
Progress In Electromagnetics Research, Vol. 118, 223–241, 2011

A HIGHER ORDER ANALYSIS OF A CLASS OF INHO-
MOGENEOUSLY FILLED CONDUCTING WAVEGUIDES

E. Khodapanah* and S. Nikmehr

Department of Electrical and Computer Engineering, University of
Tabriz, Tabriz, Iran

Abstract—A higher order analysis is applied to solve the problem of
a class of inhomogeneously-filled conducting waveguides. This includes
an arbitrary but smooth hollow conducting waveguides and waveguides
filled with layered inhomogeneous materials. The method employs a
set of spline-harmonic basis functions and leads to one-dimensional
integrals for system matrix elements. This fact along with the higher
order nature of the basis functions provides an accurate method for
the analysis of the aforementioned waveguides. The accuracy and
the convergence behavior of the method are studied through several
numerical examples and the results are compared with the exact
solutions and with the results of Ansoft HFSS simulator to establish
the validity of the proposed method.

1. INTRODUCTION

Conducting waveguides of different cross sections have been used in
microwave measurements [1–3] and in the design of various microwave
components [3–7] specially, in the case of high power transmission of
electromagnetic waves [3, 7]. A variety of analytical and numerical
techniques have been applied to the analysis of uniform hollow
conducting waveguides. Whereas application of analytical methods is
limited to the analysis of waveguides with regular cross sections [8, 10],
numerical methods have been extensively developed and successfully
applied to the analysis of a conducting waveguide with a very general
arbitrary shape cross section. Conducting waveguides filled with
inhomogeneous materials have also found applications in the design
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of microwave components such as phase-shifters, attenuators, filters,
etc. [11]. The problem of the propagation of electromagnetic waves in
hollow conducting waveguides is reduced to the solution of the scalar
Helmholtz equation subject to the Dirichlet and Neumann boundary
conditions. This equation has been solved using the Rayleigh-Ritz
method based on polynomial approximations [12, 13] and trigonometric
basis functions [14]. Recently, this problem has been solved accurately
by the method of external excitation in the simply or multiply
connected regions and in the case of waveguides with boundary
singularities [15]. Alternatively, this problem has been formulated
as a surface integral equation and solved by the application of the
method of moments [16]. The same approach has been applied for a
class of conducting waveguides which are partially filled with pieces
of homogeneous materials [17]. For more general inhomogeneities, one
can apply the well-known finite element method (FEM) to solve the
vector wave equation which is free of any spurious solution [18, 19]. An
integral equation formulation which leads to a linear matrix eigenvalue
problem has also been applied to solve the problem of homogeneous
arbitrary shape waveguides [20, 21]. In the category of inhomogeneous
waveguides, a bi-orthonormal basis method has also been applied to
analyze inhomogeneously dielectric filled waveguides [22, 23].

It is known that the higher order methods provide faster
convergence and more accurate results for a given number of unknowns
in the numerical analysis of different electromagnetic problems [24–
27]. In this work, we first define a class of inhomogeneous
waveguides including arbitrarily but smoothly shaped single conductor
waveguides filled with layered inhomogeneous materials and then apply
a higher order numerical approach to analyze the propagation of
electromagnetic waves inside these waveguides. The rest of the paper
is organized as follows. In Section 2, the definition of the problem
is presented. The analyses of homogeneous and inhomogeneous
waveguides are described in Sections 3 and 4 respectively. Numerical
results are given in Section 5. Finally, the conclusion is given in Section
6.

2. A CURVILINEAR COORDINATE SYSTEM

In order to define the cross sectional geometry of our uniform
waveguides, we start by defining a curvilinear coordinate system. The
fundamental curve for constructing an appropriate coordinate system
conforming the waveguide boundaries is defined by ρ = ρ1 (ϕ) in the
polar coordinates, where ρ1 (ϕ) is an arbitrary smooth and periodic
function of ϕ which is assumed to have a non-zero value for any ϕ in
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[0, 2π]. Considering the closed curve, ρ = ρ1 (ϕ), one can readily define
a non-orthogonal curvilinear coordinate system u− ϕ as

{
ρ = uρ1 (ϕ)
ϕ = ϕ

0 ≤ u < ∞, 0 ≤ ϕ ≤ 2π (1)

Using the u − ϕ coordinate system defined in (1) we can define a
class of inhomogeneous waveguides as follows. The inner and outer
conductors of the waveguide which are assumed to be perfect electric
conductors (PEC’s) are located at u = u1 and u = u2 (constant u
curves) respectively, and the region between two conductors is filled
with an inhomogeneous material characterized by εr (u) and µr (u).
Also to this definition we add a case where the inner conductor is
removed (single conductor waveguide).

It is also possible to define an orthogonal curvilinear coordinate
system u− v as the following




ρ = uρ1 (ϕ)

ln
(

u
u1

)
= − ∫ ϕ

v

(
ρ1(ϕ′)
ρ′1(ϕ′) + ρ′1(ϕ′)

ρ1(ϕ′)

)
dϕ′

(|v − ϕ| is minimum)

0 ≤ u < ∞ , 0 ≤ v ≤ 2π (2)

where ρ′1(·) represents the derivative of ρ1 with respect to its argument
and u1 can be selected arbitrarily (e.g., the inner or outer conductor of
the waveguide in a given analysis). It is clear from (2) that the u− v
system has the same u coordinate as the u − ϕ system in (1) and is
obtained by finding a family of curves (constant v curves) which are
orthogonal to the constant u curves defined in (1). The definition of
the original problem in the u − v system is the same as that in the
u−ϕ system. It is known from (2) that the ρ and ϕ and consequently
the x and y are functions of u and v and hence the u− v system in (2)
can be equivalently represented as

{
x = x (u, v)
y = y (u, v) (3)

where the functions x (u, v) and y (u, v) are known from (2) implicitly.
Despite this later fact, the metric coefficients and unit vectors in the
u−v system (which are necessary for vectorial analysis of the problem)
can be obtained explicitly as

h1 =
ρ1 (ϕ)2√

ρ1 (ϕ)2 + ρ′1 (ϕ)2
, h2 = u

√
ρ1 (ϕ)2 + ρ′1 (ϕ)2ϕv (4)

û =
1
h1

(xux̂ + yuŷ) , v̂ =
1
h2

(xvx̂ + yvŷ) (5)
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where the subscripts in the x, y, and ϕ represent the partial derivatives
and ϕv is as follows

ϕv =
(

∂ϕ

∂v

)

u

=
ρ1(v)
ρ′1(v)

+ ρ′1(v)
ρ1(v)

ρ1(ϕ)
ρ′1(ϕ)

+ ρ′1(ϕ)
ρ1(ϕ)

(6)

3. HOMOGENEOUS WAVEGUIDES

When the waveguide is filled with a homogeneous material (i.e., εr and
µr have constant values), the problem is reduced to the solution of
the two-dimensional scalar Helmholtz equation with the homogeneous
Dirichlet and Neumann boundary conditions for TM and TE waves
respectively. Mathematically, we should solve the following eigenvalue
problem

∇2ψ + k2
cψ = 0

{
ψ = 0 TM case
∂ψ
∂n = 0 TE case

at u = u1 and u2 (7)

where kc is the unknown cutoff wavenumber which should be
determined and n̂ is the outward unit normal of the waveguide
boundaries. In order to solve the eigenvalue problem (7) numerically,
we first expand the unknown function ψ as a sum of known basis
functions with unknown coefficients. To this end, a set of spline-
harmonic basis functions in the u−ϕ system is adopted as the following

ψ (u, ϕ) ∼=
Sg+3∑

i=1

N∑

n=−N

an
i S4

i (u) ejnϕ (8)

where S4
i is the ith B-spline of order 4 (cubic B-spline) constructed

on a uniform Sg-segment grid in the interval [u1, u2] [28]. To impose
the Dirichlet boundary condition, we eliminate the two inhomogeneous
cubic spline basis functions related to the two end points of the interval
(i.e., u1 and u2). Substituting (8) into (7) and applying Galerkin’s
method based on the Hilbert inner product, we obtain the following
matrix eigenvalue equation for the unknown coefficients an

i and the
unknown eigenvalues kc

Ax = k2
cBx (9)
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where x =
[
a−N

1 , a−N
2 , . . . , aN

Sg+3

]T
is the vector of unknown

coefficients and the elements of A and B are given by

Ai1i2n1n2 =

u2∫

u1

u
(
S4

i1 (u)
)′ (

S4
i2 (u)

)′
du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

+

u2∫

u1

S4
i1 (u)

(
S4

i2 (u)
)′

du

2π∫

0

jn1
ρ′1
ρ1

ej(n2−n1)ϕdϕ

−
u2∫

u1

(
S4

i1 (u)
)′

S4
i2 (u) du

2π∫

0

jn2
ρ′1
ρ1

ej(n2−n1)ϕdϕ

+

u2∫

u1

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

n1n2e
j(n2−n1)ϕdϕ (10)

Bi1i2n1n2 =

u2∫

u1

uS4
i1 (u) S4

i2 (u) du

2π∫

0

ρ2
1e

j(n2−n1)ϕdϕ (11)

(10) and (11) show that the two-dimensional integrals appearing in the
elements of A and B are reduced to the products of one-dimensional
integrals which is not a case when we try to solve the problem in the
orthogonal u − v system. It is also found from (10) and (11) that
A and B are Hermitian matrices which can be converted to real and
symmetric matrices if we replace the complex harmonics ejnϕ in (8) by
real harmonics sin (nϕ) and cos (nϕ).

The matrices A and B are filled as follows. First we define two
sets of matrices called U and Φ matrices as

Ui1i2
1 =

u2∫

u1

u
(
S4

i1 (u)
)′ (

S4
i2 (u)

)′
du (12)

Ui1i2
2 =

u2∫

u1

S4
i1 (u)

(
S4

i2 (u)
)′

du (13)

Ui1i2
3 =

u2∫

u1

S4
i1

(u) S4
i2

(u)
u

du (14)
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Ui1i2
4 =

u2∫

u1

uS4
i1 (u) S4

i2 (u) du (15)

Φn1n2
1 =

2π∫

0

(
1 +

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ (16)

Φn1n2
2 =

2π∫

0

ρ′1
ρ1

ej(n2−n1)ϕdϕ (17)

Φn1n2
3 =

2π∫

0

ej(n2−n1)ϕdϕ (18)

Φn1n2
4 =

2π∫

0

ρ2
1e

j(n2−n1)ϕdϕ (19)

It is clear from (12)–(15) that the U matrices are sparse and their
sparsity increases by increasing the number of segments. All of the
non-zero elements in U matrices can be calculated analytically due to
the piecewise polynomial nature of the B-splines. The elements of the
Φ matrices are functions of n2−n1 and hence only one row or column
of each Φi matrix should be calculated. Analytical calculation may not
be possible or may be difficult in general, however, a simple numerical
integration method can be applied for an arbitrary ρ1 (ϕ). Finally,
we expand linear combinations of U matrices with appropriate weights
which are the elements of Φ matrices to fill out the matrices A and B
in (9). The aforementioned procedure implies that the matrices A and
B can be filled in a very fast manner.

The elements of Φi in (16)–(19) show that for a circular waveguide
all of the harmonics are decoupled. When the value of min |v̂ · ϕ̂| =

min 1/
√

1 + (ρ′1/ρ1)
2 which is a measure of the deviation of the

waveguide geometry from a circular waveguide decreases from unity
or equivalently max |ρ′1/ρ1| increases from zero, the range of the
harmonics which are strongly coupled to each other increases and
consequently the number of harmonics required to solve the problem
for a given accuracy increases.

Finally, we should mention that the analysis of a single conductor
waveguide can be performed in the same manner as that described
above except that we should select u1 = 0 and note that the value
of ∇ψ which represents the transverse field components must be
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finite at the origin (i.e., at u = 0). This latter fact means that
in the approximation expression in (8) we should retain the left
inhomogeneous cubic B-spline for the constant harmonic and eliminate
it for other harmonics for both Dirichlet and Neumann problems.

4. INHOMOGENEOUS WAVEGUIDES

For an inhomogeneous waveguide, we solve the vector wave equation
for the electric field. Assuming that the electric field to be of the
form ~E (x, y, z, t) = (~et (x, y) + ez (x, y) ẑ) ej(ωt−kzz) the vector wave
equation is reduced to

∇×
(

1
µr
∇× ~et

)
+∇×

(
1
µr

(∇ez + jkz~et)×ẑ

)

−jkz
1
µr

(∇ez + jkz~et)− k2
0εr (~et + ez ẑ) = 0 (20)

where k0 = ω
√

µ0ε0 is the wavenumber in the free space and kz is the
unknown propagation constant. To solve Equation (20), we first divide
the two-dimensional cross section of the waveguide into a number of
layers with continuous εr (u) and µr (u). The lth layer is an area which
is determined by ul

1 ≤ u ≤ ul
2 and 0 ≤ ϕ ≤ 2π. Then, we apply a set of

spline-harmonic basis functions to approximate the unknown electric
field components inside each layer.

An important note which should be considered is that the
transverse field components should be approximated in such a way
that the function ẑ · ∇ × ~et be represented as a sum of complete set,
to avoid the spurious solutions [18]. Also ez should be approximated
such that (∇ez + jkz~et) appears as a sum of complete set of basis
functions [18]. In the orthogonal u− v system these requirements can
be easily achieved by using the metric coefficients. In fact, we can
select

~et =
1
h1

∑

i,n

an
i S3

i (u) ejnvû +
1
h2

∑

i,n

bn
i S4

i (u) ejnvv̂

ez =
∑

i,n

cn
i S4

i (u) ejnv
(21)

and then apply Galerkin’s method to convert Equation (20) to a
generalized matrix eigenvalue problem. However, this procedure leads
to expensive two-dimensional integrals for system matrix elements,
which reduces the efficiency of the method.



230 Khodapanah and Nikmehr

An approximation on a set of curl-conforming spline-harmonic
basis functions in the non-orthogonal u− ϕ system is given by

~et =
1
h1

∑

i,n

an
i S3

i (u) ejnϕû +
1
ρ

∑

i,n

bn
i S4

i (u) ejnϕϕ̂

ez =
∑

i,n

cn
i S4

i (u) ejnϕ
(22)

Now Galerkin’s method based on the above approximations leads to
one-dimensional integrals for system matrix elements, which can be
calculated in a very fast manner. It is clear from (22) that the
transverse component is approximated by two sets of non-orthogonal
vector basis functions. In order to increase the accuracy of the
method for a given number of unknowns in the case where the
non-orthogonality of the geometry increases (i.e., when the value of

max |û · ϕ̂| = max 1/
√

1 + (ρ1/ρ′1)
2 increases or min |ρ1/ρ′1| decreases)

we replace the ϕ̂ directed basis functions in (22) by the following ones

ϕv

h2

(
1 +

(
ρ′1
ρ1

)2
)

S4
i (u) ejnϕv̂ (23)

However, the testing functions should remain unchanged to avoid
spurious solutions. Following the non-galerkin procedure described
above, we can convert Equation (20) to the following matrix eigenvalue
equation

[
Auu Auv

Aϕu Aϕv

][
a

b

]
=k2

z

[
Auz

(
A−1

zz Azu

)−Buu Auz

(
A−1

zz Azv

)

Aϕz

(
A−1

zz Azu

)−Bϕu Aϕz

(
A−1

zz Azv

)−Bϕv

][
a

b

]

(24)

where a =
[
a−N

1 , a−N
2 , . . . , aN

l(Sg+2)

]T
and b =

[
b−N
1 , b−N

2 , . . . , bN
l(Sg+3)

]T

are the unknown vectors related to the transverse components (l is the
number of layers) and the elements of the different matrices in (24) are
given by

Ai1i2n1n2
uu =

u2∫

u1

1
µr

S3
i1

(u) S3
i2

(u)
u

du

2π∫

0

n1n2

ρ2
1

ej(n2−n1)ϕdϕ

−k2
0

u2∫

u1

εruS3
i1(u)S3

i2(u)du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ (25)
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Ai1i2n1n2
uv =

u2∫

u1

1
µr

S3
i1

(u)(S4
i2

(u))′

u
du

2π∫

0

jn1

ρ2
1

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

−
u2∫

u1

1
µr

S3
i1

(u)S4
i2

(u)
u2

du

2π∫

0

jn1

ρ2
1

(
ρ′′1
ρ1
−

(
ρ′1
ρ1

)2

+jn2
ρ′1
ρ1

)
ej(n2−n1)ϕdϕ (26)

Ai1i2n1n2
uz =

u2∫

u1

1
µr

uS3
i1(u)(S4

i2(u))′du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

−
u2∫

u1

1
µr

S3
i1 (u) S4

i2 (u) du

2π∫

0

jn2
ρ′1
ρ1

ej(n2−n1)ϕdϕ (27)

Bi1i2n1n2
uu =

u2∫

u1

1
µr

uS3
i1(u)S3

i2(u)du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ (28)

Ai1i2n1n2
ϕu = −

u2∫

u1

1
µr

(
S4

i1
(u)

)′
S3

i2
(u)

u
du

2π∫

0

jn2

ρ2
1

ej(n2−n1)ϕdϕ

+k2
0

u2∫

u1

εrS
4
i1 (u)S3

i2 (u) du

2π∫

0

ρ′1
ρ1

ej(n2−n1)ϕdϕ (29)

Ai1i2n1n2
ϕv =

u2∫

u1

1
µr

(S4
i1

(u))′(S4
i2

(u))′

u
du

2π∫

0

1
ρ2
1

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

−
u2∫

u1

1
µr

(S4
i1

(u))′S4
i2

(u)
u2

du

2π∫

0

1
ρ2
1

(
ρ′′1
ρ1
−

(
ρ′1
ρ1

)2

+jn2
ρ′1
ρ1

)
ej(n2−n1)ϕdϕ

−k2
0

u2∫

u1

εr

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

ej(n2−n1)ϕdϕ (30)

Ai1i2n1n2
ϕz = −

u2∫

u1

1
µr

S4
i1 (u)

(
S4

i2 (u)
)′

du

2π∫

0

ρ′1
ρ1

ej(n2−n1)ϕdϕ

+

u2∫

u1

1
µr

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

jn2e
j(n2−n1)ϕdϕ (31)
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Bi1i2n1n2
ϕu = −

u2∫

u1

1
µr

S4
i1 (u) S3

i2 (u) du

2π∫

0

ρ′1
ρ1

ej(n2−n1)ϕdϕ (32)

Bi1i2n1n2
ϕv =

u2∫

u1

1
µr

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

ej(n2−n1)ϕdϕ (33)

Ai1i2n1n2
zz =

u2∫

u1

1
µr

u
(
S4

i1(u)
)′(

S4
i2(u)

)′
du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

+

u2∫

u1

1
µr

S4
i1 (u)

(
S4

i2 (u)
)′

du

2π∫

0

jn1
ρ′1
ρ1

ej(n2−n1)ϕdϕ

−
u2∫

u1

1
µr

(
S4

i1 (u)
)′

S4
i2 (u) du

2π∫

0

jn2
ρ′1
ρ1

ej(n2−n1)ϕdϕ

+

u2∫

u1

1
µr

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

n1n2e
j(n2−n1)ϕdϕ

−k2
0

u2∫

u1

εruS4
i1 (u) S4

i2 (u) du

2π∫

0

ρ2
1e

j(n2−n1)ϕdϕ (34)

Ai1i2n1n2
zu =

u2∫

u1

1
µr

u
(
S4

i1(u)
)′

S3
i2(u)du

2π∫

0

(
1+

(
ρ′1
ρ1

)2
)

ej(n2−n1)ϕdϕ

+

u2∫

u1

1
µr

S4
i1 (u) S3

i2 (u) du

2π∫

0

jn1
ρ′1
ρ1

ej(n2−n1)ϕdϕ (35)

Ai1i2n1n2
zv = −

u2∫

u1

1
µr

S4
i1

(u) S4
i2

(u)
u

du

2π∫

0

jn1e
j(n2−n1)ϕdϕ (36)

To fill the matrices in (24) we do as follows. First, two sets of
matrices i.e., U matrices and Φ matrices are defined. The Φ matrices
are independent of layers and have the same properties as those of
previous section. The U matrices are calculated for a complete set
of B-splines in each layer. This can be performed analytically, when
εr and µr have simple forms (e.g., in a partially filled waveguide)
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or numerically, when analytical calculations are not possible. Then,
we put U matrices of the same types of different layers on the main
diagonals of larger U matrices to construct the U matrices of the
whole structure. Imposition of the boundary and continuity conditions
are performed by combining the two rows or columns of the global
U matrices related to the two inhomogeneous cubic B-splines of two
adjacent layers and by eliminating the rows and columns related to
cubic B-splines which are adjacent to the waveguide walls. Finally,
we expand the linear combinations of the global U matrices by proper
weights which are the values of the Φ matrices to obtain the matrices in
(24). The generalized eigenvalue problem in (24) is solved by using the
sptarn function in the MATLAB partial differential equation (PDE)
toolbox based on the implicitly restarted Arnoldi method.

At the end of this section, we mention that a single conductor
inhomogeneous waveguide is analyzed by the same method described
above for a two-conductor waveguide except that all of the electric
and magnetic field components must remain finite at the origin. This
is achieved by eliminating the left inhomogeneous cubic spline basis
and testing functions in the approximation of the components ev and
eϕ in the first layer and by imposing the same conditions on ez as
those imposed on the scalar function ψ in the previous section. Also,
we should impose the condition limu (ẑ · ∇ × ~et) = 0 as u → 0. This
latter condition means that a new set of equations should be produced
and added to the system of equations in (24). In this work, we impose
this condition approximately. In fact, we select the lower limit of the
first layer u1

1 not at the origin but at the point u1
1 = ε, where ε is a

very small number (e.g., ε = 10−100) and apply the same algorithm
described for a two-conductor waveguide. In this way, the condition
u (ẑ · ∇ × ~et) = 0 is imposed at u = ε as a natural boundary condition
which is a good approximation to the finite field condition at the origin.

5. NUMERICAL RESULTS

First, let us consider the case in which the main period of the function
ρ1 (ϕ) is smaller than 2π i.e., is 2π/q where q is an integer larger
than unity. In this special case, the main problem is reduced to q
decoupled problems, each is constructed by a set of coupled harmonics
with the indices m, m ± q, m ± 2q, . . . in which it is assumed that
the minimum non-negative index is m. Every set of coupled harmonics
which is characterized by m leads to a set of modes in the waveguide
which is called the mth mode family. It is clear that the mth and
the (q −m)th mode families are degenerate. Therefore, it is sufficient
to consider only the zeroth, first, . . . , [q/2]th mode families in this
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special case to take advantages of the symmetry of the waveguide in
the ϕ direction.

As the first example, we investigate the accuracy of the method
on the number of spline segments, Sg, by considering the problem of a
unit circular waveguide and a circular coaxial waveguide with u1 = 0.5
and u2 = 1. The cutoff wavenumbers of lower order modes for the
both cases are compared with the exact results for different numbers
of segments and the relative errors are listed in Tables 1 and 2. Tables 1
and 2 show that for a same number of segments and a same mode type
the method is more accurate for the coaxial waveguide in comparison
to the circular waveguide when the values of the cutoff wavenumbers of
the both structures are near to each other. However, the convergence
rate is almost the same for the both cases.

Table 1. Relative errors of the cutoff wavenumbers of the lower order
modes for a unit circular waveguide.

Mode kexact
c

(
m−1

) Relative error of proposed method

Sg = 4 Sg = 8 Sg = 16 Sg = 32

TM01 2.404825557695773 9.1× 10−8 1.3× 10−9 2× 10−11 5.5× 10−13

TM02 5.520078110286311 8.9× 10−5 9.5× 10−7 1.3× 10−8 1.9× 10−10

TM03 8.653727912911013 2× 10−3 2.5× 10−5 2.9× 10−7 4.1× 10−9

TM11 3.831705970207512 5.1× 10−6 6.1× 10−8 8.8× 10−10 1.3× 10−11

TM12 7.015586669815620 5.5× 10−4 5.1× 10−6 6.3× 10−8 9.2× 10−10

TM21 5.135622301840683 3.2× 10−5 3.4× 10−7 4.6× 10−9 6.9× 10−11

TM22 8.417244140399864 1.4× 10−3 1.4× 10−5 1.6× 10−7 2.3× 10−9

TM31 6.380161895923983 1.1× 10−4 1× 10−6 1.3× 10−8 1.9× 10−10

TM41 7.588342434503804 2.1× 10−4 2.1× 10−6 2.5× 10−8 3.6× 10−10

TM51 8.771483815959954 2.2× 10−4 3.7× 10−6 4.4× 10−8 6.2× 10−10

TE01 3.831705970207512 5.2× 10−6 8.3× 10−8 1.3× 10−9 2.2× 10−11

TE02 7.015586669815620 4.8× 10−4 5.2× 10−6 7.2× 10−8 1.1× 10−9

TE11 1.841183781340659 4.4× 10−8 7.7× 10−10 1.3× 10−11 3× 10−13

TE12 5.331442773525033 5.7× 10−5 7.1× 10−7 1.1× 10−8 1.7× 10−10

TE21 3.054236928227140 6× 10−7 9.1× 10−9 1.5× 10−10 2.9× 10−12

TE22 6.706133194158459 2.4× 10−4 2.3× 10−6 3.3× 10−8 5.1× 10−10

TE31 4.201188941210528 4.1× 10−6 4.4× 10−8 6.5× 10−10 1.1× 10−11

TE41 5.317553126083994 1.3× 10−5 1× 10−7 1.4× 10−9 2.3× 10−11

TE51 6.415616375700241 3.2× 10−5 2.1× 10−7 2.7× 10−9 4.2× 10−11

TE61 7.501266144684148 6.5× 10−5 3.9× 10−7 4.6× 10−9 7× 10−11
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Table 2. Relative errors of the cutoff wavenumbers of the lower order
modes for a circular coaxial waveguide with u1 = 0.5 and u2 = 1.

Mode kexact
c

(
m−1

) Relative error of proposed method

Sg = 4 Sg = 8 Sg = 16

TM01 6.246061839191384 3.5× 10−6 4.9× 10−8 7.5× 10−10

TM02 12.54687142798436 4.5× 10−4 4.7× 10−6 6.2× 10−8

TM11 6.393156761621269 3.4× 10−6 4.6× 10−8 7× 10−10

TM21 6.813842853135051 3.4× 10−6 4.2× 10−8 6.1× 10−10

TM31 7.457740136051091 4× 10−6 4.6× 10−8 6.6× 10−10

TM41 8.266730435360103 5.2× 10−6 6.2× 10−8 9.1× 10−10

TM51 9.190044424963240 7.1× 10−6 8.8× 10−8 1.3× 10−9

TM61 10.18892992360880 9.6× 10−6 1.2× 10−7 1.9× 10−9

TM71 11.23570779347832 1.2× 10−5 1.6× 10−7 2.5× 10−9

TM81 12.31130859721133 1.6× 10−5 2.1× 10−7 3.2× 10−9

TE01 6.393156761621269 2.8× 10−6 4.5× 10−8 7.4× 10−10

TE11 1.354672010273168 4× 10−8 7.6× 10−10 1.4× 10−11

TE12 6.564942382322760 2.9× 10−6 4.6× 10−8 7.5× 10−10

TE21 2.681204286668842 1.3× 10−7 2.5× 10−9 4.6× 10−11

TE22 7.062581616047449 3.3× 10−6 5.2× 10−8 8.5× 10−10

TE31 3.957754187823974 2× 10−7 3.9× 10−9 7.5× 10−11

TE32 7.840109097858155 4.4× 10−6 6.7× 10−8 1.1× 10−9

TE41 5.175227739588027 2.6× 10−7 4.9× 10−9 9.2× 10−11

TE51 6.338887081897594 3.6× 10−7 5.9× 10−9 1.1× 10−10

TE61 7.462157848409306 5.5× 10−7 7.8× 10−9 1.3× 10−10

(a) (b) (c)

Figure 1. Geometries of the waveguides under study. (a) ρ1 =
1 − 0.2 cos (6ϕ), u1/u2 = 0.5. (b) ρ1 = 1 + 0.4 cos (2ϕ)− 0.2 cos (4ϕ),
u1/u2 = 0.5. (c) ρ1 = 1− 0.1 cos (3ϕ), u1/u2 is a parameter.
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Table 3. Normalized propagation constant of the dominant mode for a
partially filled coaxial waveguide with ρ1 (ϕ) = 1−w cos (4ϕ), u1

1 = 1,
u2

1 = 1.5, u1
2 = 1.5, u2

2 = 2, ε1r = 2, and ε2r = 1, at the frequency
k0 = 2

(
m−1

)
, for three different values of w. Error is calculated with

respect to the most accurate result at the bottom of each group.

Number of

harmonics

kz/k0 for

the dominant mode

Relative

error

w = 0.1

3 1.225493210098283 9.9× 10−5

5 1.225612770232861 1.5× 10−6

7 1.225614590304224 1.8× 10−8

9 1.225614569582404 1× 10−9

11 1.225614568363040 3.9× 10−11

13 1.225614568316376 1.7× 10−12

15 1.225614568314887 5.2× 10−14

17 1.225614568314823 -

w = 0.3

3 1.218804214386114 3.3× 10−3

7 1.222851721084015 2.6× 10−5

11 1.222885364877253 1× 10−6

15 1.222884340917631 1.9× 10−7

19 1.222884124236825 1.2× 10−8

23 1.222884112093381 1.7× 10−9

27 1.222884110263445 1.9× 10−10

31 1.222884110057294 2× 10−11

35 1.222884110035376 1.8× 10−12

39 1.222884110033236 -

w = 0.6

11 1.218105629434032 7.1× 10−4

21 1.218980921113077 7.9× 10−6

31 1.218973149429752 1.6× 10−6

41 1.218971729050500 4.1× 10−7

51 1.218971297905761 6× 10−8

61 1.218971229121749 3.4× 10−9

71 1.218971224721125 2.5× 10−10

81 1.218971224951328 2.6× 10−11

91 1.218971225022000 1.5× 10−12

101 1.218971225020170 -
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To study the accuracy and the convergence behavior of the method
on the number of harmonics, we consider the problem of a partially
filled coaxial waveguide with ρ1 (ϕ) = 1−w cos (4ϕ), u1

1 = 1, u2
1 = 1.5,

u1
2 = 1.5, u2

2 = 2, ε1r = 2, and ε2r = 1, where the superscripts 1 and 2
represent respectively the first and the second layers in the waveguide.
The value of w is a measure of the deviation from a circular waveguide.
In fact, for a circular waveguide we have w = 0. As w increases from
zero the deviation from a circular case also increases. Therefore, we

Figure 2. Normalized propaga-
tion constants of the lower order
modes of the zeroth mode family
of the waveguide in Fig. 1(a).

Figure 3. Normalized propaga-
tion constants of the lower order
modes of the first mode family of
the waveguide in Fig. 1(a).

Figure 4. Normalized propaga-
tion constants of the lower order
modes of the second mode family
of the waveguide in Fig. 1(a).

Figure 5. Normalized propaga-
tion constants of the lower order
modes of the third mode family of
the waveguide in Fig. 1(a).
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consider three different cases i.e., w = 0.1, w = 0.3, and w = 0.6
which are respectively related to a small, an intermediate, and a large
deviation from a circular waveguide. The results for all three cases are
shown in Table 3 where the normalized propagation constant (kz/k0)
of the dominant mode is given at k0 = 2

(
m−1

)
(the dominant mode

belongs to the zeroth mode family). Table 3 shows that for a given
accuracy the number of required harmonics increases when the value
of w increases. Also the convergence rate and the computational
efficiency of the method decrease by w.

Finally, we consider three single conductor waveguides partially
filled with dielectric materials. The geometries of these waveguides are
shown in Fig. 1. The normalized propagation constants of different

Figure 6. Normalized propaga-
tion constants of the lower order
modes of the zeroth mode family
of the waveguide in Fig. 1(b).

Figure 7. Normalized propaga-
tion constants of the lower order
modes of the first mode family of
the waveguide in Fig. 1(b).

Figure 8. Normalized propagation constants of the dominant mode
of the waveguide in Fig. 1(c) for different values of u1/u2.
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mode families of Fig. 1(a) are shown in Figs. 2–5 and for Fig. 1(b) are
shown in Figs. 6 and 7 and for the dominant mode of Fig. 1(c) for
different filling values (u1/u2) are shown in Fig. 8. All of the results
are compared with the Ansoft HFSS results and excellent agreement
is observed for all the cases. The accuracy of the results obtained by
HFSS is 3 or 4 significant digits for the problems in Fig. 1. For the
same accuracy, our method is at least a hundred times faster showing
the efficiency of the proposed method.

6. CONCLUSION
Spline-harmonic functions were applied for an accurate analysis of a
class of inhomogeneously-filled conducting waveguides. By increasing
or decreasing the order of B-splines, one can easily increase or decrease
the order of the method. The efficiency of the proposed method
of analysis strongly depends on the amount of deviation from a
circular waveguide. The method is very efficient up to an intermediate
deviation from circular case, and still remains relatively efficient for
a large deviation. The proposed method can also be applied to the
analysis of a sectorial waveguide of the same class. However, we should
apply Galerkin’s method to make the imposition of the PEC boundary
condition easier.
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