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Abstract—The mutual conversion of the TMmn and TEmn waves
(m,n 6= 0) in periodic and aperiodic (fractal-like) stratified waveguide
structures composed of dense metal-strip gratings is studied. The
stopbands and passbands conditions of Bloch waves, the reflection and
transmission spectra of the periodic structure are examined versus
the gratings parameters. Peculiarities of the wave localization, self-
similarity and scalability of both reflected and transmitted spectra
of the fractal-like structure are investigated. The appearance of
additional peak multiplets in stopbands is revealed and a correlation
of their properties with the parameter of grating filling is established.

1. INTRODUCTION

The unique features of periodical structures define their multipurpose
using. The most known structures with simple periods are the
sequences of dielectric layers which found wide applications as optical
and microwave devices [1–5]. They are parts of distributed Bragg
reflectors, antireflection coatings, interferometers, lasers, antennas,
filters, absorber materials and many others. Further functionality
expansion of the above-mentioned devices is provided by introducing
inside of the structure’s period the reactive, conductive and
polarization-sensitive elements like rods, rings, discs, pins, strips, irises,
etc. [6–16].
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The sequences of single- or double-spacing equally oriented metal-
strip gratings (one- and two-element diaphragms) are widely used in
waveguides to realize the bandpass filtration [17–20]. However in
fact of the strong dispersion of the scattering coefficients of these
diaphragms, the obtained filters usually have too narrow stopbands
and low maximal attenuation between adjacent passbands. The
dense metal-strip gratings (æ = l/λ ¿ 1, where l is the grate
period and λ is the wavelength) are deprived of these disadvantages.
Therefore the diaphragms with the great number of elements are more
appropriate for the frequency filtration [21–24]. The introduction
of the polarization-sensitive multiple-element diaphragms (anisotropic
semi-transparent screens [25–28]) inside of a waveguide additionally
allows obtaining the modal filtration which is especially important in
multimode transmission lines.

In the present paper a model of a multi-section frequency-modal
filter is considered. The structure consists of magnetodielectric layers
and polarization-sensitive semi-transparent screens. In contrast to the
sequences of the dense screens considered earlier [21–24], we provide
our studies in both single-mode and double-mode regimes of the wave
propagation in a rectangular waveguide. The structure under study
realizes the frequency-modal selection and the mutual conversion of
the TMmn and TEmn waves (m,n 6= 0) in a waveguide. We will
consider both perfectly periodic and aperiodic systems. The last one
is the fractal-like (Cantor-like) multilayer [29–34]. It is known that the
periodicity disturbance of a layered isotropic one-dimensional sample
produces appearing additional high-Q resonances (localized modes)
in the stopbands. These resonances in the case of structure with
polarization-sensitive screens can be used for realization of the narrow-
bandpass polarization filtration. On the other hand, the fractal-like
structure can be considered as a structure with plural disturbances,
and, furthermore, they exhibit certain distinctive features like the
scalability and the self-similarity of the reflection and transmission
spectra.

Modeling of the filter is achieved through the generalized transfer-
matrices analysis. To determine the transfer-matrix of the structure’s
period the boundary-value problem is solved using the Weinstein-
Sivov boundary conditions [25–28] which approximate the dense metal-
strip grating with a thin anisotropic screen. The goal of the paper
is to study the peculiarity of the polarization transformation of the
TMmn and TEmn waves in a layered waveguide filter and especially
to demonstrate the distinctive features of the waves localization in an
aperiodic structure configuration.
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Figure 1. Periodic sequence of magnetodielectric layers and dense
metal-strip gratings in a rectangular waveguide.

2. FIELDS. BOUNDARY CONDITIONS

First we consider a perfectly periodic in the z-axis direction, with
period L, structure which consists of N identical metal-dielectric
elements placed in a rectangular (a × b) waveguide (Figure 1). Each
of periods consists of two (j = 1, 2) homogeneous magnetodielectric
layers with thicknesses Dj and material parameters εj , µj , and a dense
(æ = l/λ ¿ 1) metal-strip grating placed on the boundaries z = νL
(ν = 0, 1, . . . , N − 1). The fillings of the input (z ≤ 0) and output
(z ≥ NL) waveguide sections are homogeneous, isotropic and have
permittivities ε0, µ0.

In general, the field scattered by the grating consists of the
superposition of the infinite number of the partial waveguide waves.
When the grate period l is much less than the wavelength λ, the
field scattered by the grating is possible to describe using the Lamb
approximation [35]. Under this approximation, only one of TE0n or
TEm0 waves (single-mode regime) or two TEmn and TMmn waves with
the same indexes m, n (the double-mode regime) propagate in the
waveguide structure. In the latter case, one of this wave is belonging
to the type of the excitation field when the other appears as a result
of the polarization transformation.

In the general case, as the excitation fields, the TMmn and TEmn

waves in a waveguide are selected. The time dependence is defined
in the form exp(−iωt) and omitted. The fields inside of the input,
output and periodic waveguide sections are defined via the longitudinal
components of the electric (s = e) and magnetic (s = h) Hertz vectors
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where Cs
j (j = 0, 1, 2) are some constants which are defined

from the normality conditions (see Appendix A), Φe = Φαα =
sin(kxx) sin(kyy) and Φh = Φββ = cos(kxx) cos(kyy) are rectangular
waveguide eigenwave functions of TM and TE waves, respectively,
γj =
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k2

j − g2
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√
εjµj are

the wavenumbers, and g2
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x + k2
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modal cut-off wavenumber for the TMmn and TEmn modes. The field
components obtained from (1) are presented in Appendix A.

We use the Weinstein-Sivov boundary conditions [25–27] for the
description of sufficiently thin gratings [28]:
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where U+ = −(µj + µj+1)/[µjµj+1æ ln(0.5(1 + u))], U− = æ(εj +
εj+1) ln(0.5(1 − u)), M = (µj + µj+1)/[µjµj+1(εj + εj+1)], and u =
cos(πd/l) is the parameter of grating filling. The parameter u changes
in the range [−1, 1], where u = −1 corresponds to the absence of the
grating and u = 1 corresponds to the metallic screen.

These boundary conditions are obtained using the rigorous
problem solution of the plane monochromatic wave diffraction on the
infinite periodic metal-strip grating placed on the interface between
two magnetodielectric half-spaces. They describe the grating as
an infinitely thin uniaxial anisotropic screen which anisotropy axis
is directed along the y-axis. This model of the semi-transparent
anisotropic screen excludes the modes interconversion within the wave
type. However in the regime under study (the double-mode regime) the
grating changes the initial proportion between the power of the TEmn

and TMmn waves with the same indexes m, n (degenerate waves) in
the transmitted and reflected fields.
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3. METHOD OF SOLUTION. TRANSFER MATRIX

The structure under study is considered as a consecutive junction of
the eight-poles which are equivalent to the structure periodic cells.
They are described with the transfer matrix T. In turn, each of the
periodic cells consists of two elements which correspond to the first
(T1) and second (T2) layers, (T = T1T2). Note that the first element
(T1) of the each periodic cell consists of the boundary with the grating
(Figure 1). The matrix equation coupling the field amplitudes at the
input and output of the corresponding eight-pole is obtained as follow:

Vν = {T1T2}Vν+1 = TVν+1, (3)

where Vν = {Ah
ν Bh

ν Ae
ν Be

ν}T and Vν+1 = {Ah
ν+1 Bh

ν+1 Ae
ν+1 Be

ν+1}T

are the vectors containing the field amplitudes at the eight-pole input
and output; the upper index T is the matrix transpose operator. In
the 2× 2 block representation, the transfer-matrices of the first (T1),
second (T2) and periodic (T) elements, respectively, are:

T1 =
(
Thh

1 The
1

Teh
1 Tee

1

)
, T2 =

(
Thh

2 0
0 Tee

2

)
, T =

(
Thh The

Teh Tee

)
. (4)

The elements of the transfer-matrices T1 and T2 are determined by
solving the boundary-value problem related to the field components
(A3) and are given in Appendix B.

Rising the matrix T to the power N gives the relation on the fields
at the input and output of the whole structure:

V0 = TΣVN+1, (5)

where TΣ = TN , V0 = {Ah
0 Bh

0 Ae
0 Be

0}T and VN+1 =
{Ah

N+1 0 Ae
N+1 0}T are the vectors containing the field amplitudes at

the structure input and output.
The algorithm from the matrix polynomial theory [36] for raising

the matrix T to the power N was introduced in [37] to study the
structure with a large number of periods (N À 1)

TΣ =
4∑

p=1

λN
p Fp. (6)

Here λp are the eigenvalues of the transfer-matrix T, Fp = PIpP−1,
P is the matrix which columns are the set of independent eigenvectors
of T, Ip is the matrix with 1 in the (p, p) location and zeros elsewhere.
The final result based on the formulas (5) and (6) is written as follow
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


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λN
p Fp



VN+1. (7)



318 Tuz, Prosvirnin, and Kazanskiy

In the structure under study two operating conditions can be
provided. These conditions are different to the waveguide excitation
with the TEmn and TMmn (m,n 6= 0) or TEm0 and TE0n waves. In the
first case two types of waves in the waveguide structure propagate and
their mutual conversion occurs. In the second case the wave conversion
is absent and the elements of the non-diagonal blocks of the transfer
matrix T are equal to zero. The equivalent scheme of the structure
disintegrates into two autonomous transmission lines of a consecutive
junction of the four-poles which are related to TEm0 and TE0n waves.
The transfer matrices of these four-poles coincide with one of two block-
matrices Thh or Tee according to the wave type.

The behaviors and functional capabilities of the structure manifest
itself in the reflection and transmission coefficients. For their
determination, and taking into consideration the specificity of the
double-mode regime, the equations coupling the field amplitudes at
the structure input and output for the incident fields of the h-type
(Ae

0 = 0) and the e-type (Ah
0 = 0) are written in the form:

{
Ah

0 Bh
0 0 Be

0

}T
= TΣ

{
Ah

N+1 0 Ae
N+1 0

}T
,

{
0 Bh

0 Ae
0 Be

0

}T
= TΣ

{
Ah

N+1 0 Ae
N+1 0

}T
.

(8)

Thus, the reflection and transmission coefficients of the reflected
(z ≤ 0) and transmitted (z ≥ NL) fields are determined by the
expressions Rss = Bs

0/A
s
0, τ ss = As

N+1/A
s
0, and Rss′ = Bs′

0 /As
0, τ ss′ =

As′
N+1/A

s
0 for the co-polarized and cross-polarized waves, respectively.

From (8) they are:

Ree = (t11t43 − t41t13) /∆, τ ee = t11/∆,

Reh = (t11t23 − t21t13) /∆, τ eh = −t13/∆,

Rhh = (t21t33 − t23t31) /∆, τhh = t33/∆,

Rhe = (t41t33 − t43t31) /∆, τhe = −t31/∆,

(9)

where ∆ = t11t33 − t31t13, and tpq are the elements of the transfer
matrix TΣ.

4. BLOCH WAVES. REFLECTION AND TRANS-
MISSION SPECTRA OF PERIODIC STRUCTURE

The degree of the wave reflection and transmission in a selected
frequency band depends on the eigenwave propagation conditions of
the corresponding infinite periodic diaphragmatic waveguide structure.
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In contrast to the single-mode regime, the solution of the diffraction
problem of the TMmn and TEmn waves can not be derived in
an analytical form like it is obtained in [22] for TEm0 and TE0n

waves. Thus, the numerical-analytical investigation of the parametric
dependences of eigenvalues λp will be carried out.

The eigenvalues of the transfer-matrix, λp (p = 1, 2, 3, 4), are the
roots of the characteristic equation of the transfer matrix T:

det(T− λI) = 0. (10)

Since the matrix T is unimodular, Equation (10) comes to the
following polynomial form:

λ4 + S3λ
3 + S2λ

2 + S1λ + S0 = 0, (11)
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the elements of the matrix T. If the coefficients of Equation (11)
are satisfied by the equality S3 = S1, the left part of the dispersion
equation of this type can be presented as the product of two quadratic
polynomials [38–40]:
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The fact that the condition S3 = S1 is satisfied can be verified
numerically. The coefficients of Equations (11) and (12) are related
as
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Thus, the dispersion Equation (12) is split into two independent
parts. From physical point of view it means that, in the waveguide
structure, there are two independent spectra of eigenwaves, each of
them is characterized by its dispersion relation and wavenumber.

For the infinite periodic structure the fields in the regular parts
of the neighboring basic elements differ by the Floquet factor. Taking
into account the transfer matrix definition (3), the following identity
holds:

Vν = TVν+1 = exp(−iΓL)Vν+1, (17)

where the constant Γ is the Bloch wavenumber. From (17) it follows
that the eigenvalues of the basic element transfer matrix are related
to the propagation constants of the Bloch waves via the condition
λj = exp(±iΓjL); the sign choice for the jth type of wave corresponds
to the wave propagation direction.

The obtained solution allows us to identify the passband
(stopband) positions through analysis of the dependences of λp versus
the frequency or structure parameters.

The values of Q1,2 (λ1,2, λ3,4) defined by Expressions (14)–(16)
determine the band spectrum of two pairs of eigenwaves. One pair of
eigenwaves propagates in the positive direction of the z axis and the
other has the opposite direction of propagation. The passbands are
determined by the condition |Q1| ≤ 2 (|λ1,2| ≤ 1) for one eigenwave
and |Q2| ≤ 2 (|λ3,4| ≤ 1) for another in each of these pairs. These
conditions are displayed in Figure 2(a) as a shaded area. Since the
dispersion Equation (12) consists of two independent factors, the
bandwidth of these spectra can be mutually overlapped. There is
a significant difference between these two solutions of the dispersion
equation. It is because they correspond to two waves with different
orientation of the vector ~E relatively to the metallic strips of gratings.

By this means, the eigenwaves of an unbounded periodical
waveguide structure are the orthogonally polarized h and e waves,
where the latter one is the wave which electric field vector ~E is oriented
along the gratings elements. As a result, the gratings are capacitive and
inductive diaphragms for the h and e waves, respectively. The first kind
of diaphragms is transmissive, when the second one is highly reflective.
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Figure 2. (a) Eigenwaves propagation conditions and (b) band
spectrum of a periodic sequence of magnetodielectric layers and dense
metal-strip gratings in a rectangular waveguide. The guide used for
this work is the R120 (WR75) rectangular waveguide, a = 19.0mm,
b = 9.5 mm. Other parameters are: m = n = 1, L = 20 mm,
D1 = 10mm, u = −0.7, ε0 = ε2 = µ0 = µ1 = µ2 = 1, ε1 = 4.

This yields to different behaviors of the propagation conditions of
eigenwaves. Thus, the e wave has very narrow passbands, and |Q1| > 2
holds practically in all frequency range, whereas the passbands of the
h wave are wide, and areas where |Q2| ≤ 2 prevails.

On the basis of obtained Equations (15) and (16), the propagation
constants Γj (j = 1, 2, 3, 4) of these two eigenwaves are calculated
(Figure 2(b)). These propagation constants obey the conditions Γ1 =
−Γ2 and Γ3 = −Γ4, where the sign defines the propagation direction
along or opposite to the z axis. Thus, it is defined that Γ1, Γ2 and Γ3,
Γ4 correspond to the e and h waves, respectively. One can see that the
stopbands of the e and h waves are when Im(Γ1) = −Im(Γ2) 6= 0 and
Im(Γ3) = −Im(Γ4) 6= 0.

The considered features of the eigenwaves propagation of the
infinite periodic diaphragmatic waveguide determine the character
of the frequency dependences of the reflection and transmission
coefficients of the finite structure, which consists of N periods. First
we consider the situation when the primary field is the TE10 or TE01

waves (Figure 3(a)). When u < 0, the passbands of the TE01 wave
occupy practically whole frequency range. The bands positions of this
wave are correspond to the propagation conditions of the h polarized
eigenwave. Due to the finiteness of the structure and as the result
of the waves interference, the boundaries of stopbands have a smooth
shape and there are the spectrum oscillations in the passbands. The
main distinctive features of the spectra of the TE10 wave are the facts
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(a) (b)

Figure 3. Frequency dependences of the reflection spectra of (a) TE01,
TE10 and (b) TE11, TM11 waves; a = 19.0mm, b = 9.5mm, L =
20mm, D1 = 10 mm, u = −0.7, N = 5, ε0 = ε2 = µ0 = µ1 = µ2 = 1,
ε1 = 4.

that the stopbands are wide and they starting and finishing abruptly.
The passbands are very narrow, and the oscillations here are sizable.
Accordingly, for this type of wave, the bands positions are related to
the propagation conditions of the e polarized eigenwave. Note, that
stopbands of the TE01 wave correspond to passbands of the TE10 wave
and vice versa. When u rises (u > 0), the gaps between the grating
strips reduce and the structure becomes reflecting for both TE01 and
TE10 waves.

The spectra of TEmn and TMmn waves incorporate the features
of both h and e polarized eigenwaves. One can see that the spectra
of TE11 and TM11 waves have characteristic bands of high reflection
and transmission (Figure 3(b)). These bands primarily determined
by the propagation conditions of the h polarized wave, and the high-Q
resonances exist exactly within the passbands of the e wave. The degree
of the polarization transformation in the reflected and transmitted
fields depends on the topology of the primary field, namely, from
the orientation of the transverse components of the field (~E⊥ =
~x0Ex + ~y0Ey, ~H⊥ = ~x0Hx + ~y0Hy) related to the position of the
gratings conducting strips which are directed along the y axis. Thus,
if |Ey| > |Ex| (as example, in the case of TM11 wave), the wave with
the topology of the primary field prevails in the reflected field, i.e.,
|Ree| > |Reh|. When |Ey| < |Ex| (in the case of TE11 wave) there is
|Rhh| < |Rhe|. Due to the symmetry of the transfer matrix coefficients,
the magnitudes of the cross-polarized waves are equal to each other in
the reflected and transmitted fields, |Reh| = |Rhe|, |τ eh| = |τhe|.
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(a) (b)

(c) (d)

Figure 4. Frequency dependences of the reflection spectra of TE11,
TM11 waves versus the parameter of the gratings filling u; a = 19.0mm,
b = 9.5mm, L = 20 mm, D1 = 10 mm, N = 5, ε0 = ε2 = µ0 = µ1 =
µ2 = 1, ε1 = 4.

The reflection spectra dependences versus the parameter of the
gratings filling u are given in Figure 4. As the parameter u increases,
the reflectivity of the gratings rises which leads to the formation of
broader stopbands and to increase the quality factor of resonances
within these stopbands. Also, the curves of the reflection coefficient
magnitudes for different configurations of the primary field m, n, are
plotted in Figure 5. One can see that changing the field topology
yields to the variation of the proportion between the co-polarized and
cross-polarized components in the reflected field.
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(a) (b)

Figure 5. Frequency dependences of the reflection spectra of TEmn,
TMmn waves for different configurations of the primary field; a =
19.0mm, b = 9.5mm, L = 20 mm, D1 = 10 mm, u = −0.7, N = 5,
ε0 = ε2 = µ0 = µ1 = µ2 = 1, ε1 = 4.

5. REFLECTION AND TRANSMISSION SPECTRA OF
FRACTAL-LIKE STRUCTURE

A particular emphasis in the theory of periodic structures is placed on
the samples with periodicity defects. The defect inside a multilayer
periodic structure produces additional localized resonances (localized
modes) within stopbands. These localized modes are employed in
the construction of filters with very narrow bandwidths. Generally
a configuration of such resonances is dependent on the material
parameters of the defective element and its position within the
structure. It is apparent that the introduction of plural defects
inside a periodic structure can significantly change the localized
resonances features. As example of such structures with plural
defects, the deterministic aperiodic (quasi-periodic) multilayers can be
mentioned [29–33]. The main advantage of such deterministic aperiodic
structures is the fact that the position of localized resonances can be
obtained definitely [31]. One of such aperiodic structures is the fractal-
like multilayer structure which is constructed according to the rule of
generating of the Cantor set [29–31, 33].

The Cantor set is one of the simplest fractals, and it is a subset
of the unit interval of the real line. The Cantor set is created by
repeatedly deleting the open middle thirds of a set of line segments.
One starts by deleting the open middle third (1/3, 2/3) from the
interval [0, 1], leaving two line segments: [0, 1/3] ∪ [2/3, 1]. Next,
the open middle third of each of these remaining segments is deleted,
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leaving four line segments: [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].
This process can be continued ad infinitum. The fractal dimensionality
of such triadic Cantor set is ln 2/ ln 3. This Cantor set can be extended
if it started from a larger interval, i.e., the fragmentation is provided
on the another specified interval [0, Λ].

A multilayer structure which is constructed in the form of
such extended Cantor set, is characterized by two fundamental
parameters, the generator G = 3, 5, 7, . . . and the generation
number N = 1, 2, 3, . . .. Sample structures are shown in Figure 6
and the stack construction can be understood from there. At
the first stage, starting with an interval [0, Λ] (Λ = GL is
the total thickness of the structure), certain parts are removed,
forming a Cantor set of order N = 1 composed of the subsets
[0, L], . . . , [(G − 1)L, Λ] (yellow gaps) that are separated by intervals
[L, 2L], . . . , [(G − 2)L, (G − 1)L] (green gaps). The Cantor set of
order N = 2 is obtained by removing again certain parts of these
subsets {[0, L/G], [2L/G, 3L/G], . . . , [(G − 1)L/G, L]}, {[2L, (2G +
1)L/G], [(2G+2)L/G, (2G+3)L/G], . . . , [(3G−1)L/G, 3L]}, . . . , {[(
G − 1)L, ((G − 1) + 1)L/G], [((G − 1) + 2)L/G, ((G − 1) +
3)L/G], . . . , [(G − 1)(G + 1)L/G, Λ]}. High-order sets are formed in
similar ways. Note, that degree of this fragmentation is restricted by
the Lamb approximation [35], i.e., the distance between the gratings
must be enough to provide the attenuation of all partial waveguide
waves except two orthogonally-polarized waves which coincide with
the type of the excitation field.

It can be observed that the obtained subsets are copies of the

Figure 6. Self-similar Cantor set sequence of magnetodielectric layers
and dense metal-strip gratings in a rectangular waveguide.
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original set scaled by a factor of 1/G. This property is called self-
similarity. Two other properties are the recursive property and the
formation of fine structures [33]. The recursive property comes from
the fact that certain parts of each subset are removed when the order
increases from N to N + 1. The fine structure comes from the specific
rule of subset formation with the result that it is possible to know the
form of each subset at any order N . The fractal dimensionality of a
Cantor set of any order N attributed to the structure under study is
ln[(G + 1)/2]/ ln G [30].

In view of the fact of the self-similarity of the fractal structure,
the calculation algorithm for the determination of the total transfer
matrix TΣ = TN is constructed iteratively by the next formulae [33]:





T0 = T2(Λ), N = 0,
T1 = [T1(L/G(N−1))T2(L/G(N−1))](G−1)/2T1(L/G(N−1)),

N = 1,
Tn = [Tn−1T2(L/G(N−n))](G−1)/2Tn−1, n = 2 . . . N.

(18)

Here the transfer matrices T1 and T2 are defined in (B1), in which the
propagation matrices Pj (j = 1, 2) are the functions of the variable
length D.

The frequency dependences of the reflection and transmission
spectra of a Cantor-like structure are periodic function (with the period
divisible by G) with alternating bands of high and low average level of

(a) (b)

Figure 7. Frequency dependences of the reflection spectra of a Cantor-
like structure of magnetodielectric layers and dense metal-strip gratings
in a rectangular waveguide for different stages of fractal growth (G, N)
in the case of TE01 wave; a = 19.0mm, b = 9.5mm, L = 20 mm,
u = −0.7, ε0 = ε2 = µ0 = µ1 = µ2 = 1, ε1 = 4.
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(a) (b)

Figure 8. Frequency dependences of the reflection spectra of a Cantor-
like structure of magnetodielectric layers and dense metal-strip gratings
in a rectangular waveguide for different stages of fractal growth (G, N)
in the case of TE10 wave; a = 19.0mm, b = 9.5mm, L = 20 mm,
u = −0.95, ε0 = ε2 = µ0 = µ1 = µ2 = 1, ε1 = 4.

the reflection. In the theory of quasiperiodic and aperiodic structures it
is conventional to term these bands as the quasi-stopbands and quasi-
passbands (or pseudo-stopbands and pseudo-passbands). The spectra
have self-similar properties, i.e., reflection coefficient variation at each
higher stage is a modulated version of that associated with the previous
stage [29].

If the primary field is the TE10 or TE01 waves (Figures 7, 8)
the main characteristic features of the reflected spectra are similar to
those ones of the periodic structure (Figure 3(a)). Thus, whereas the
quasi-passbands of the TE01 are wide, they are very narrow for the
TE10 wave even for weakly filled gratings (u = −0.95). Analogously,
the stopbands of the TE01 wave correspond to passbands of the TE10

wave and vice versa. Nevertheless, the distinctive feature of the fractal-
like structure is the formation of the sharp transmission resonances
(peaks) inside the quasi-stopbands. It is well known that such kind of
localized resonances (modes) appears in the periodic structures with
defect. But the peculiar feature of these resonances relative to the
fractal-like structure is their sequential splitting [30]. The last one
appears as the interrelation between the generator G and the number of
peaks (single or multiplets) in the quasi-stopbands. Thus the number
of peaks in the multiplets equals (G − 1)/2 and the total number of
peaks in one period equals the number of layers, i.e., GN . On can
see in Figure 8 that, for the chosen structure generations, the number
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of peaks doubles when the N rises, and the doublet and multiplet of
peaks appear as the numbers G and N increase (see insets in Figure 8).

The reason of such splitting is understood from the point of view of
self-similarity of Cantor-like structures regarded in terms of the coupled
cavities [30, 33]. As an example, the sample stack (G = 5, N = 2)
consists of three multilayer inclusions of (G = 5, N = 1) stacks. Each
single peak in the spectrum of a (G = 5, N = 2) stack is a resonant
mode produced by the layer with parameters ε2, µ2 (green ‘cavity’)
with thickness L, splits into two modes because there are two such
layers (‘cavities’) in a (G = 5, N = 2) stack.

The characteristic of the sequential splitting changes when a
structure is excited with the TEmn or TMmn type of wave (Figure 9).
Additional peaks appear in quasi-stopbands of both co-polarized
and cross-polarized reflected fields. The position of these additional
peaks corresponds to the frequency of the localized resonances of the
orthogonally polarized e and h waves (see the appearance of additional
peaks at the frequencies nearly 28 and 37 GHz in Figure 9(b)). This
effect is explained by the composition of the eigenmodes of the
multilayer structure sections separated with the homogeneous gaps,
and by additional eigenmodes that appear as a result of the wave
polarization transformation [33]. The quality-factor of the peaks and
distance between them depend on the parameter of the grating filling
u. Thus there is possibility to change the localized modes configuration
via the appropriate choosing structure composition and grating filling.

(a) (b)

Figure 9. Frequency dependences of the reflection spectra of a Cantor-
like structure of magnetodielectric layers and dense metal-strip gratings
in a rectangular waveguide as function of the parameter of grating
filling u in the case of TE11 and TM11 waves; a = 19.0mm, b = 9.5mm,
L = 20 mm, G = 3, N = 2, ε0 = ε2 = µ0 = µ1 = µ2 = 1, ε1 = 4.
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6. CONCLUSION

In the present paper the reflection and transmission properties of the
periodic and aperiodic multilayer waveguide structures are studied.
The investigation is provided in the both single-mode and double-mode
regimes when the structure is excited with TE10, TE01 and TEmn,
TMmn waves, respectively. The stopband and passband positions of
the periodical structure are defined using the solution related to the
Bloch waves. The reflection and transmission spectra of the periodic
structure are examined versus the gratings parameters. The effect of
the dense gratings on the mutual conversion of the TMmn and TEmn

waves is shown.
As an aperiodic structure, the fractal-like (Cantor-like) stratified

waveguide filter composed of metal-strip gratings is considered.
Peculiarities of the wave localization, self-similarity, scalability and
sequential splitting of both reflected and transmitted fields of the
fractal-like structure are investigated. The appearance of additional
peak multiplets in quasi-stopbands is revealed and a correlation of
their properties with the gratings parameters is established.

The knowledge about spectral features of such systems is
important to design the frequency-modal filters, polarization-sensitive
loads, switching devices based on the nonlinear dielectrics in the case
when the gratings strips are used as electrodes to which voltage is
applied.

APPENDIX A.

In the general case, from (1), the longitudinal components of the
electric ~Πe = {0, 0, Πe(x, y)} and the magnetic ~Πh = {0, 0,Πh(x, y)}
Hertz vectors are defined as follows [12]:

Πe = Ce(Aeeiγz + Bee−iγz) sin kxx sin kyy,

Πh = Ch(Aheiγz + Bhe−iγz) cos kxx cos kyy,
(A1)

The field components are governed by the coupled differential equations
related to the Hertz vectors:

~E = grad div~Πe + k2εµ~Πe + ikµ rot~Πh,

~H = −ikεrot ~Πe + grad div~Πh + k2εµ~Πh,
(A2)
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From (A1) and (A2) the components of vectors ~E and ~H are obtained
as:

Ex = i
[
γkxCe

(
Aee+ −Bee−

)−kµkyC
h
(
Ahe+ + Bhe−

)]
Φβα,

Ey = i
[
γkyC

e
(
Aee+ −Bee−

)
+kµkxCh

(
Ahe+ + Bhe−

)]
Φαβ,

Ez =g2Ce
(
Aee+ + Bee−

)
Φαα,

Hx =−i
[
kεkyC

e
(
Aee++Bee−

)
+γkxCh

(
Ahe+−Bhe−

)]
Φαβ,

Hy = i
[
kεkxCe

(
Aee+ + Bee−

)− γkyC
h
(
Ahe+ −Bhe−

)]
Φβα,

Hz =g2Ch
(
Ahe+ + Bhe−

)
Φββ ,

(A3)

where Φαα = sin kxx sin kyy, Φββ = cos kxx cos kyy, Φβα =
cos kxx sin kyy, Φαβ = sin kxx cos kyy, e± = exp(±iγz), and the
constants Cs (s = e, h) are defined from the next normality condition

a∫

0

b∫

0

[
~E × ~H∗

]
d~s =

a∫

0

b∫

0

(
ExH∗

y − EyH
∗
x

)
dxdy = 1, (A4)

The substitution of field components (A3) into integral (A4) separately
for e and h waves yields

(Ce)2γkε

a∫

0

b∫

0

[
k2

x cos2 kxx sin2 kyy + k2
y sin2 kxx cos2 kyy

]
dxdy

=
1
4
(Ce)2abg2γkε = 1,

(Ch)2γkµ

a∫

0

b∫

0

[
k2

x sin2 kxx cos2 kyy + k2
y cos2 kxx sin2 kyy

]
dxdy

=
1
4
(Ch)2abg2γkµ = 1.

Form which the constants Cs are determined as follows

Ce =
2√
ab

1
g
√

γkε
=

2√
ab

1
gγ
√

Y e
,

Ch =
2√
ab

1
g
√

γkµ
=

2√
ab

√
Y h

gγ
,

(A5)

where g2 = k2
x + k2

y, kx = πm/a, ky = πn/b, γ =
√

k2εµ− g2, and
Y e = kε/γ, Y h = γ/kµ are the wave admittances.
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APPENDIX B.

The matrices T1 and T2 are the particular transfer matrices of rank 4
of the first and second layers of period. They are

T1 = T01P1T10 =
(
Thh

1 The
1

Teh
1 Tee

1

)
,

T2 = T02P2T20 =
(
Thh

2 0
0 Tee

2

)
,

(B1)

where T0j and Tj0 (j = 1, 2) are the transfer matrices of the layer
interfaces with outer half-spaces, and Pj are the propagation matrices
through the corresponding layer. The elements of the block matrices
T0j and Tj0 are determined by solving the boundary-value problem
related to the field components (A3). In the block representation
(2× 2), the transfer matrices of the first layer are

T01 =
(
Thh

01 The
01

Teh
01 Tee

01

)
,T10 =

(
Thh

10 0
0 Tee

10

)
,P1 =

(
E1 0
0 E1

)
, (B2)

Thh
01 =∆hh

(
k2

x(Y h
0 + Y h

1 + Y h
x ) + k2

yC(Y h
0 + Y h

1 + Y h
y )

k2
x(Y h

0 − Y h
1 − Y h

x ) + k2
yC(Y h

0 − Y h
1 − Y h

y )

k2
x(Y h

0 − Y h
1 + Y h

x ) + k2
yC(Y h

0 − Y h
1 + Y h

y )
k2

x(Y h
0 + Y h

1 − Y h
x ) + k2

yC(Y h
0 + Y h

1 − Y h
y )

)
,

The
01 =∆he

(
1 −1
−1 1

)
,

Thh
10 =∆h

(
Y h

1 + Y h
0 Y h

1 − Y h
0

Y h
1 − Y h

0 Y h
1 + Y h

0

)
,

E1 =
(

exp(−iγ1D1) 0
0 exp(iγ1D1)

)
,

(B3)

where Y h
x = iU+, Y h

y = iU−C, ∆hh = ∆h/(k2
x + k2

yC), ∆he =

kxky(iU+ − iU−C)/2
√

Y h
0 Y e

1 (k2
x + k2

yC), ∆h = 1/2
√

Y h
0 Y h

1 and C =

1+Mg2/k2. The coefficients of the transfer matrices Tee
01, T

eh
01 and Tee

10
are determined from (B3) via interchanging indexes e and h (e ↔ h),
Y e

x = iU−, Y e
y = iU+/C and changing the sign of the matrix elements:

tee12 = −thh
12 , tee21 = −thh

21 , teh12 = −the
12, teh21 = −the

21. The elements of the
transfer matrices T02, T20 and T2 of the second layer are determined
in the same way from (B2), (B3) via substituting 2 for 1 and assigning
Y h

x = Y h
y = Y e

x = Y e
y = 0.
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