together and further let L = 2, we could finally obtain a finite set of
coefficients, which is known as the 4-coefficient Daubechies wavelet.

c0 =
1 +

√
3

4
√

2
, c2 =

3 +
√

3
4
√

2
, c3 =

3−√3
4
√

2
, c4 =

1−√3
4
√

2
with all other ck = 0. By using the following iteration process, then the
scaling function φn(t) will converge to a continuous function supported
on [0, 2L− 1], which has also been plotted in Figure 5 for both L = 2
and L = 4.

φn(t) =
∑

k∈Z
ck

√
2φn−1(2t− k) (13)

where the initial scaling function is defined as a indicator function on
[0, 1].

φ0(t) =
{

1, t ∈ [0, 1]
0, others (14)
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Given the reconstruction property, we may conveniently expand
the MAR signal g(t) into wavelet series [49]:

g(t) = w0
0 +

∞∑

n=0

2n−1∑

k=0

wk
nψn,k(t) (15)

by properly defining the periodic wavelet ψn,k(t) according to

ψn,k(t) =
∑

j∈Z
2n/2ψ(2n(t + j)− k) (16)

Here, 2n is the shrunk factor. The wavelet coefficients in (15) can be
given by

w0
0 =

∫ 1

0
g(t)dt, wk

n =
∫ 1

0
g(t)ψn,k(t)dt

4.2.3. Why Daubechies Wavelet

Except for the sharing merits of orthogonality, compact support and
the presence of amplitude variation under signal discontinuity, short
wavelets often seems to be much more effective than long ones in
detecting signal ruptures [47]. In practice, the shapes of discontinuities
that can be identified by the smallest wavelets are usually simpler
than those by the longer wavelets. Although Haar wavelets may
have a smaller support, the appealing moment vanishing property,
which is of particular interest to discontinuity detection [49], makes
the Daubechies wavelets much more competitive in the context of our
cluster identification.

Usually, the higher order of a Daubechies wavelet is, the more of
its moments are zeros. Specifically, a Daubechies wavelet of an order
2L is defined by 2L nonzero coefficients {ck}, has its first L moments
equal to zero and is supported on [0, 2L− 1]. Generally speaking, the
more moments which are zeros, the more wavelet coefficients that are
nearly vanishing for smooth functions F [49]. To elaborate this point,
suppose g(k) has L-term Taylor expansion about the point tk = k2−n:

g(x) =
∑L−1

j=0

1
j!

g(j)(xk) (x− xk)
j +

1
L!

g(L)(tx) (x− xk)
L (17)

where tx lies between x and xk. Assume that ψ(t) is supported on [−a,
a] having its first L moments equal to zeros, and |g(L)(t)|2 is bounded
by a constant A on [(k − a)2−n, (k + a)2−n]. Then, we may have [49]:

|wn
k | ≤

A√
L + 1/2L!

( a

2n

)L+1/2
(18)

where wn
k represent of wavelet coefficients of the input signal g(k).
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In essence, the above inequality proves that ψ(t) having vanishing
moments produces a large number of small wavelet coefficients, i.e.,
wn

k → 0. As a consequence, it is possible to capture the most energy of
input signals by using a few coefficients, which is much significant to
information compression [47]. More importantly, the large magnitudes
of Daubechies coefficients are concentrated around the locations of non-
differentiability points in g(k), while most other coefficients approach
zero for the seamless region. This local-transient analysis illustrates
one of powerful features of wavelet analysis, which can be properly
used to efficiently detect the MAR discontinuities.

4.2.4. Application Considerations

The deterministic part of MAR signal may undergo abrupt changes
in the first or second derivative. Accordingly, the first-level and
second-level details show the discontinuity most clearly, as the rupture
contains high-frequency part. If we were only interested in identifying
discontinuity, the 1st order Daubechies wavelet, (i.e., L = 1), which is
usually abbreviated to ‘db1’, would be a more useful wavelet for most
analysis. On the other hand, nevertheless, the presence of noise, which
is a common situation in signal processing, makes the identification
of discontinuities much more complicated. Then, the signal rupture is
sometimes visible at the deeper level decompositions [47]. Besides, as
an important criterion in selecting wavelets, the regularity property can
be considered [45]. In our cluster identification application, we choose
to use the 2nd order Daubechies wavelet, (i.e., L = 2) abbreviated to
‘db2’ that is sufficiently regular for analysis.
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Figure 6. (a) Wavelet coefficients of the MAR signal under different
scale values. (b) Wavelet based cluster identification.
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In Figure 6(a), we have plotted the derived wavelet coefficients
under different scale values α. Two important observations can be
made to simulation results. First, the positive local maximum exactly
appears in the discontinuity points of MAR signal, indicating the
possible clusters breakpoints. Second, with a small scale value, (e.g.,
α < 21), there seems to be a lot of insignificant local maximums
which are mainly attributed to the inevitable noise characters, making
cluster identification much complicated. Meanwhile, we obviously note
from Figure 6(a) that, even if under various different scales, the local
maximums of wavelet coefficients are basically overlapped with each
other. Hence, as expected from (18), the larger scale value can be
suggested to facilitate subsequent processing given the moment order
L. So, we may use a scale value α = 51 in following analysis.

4.2.5. Cluster Extraction

Once the scale value has been determined, we will find local maximums
and finally identify cluster breakpoints. Two important things to note
in this process is the computational complexity of local maximum
searching and the false break-points aroused by noise. To response
these two difficulties, furthermore, we present a three-step post-
processing algorithm having an efficient computational complexity and
is robustness to noise.

Firstly, a half-wave rectifier signal of wavelet coefficients is
obtained, by setting negative values in w = {w(k), k = 0, 1, . . . , N −
M − 1} to 0, which is denoted by w†. Then, the normalization is
performed on w†.

wr = w†/max(w†) (19)

In order to eliminate the false discontinuities, we further set a
threshold η which can be used to exclude those insignificant local
maximums caused by noise or specula reflections. In practice, there are
a lot of threshold selection techniques in existing literatures on noise
suppression [47]. Based on our empirical experiment, we may simply
set the threshold as (20), and more complex scheme will be considered
in the future.

η =
1− var (wr|)
mean (wr|) (20)

where wr| denotes the subset elements fulfill the condition wr(k) > ξ,
where ξ > 0 is mainly used to select the dominate wavelet coefficients in
wr. In practice, we may simply set ξ = 0.1. And, var (x) and mean (x)
give the standard deviation and mean of x, respectively. The derived
threshold η has been shown in Figure 6(b). Notice that, two local
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maximums locating at 520 and 710 have been excluded. Assume there
are I clusters remaining after threshold comparison, we then obtain
the range of the ith cluster breakpoint denoted by ClusterRangei.

ClusterRangei = {k |wr(k) > η, k = 0, 1, 2, . . . , N −M − 1} (21)

Finally, we identify the cluster breakpoint by approximately using

ClusterIndexi = mean(ClusterRangei) (22)

Notice that, for one thing, the first breakpoint, (i.e., CIR start-
point) can be directly determined, without using the above presented
cluster identification. Specifically, we can immediately identify the
first breakpoint once the MAR signal s(k) has surpassed a predefined
threshold. In practice, this threshold can be conservatively set to 1.5
during experiments, as the summed energy of two successive pieces
of signal only containing background noise will basically equal each
other. For another, although the last cluster breakpoint may exhibit
large amplitude, e.g., the cluster located at 1250 in Figure 6(b) which
corresponds to the last value of ClusterIndex, we still exclude it
during cluster identification. The main reason is that signal during
this range has been greatly attenuated and signal-to-noise ratio (SNR)
is rather low, leading to inaccurate cluster identification. Hence, there
is the every likelihood that the amplitude change is caused by small-
scale fading or noise, rather than a real cluster.

4.3. Algorithm Complexity

Based on the elaborations above, the complete cluster identification
algorithm can be depicted as following.
Input: The discrete CIR h(n), the averaging length M , the scale value α.

1. g(k) = 10× log10{
∑

m∈[k,k+M−1] h
2(m)/

∑
n∈[k−M,k−1] h

2(n)}, k = M ,

M + 1, . . . , N −M − 1.

2. w(k) = 〈g(n), 1/
√

αΨ[(n− k)/α]〉, n = 0, 1, 2, . . . , N −M − 1, and 〈x,

y〉 denotes the inner product between x and y. Fast wavelet transform

can be adopted when calculating w(k).

3. wr = w†/ max(w†), and w† = {w(k) | w(k) > 0, k = 0, 1, 2, . . . , N −M

−1}.
4. η = (1− var(ws))/mean(ws), and ws = {ws(k) | wr(k) > ξ, k = 0, 1, 2,

. . . , N −M − 1}.
5. ClusterRangei = {k |wr(k) > η, k = 0, 1, 2, . . . , N −M − 1}, and then

obtain ClusterIndexi = mean(ClusterRangei).

Now, we may analysis the computation complexity of the
presented algorithm. The algorithm complexity can be generally
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evaluated by the total number of involved multiplication (or division)
operations. For the MAR calculation, we need (N − 2M) times
of multiplications. Then, during wavelet transform process we only
employ N log2 N times multiplications when fast wavelet transform
(FWT) algorithm is adopted [49]. Finally, for the three-step post-
processing algorithm mainly relying upon comparison operations, it
is seen that there only need N times multiplications. So, without
exhaustive search process the complexity of our presented algorithm
can be approached by O(N log2 N + 2N), which is computationally
efficient for realistic UWB clusters identification. In comparison, based
on a trial-fitting mechanics, the linear regression based technique may
have an intensive computation complexity of an exponent order [17].
Even for the modified method [17, 18], the complexity is still highly
complicated, which can be hardly applied to a large amount data
analysis.

4.4. Robustness Analysis

We firstly investigate the influence coming from the average length
M . In Figure 7(a), we have plotted the derived wavelet coefficients
of MAR signal with different M . It can be noted that, within
the provided parameter range, i.e., 25 < M < 85, these wavelet
coefficients are basically similar to each other, especially the first five
(or six) maximum coefficients which are located at potential cluster
start-points. Correspondingly, the identified clusters are shown in
Figure 7(b). We can observe that the 3rd and 4th clusters are
essentially maintained constant under different M . Nevertheless, we
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Figure 7. Effects from averaging length M . (a) Wavelet coefficients
under different M . (b) Cluster identification results under different M .
Notice that, in this experiment, the scale value α is set to 51.
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have also noted that, for a much small M , (e.g., M = 25), the
last cluster may be misinterpreted due to insufficient suppression of
the small-scale fading effect. As the cluster identification mainly
concentrates on the former clusters which are of significance to channel
modeling and practical designing, however, the average length of 25 is
still practically feasible. On the other hand, for the case of M = 85, the
identified clusters may deviate noticeably from the exact start-points
using a fair M , (e.g., the 2nd cluster). This is mainly attributed to
that a large average length may deteriorate the amplitude discontinuity
of CIR to some extent. In practice, the maximum M should also be
associated with UWB channel characteristics. We assume the cluster
interval are typically ranged in [10 50] ns as is reported [9, 16], M is
supposed to remain smaller than a half of the minimum value, (i.e.,
10 ns), in order to completely preserve CIR amplitude discontinuity.
Given the frequency sweeping interval and IDFT length, the maximum
average length can be then conservatively set to 65.

Besides, we note that from Figure 6(a) that, for different scale
values, (e.g., 31 < α < 51), the derived wavelet coefficients are
simply amplified with a larger α, while the relative amplitude of local
maximums (especially of the first five maximum coefficients) generally
remains unchanged, resulting in the consistent cluster identifications.
Hence, in practice the scale value α may have slight influence upon the
clustering result.

We have established a simple threshold selection scheme in this
research. In order to validate the robustness of our derived threshold,
we further introduce a disturbance factor κ to address realistic effects,
(e.g., noise) on this threshold. That is, we may use η′ = κ × η
as a real threshold in practice, and see how this deviation affects
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the finally identified clusters. In Figure 8, we have illustrated the
different values of κ accompanying the resulting threshold η′. It can
be noted that, when κ ∈ [0.85 1], the clustering results will essentially
remain the same. Nevertheless, a much lower derivation factor, (e.g.,
κ = 0.8) will misinterpret the fake cluster located at 570, while a much
higher derivation factor, (e.g., κ = 1.05) may exclude the possible
cluster located at 906. Hence, although the relative robustness of such
a presented threshold selection, other complicated methods such as
adaptive thresholding can be investigated in future research, in order to
maintain this cluster identification in good operation even in imperfect
conditions.

5. EXPERIMENTAL SIMULATIONS

In this section, the presented cluster identification algorithm will be
tested on both simulated UWB CIRs and the measured CIRs in
realistic vehicle cabin. In all the following experiments, we set M = 50
and α = 51.

5.1. Simulated UWB CIRs

We firstly evaluate our suggested algorithm on simulated UWB CIRs,
which are generated by using the IEEE 802.15.4a channel modeling.
In our simulations, the channel type is CM5, with a predefined cluster
arrival rate of 0.0488, that is, the average cluster interval is about
22.32 ns [12]. The derived cluster identification results based on our
present algorithm have been shown in Figure 9. We may clearly observe
that, when the intercluster signal power follows an exponential decay
rule as in simulated CIRs, our algorithm can accurately discover cluster
start points in a completely automatic fashion. Meanwhile, even for the
non-exponential decay case illustrated in Figure 9(b), (e.g., in NLOS
environments), accurate cluster identification can be still guaranteed.
The estimated cluster interval, based on independent 50 realizations, is
about 23 ns. Therefore, it can be concluded that this new method can
indeed efficiently identify multiple clusters in simulated UWB CIRs.

5.2. Measured UWB CIRs

From the extracted UWB CIR shown in Figure 10(b), we may note
that, in vehicle cabin environments the PDP does not exactly follow
an exponent function due to complicated reflections, (e.g., the NLOS
case). It is apparent that linear regression based cluster extraction
may become totally invalid in this case [17]. On the other hand,
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(a) (b)

Figure 9. Cluster identification realizations for the IEEE 802.15.4a
channel modeling. The cluster arrival interval in CIR generation
program is defined to 22.32 ns, and the estimated value based on 50
independent realizations is about 24 ns. (a) The LOS case; and (b) the
NLOS case. Notice that, for the NLOS case, the first and third cluster
may not exactly follow an exponential decay rule.

(a) (b)

Figure 10. Cluster identification realizations for the measured UWB
propagations. (a) The LOS case (Tx3-Rx1); and (b) the NLOS case
(Tx3-Rx6).

the sparseness of measured CIRs seems not to be obvious. Hence,
HMM inspired technique may either become computationally complex
or even fail to produce right clustering results [37]. Nevertheless,
independent of any PDP and sparseness characteristic, our proposed
method can in essence efficiently identify cluster breakpoints in
measured data based on the discontinuity detection mechanic. UWB
CIR measurements under different operation conditions have been
shown in Figures 10(a) and (b), accompanying the derived cluster
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extraction result. From experimental results, it can be clearly seen
that, no matter what the operation environment is, (i.e., LOS or
NLOS), the suggested technique can automatically identify multiple
clusters involved in measurements without any a priori information.
As a consequence, this algorithm can be applied to analysis a large
amount of measurements in a completely automatic and efficient
fashion, which hence allows more comprehensive investigations to
UWB propagations [16, 17]. Through the visual inspection, it is
naturally to observe the appearance of clusters in the neighborhood
of CIR peaks [37], which also keeps identical with the produced cluster
identification results, as is illustrated by Figures 9 and 10. Although
the reasonable cluster identification results in NLOS case from the
most experiments, it is noteworthy that the algorithm may sometimes
misinterpret the first couple of clusters due to the adopted simple
threshold scheme. Hence, the research on cluster extraction in NLOS
cases still remains as an open area in the future.

It should also be emphasized that the identified cluster is
basically independent of parameter configurations. The total clusters
number contained in measured UWB CIRs is about 5–6 for vehicle
environment. The local amplitude discontinuity based cluster
identification indeed captures the nature of UWB propagations, and
hence is robust to parameter configurations, which is much superior to
linear regression based scheme whose clustering result is closed related
with specific parameter settings, (i.e., the MSE threshold) [17].

Based on the identification results, we can conveniently derive
the cluster arrival interval. From the measured channel CIRs, for
the LOS case, the average samples interval between two adjacent
clusters, obtained from 20 independent channel realizations, is about
239. Then, given a frequency sweeping step of 1.55MHz and zero-
padded IDFT length of 7724, the estimated cluster arrival interval
is about 20.04 ns. Notice that, this estimated cluster arrival interval
in vehicle environments is much different from the 802.15.3a channel
modeling, in which the typical value is about 42.91 ns. In fact, clusters
arrival is closely associated with specific operation environments. For
the IEEE 802.15.3a channel modeling, the parameters are essentially
extracted from indoor measurements [9, 11], in which the distance
between significant objects, (i.e., walls) is much larger than that of
in a vehicle cabin. And correspondingly, in indoor applications the
runtime between these objects to receiver is also much larger than in a
small vehicle cabin, leading to a quite different cluster arrival character.
On the other hand, it is noted that, for the more general 802.15.4a
channel modeling, (e.g., CM5), this obtained result essentially agrees
with the typically specified value of 22 ns. For the NLOS condition,
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the average sample interval is about 174, and the corresponding cluster
arrival interval is about 14.53 ns. Compared with the specified value in
current standards, this estimated cluster arrival interval also basically
matches the typical value of 14.99 ns [12].

6. CONCLUSIONS

We have presented a novel cluster identification algorithm in this
paper. Rather than by resorting to power decay characteristics, our
method is premised on the local amplitude discontinuity generally
introduced by different clusters. To reinforce the cluster breakpoints,
MAR transform is firstly performed on UWB CIRs. By exploiting the
powerful local-transient analysis ability of CWT, we then developed
a computationally efficient cluster extraction scheme. Even if the
current state-of-the-art linear-regression method fails to identify cluster
due to complex realistic propagations, (e.g., non-exponential PDP),
our algorithm can still produce satisfactory clustering results which
also keeps identical with visual inspections. This algorithm is robust
to parameter configurations, which essentially relies upon realistic
physical propagations. Meanwhile, by excluding the interactive
process, the algorithm can automatically identify clusters in UWB
CIRs, which is hence significant to the larger amount of measurement
processing. Experiments on the measured data in a vehicle cabin
as well as the simulated CIRs validate our proposed method. The
estimated cluster arrival parameter, derived from the clustering
results, is also comprehensively analyzed. Generally, this algorithm
provides a compelling framework for cluster identification during
channel modeling, which allows the more profound understanding
to realistic UWB propagations. Aiming to further improve the
clustering accuracy, especially in the NLOS environments, our future
investigations may focus on the adaptive wavelet analysis based cluster
identification.
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