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Abstract—In this paper, we have proposed a shell type dielectric
microsphere resonator in order to enhance its quality factor. In this
work we have assumed that the radius of dielectric microsphere is 12µm
and that the interior metal layer radius is 11.5µm. We have obtained
analytic equations for Vector potentials, characteristic equation,
quality factor, resonance frequency and resonance location of TE
modes. We have plotted these characteristics by MATLAB software
and compared them with the normal microsphere characteristics.

1. INTRODUCTION

Dielectric microspheres as high quality factor (high-Q) resonators
with whispering gallery modes (WGM’s) are a novel type of optical
resonators. These are going to become more and more attractive in
nowadays applications. The high quality factor and small effective
mode volume of dielectric cavities make them extremely well suited
to cavity quantum Electrodynamics (cavity QED) experiments [1].
Enhanced spontaneous emission has been observed from semiconductor
nanocrystals embedded in polystyrene spheres [2]. A high-Q silica
microsphere/nanocrystal system has also been demonstrated which
may lead to realization of the strong-coupling regime of cavity QED
for atoms and semiconductors [3]. The fused silica microspheres have
also been developed for commercial applications such as add/drop
filter [4] and a sensor for detection of trace-gas [5] and biological
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molecules [6]. WGMs can be used as efficient and compact optical
switches and modulators. A possibility of nonlinear optical switching
and applications of WGRs to create a quantum-mechanical computer
was first recognized in [7]. Whispering gallery modes first were
observed by acoustic waves in ancient places like as Peking (the
temple of sky) or in London (St. Paul’s cathedral), etc. [8]. These
waves were supposed to be conveyed by something invisible through
the circular building (almost stone ones) and returning back to the
opposite side of their uttered place. Later the modern physical
explanation of this effect was proposed by Rayleigh as early as over
a century ago [9]. Optical WGM’s were first observed in scattering
experiments by Mie, and WGMs are therefore often referred to as
“Mie Resonances” [10, 11]. However, it was not until recent decades
that utilizing these unique modes in optic and photonic devices have
been practically experimented. Electro Magnetic (EM) waves in micro
resonators (like as microspheres) act in similar way the acoustic waves
action in circular building. The WGMs ability to store and build up
optical energy is the main reason of using this structure widely. A
high-Q microsphere can confine Whispering gallery modes by total
internal reflection on the cavity interface. The storage time of photons
in these modes in silica microspheres can exceed a microsecond [12].
The large amount of resonant power build up in high-Q microspheres
means that, if the input coupling power to the microsphere is 1mw,
with a Q-factor around 100million(which was already achievable) we
can have the circulation power on the order of 100 Watts in very
small volume [12]. Increasing the quality factor can be useful in some
branches like as lasing and nonlinear optics [7], so that we can have
a very low input power (very low threshold). In order to improve the
quality factor of microsphere, we have proposed a shell type structure
microsphere. It has been analytically demonstrated that its Q-factor
can be improved considerably. Generally, the overall quality factor of
a whispering gallery mode cavity is limited by several factors [13–15]:

1/Qtotal = 1/Qmat + 1/QWGM + 1/Qss + 1/Qcontam + 1/Qcoupling

= 1/Qintrinsic + 1/Qcoupling,

where, (Qtotal) denotes the total cavity quality factor. The intrinsic
quality factor Qintrinsic is due to contributions from both microsphere
material losses (Qmat), radiation loss present in a curved dielectric
cavity (QWGM), scattering from surface imperfections (Qss) and any
contaminate on either cavity surface or inside the dielectric (Qcontam).
Qcoupling represents the energy loss due to the input/output coupling.
In this paper, we want to improve QWGM of microsphere to the ultimate
level determined by fundamental material attenuation. As other loss
factors (except the coupling loss) are well-known for the high purity
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silica microsphere. The objective of this paper is to highlight analytic
investigation of shell type structure microsphere and calculating its
ultimate WGM’s quality factor. At first part of Section 2, the fields
associated a normal microsphere and WGM’s quality factors of a
normal microsphere have been highlighted. Then analytic formulas,
the characteristic equation and the resonance location of our proposed
system have been derived. In Section 3, the simulation results of both
structures have been brought and compared with each other.

2. THEORY BACKGROUND

2.1. Normal Microspheres

To explain modes and fields in a shell type structure microsphere, first
it is necessary to have a view of normal microspheres. In Figure 1, a
sphere and zig-zag propagating mode around equatorial plane has been
shown. The coordinates of sphere are presented by the usual variables,
r for the radial direction, ϕ for the azimuthally direction, and θ for
the polar direction. Due to orthonormality of the variables, the fields
of the sphere can be separated as

Ψl,m,n(r,Θ,Φ) = Ψr(r)Ψθ(Θ)Ψϕ(Φ), (1)

Figure 1. Spherical coordinate system for whispering-gallery modes
propagation along the surface of the sphere.
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where as shown in numerous references the component contributions
take the form [15, 17]

Ψr(r) =
{

jl(k0nsr), r ≤ a
hl(k0r), r > a

(2)

Ψθ(Θ) = pm
l (cos(θ)) (3)

ΨΦ(Φ) = exp[jmϕ], (4)
where Ψl,m,n(r,Θ, Φ) represents either the Eθ or Hθ component of
the electromagnetic field. The field components include the following
components.
1) The azimuthal contribution ψϕ with integer mode number |m| ≤ l.
2) The polar contribution Ψθ which is often expressed in terms of

exact solutions, the associated Legendre Polynomials P l
m(cos(θ)).

3) The radial contribution Ψr comprised of spherical Bessel functions
interior to the sphere. Exterior to the sphere, but very close to
the surface, the fields decay exponentially [17]. (Also exterior to
the sphere the radial components can be presented by spherical
Hankel functions [12, 18].)

A sphere mode is conventionally described in terms of three integer set
(l, m, n). l is the azimuthally mode number and is equal to the number
of wavelengths taken to travel around the sphere for a particular
resonance mode. For a particular value of l, there are many solutions
due to the form of the spherical Bessel function jl(kr), and each one
corresponds to a different radial mode number, n, with n being equal
to the number of intensity maxima in the radial direction. The final,
polar with mode number of m, describes the field variation in the Polar
direction, with l − |m| + 1 number of intensity maxima. So that the
“fundamental” mode has l = m and n = 1. Modes with the same values
of l and n but different values of m are degenerate but, having different
field distributions, will have different waveguide coupling factors and,
hence, Q-factors [17, 19]. The characteristic equation which describes
the relation between the wave vector k0 and the eigenvalues l and n, is
determined by matching tangential electric and magnetic fields across
the surface r = a.

Two independent cases are identified as consequences of separation
solutions: 1) Transverse electric (TE) modes, where the electric field
is parallel to the surface. The vector components are ~E =

_

θEθ =
_

θΨl,m,n, Eϕ = Er = 0.2) Transverse magnetic modes (TM), where the
magnetic field is parallel to the surface. The vector components are
~H =

_

θHθ =
_

θΨl,m,n, Hϕ = Hr = 0. The remaining H fields of the TE
modes, or the E fields of the TM modes, are derived by Maxwell’s
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equations. Matching tangential fields lead to simple characteristic
equation [13, 17].

n1−2c
s

jl−1(nsk0a)
jl(nsk0a)

=
h

(2)
l−1(k0a)
h2

l (k0a)
(5)

where ‘c’ represents the polarization of the optical mode (1 for TM
and 0 for TE) and ‘a’ is the radius of the sphere and this equation
is obtained by imposing r = a at the surface of the sphere, k0 =
2π/λ is the wave vector outside of the sphere, by considering air
as the surrounding medium and then K = ns2π/λ is the wave
vector inside the sphere, ns is the refractive index of the sphere and
l is a quantum number which has been described already. These
characteristic equations determine in fact the relation between the wave
number K and the sphere radius ‘a’.

Factors jl(nsk0a) and hl(k0a) are the first order spherical Bessel
and Hankel functions, respectively [16]. The spherical Bessel and
Hankel functions are easily computed by using recursion formula [17]
or can be computed by using the relation [7, 16]:

jl(kr) =
√

π/2krJl+1/2(kr) (6)
where jl(kr) represents spherical Bessel function and Jl(kr) represents
ordinary Bessel function.

Solution of characteristic equation results in a complex wave
vector, k = kr + iki, which determines both the resonance
wavelength (λ = 2πkr) and the radiation quality factor (QWGM =
kr/(2ki)) [12]. While the radiation loss can easily be found by
solving the characteristic equation (as mentioned above), a simple
approximated expression can be used to gain insight into the scaling
of radiation loss as a function of the cavity parameters [12, 18].

QWGM = 1/2(l + 1/2)n1−2c
s (n2

s − 1)1/2e2Tl (7)
where

Tl = (l + 1/2)(ηl − tanh ηl) (8)

ηl = ar cosh

{
ns

[
1− (1/l + 1/2)

(
t0qζ +

n1−2c
s√
n2

s − 1

)]}−1

(9)

ζ = (1/2(l + 1/2))1/3 (10)
c = {1(TM), 0(TE)} (11)

where l is the azimuthally mode number, ns is the refractive index of
sphere, c is the polarization of the optical mode and t0q is the qth zero
of Airy function [20] (Table 1). We observed that the quality factor of
a microsphere depends on its refractive index, quantum number l and
the radius of the sphere.
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Table 1. The first 15 roots of the equation Ai(t) = 0.

q tq

1 −2.338
2 −4.088
3 −5.521
4 −6.787
5 −7.944
6 −9.023
7 −10.040
8 −11.009
9 −11.936
10 −12.829
11 −13.692
12 −14.528
13 −15.341
14 −16.133

2.2. Shell Type Structure Microsphere

In many applications it is desired to improve quality factor of a
microsphere. So in the first step, we have explored multilayer structure
to catch our goal. Since better results depend on the confinement of
whispering gallery modes nearer the surface, it has been concluded that
the refractive index of an interior sphere must satisfy the condition:
N1 < ns so that it acts as a clad in optical fibers. It is useful here
to mention that in a Normal microsphere, high order modes penetrate
more than fundamental mode to the center of sphere and it is not
useful. Only the modes those are pressed to the surface of sphere have
the miraculous effects of WGMs.

Then the best proposed material for interior sphere has seemed to
be a metal. On the interface between silicon and metal something like
as total internal reflection happens on the surface of metal, as a result,
the modes are confined between two shields and nearer the surface.
Metals don’t let the electromagnetic waves go through them. From
this discussion two points have been considered, first as modes are
not allowed to go inside the metal sphere [16], shell type microsphere
(Figure 2) with metal sphere interior to the silica seems to be sufficient
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Figure 2. The structure of the proposed shell type microsphere. In
this figure, ‘a’ is the radius of the exterior sphere and ‘b’ denotes the
radius of the interior metal sphere. Here n2 shows the refractive index
of the metal and ns is the refractive index of the microsphere.

and adequate. The second conclusion is that by changing the metal
radius, we can obtain the best quality factor possible for this structure.

For realization of this shell type microsphere, there are some
main stages consist of the synthesis of metal cores, the modification
of their surfaces with organic materials having functional groups,
absorbing of seeding dielectric nanoparticles with diameter of 500 nm
on modified cores and the synthesis of dielectric shell by the seeded
growth technique [21, 22].

To measure the linewidth of this high Q resonator, we should
write that it is somewhat impossible by available lasers. However,
one can try it by different optical interferometric approaches with
taking required precautions. Where, the optical sources should be
ultra-narrow linewidth and tunable Dye lasers to generate nearer
modes. Also, the beat note of light sources can show very narrower
linewidth [23, 24].

2.3. Characteristic Equation

It is well known that, for an isotropic linear and homogeneous dielectric
medium, without any electromagnetic sources inside it, the expressions
of electric ~E and magnetic ~H fields can be expressed by the following



300 Talebi, Abbasian, and Rostami

equations.

~E =
∇×∇× ~A

jωεµ
− 1

ε
∇× ~F (12)

~H =
∇×∇× ~F

jωεµ
− 1

µ
∇× ~A (13)

where, ~A and ~F are called the electric and magnetic potential vectors,
respectively [18].

A1r = rΨ(r,Θ, Φ) = r(A1jl(nsk0r) + B1yl(nsk0r)).
Pm

l (cos(θ)) · cos(mφ) = F1r, b ≤ r ≤ a (14)
A2r = rΨ(r,Θ, Φ) = r(A2hl(k0r))
Pm

l (cos(θ)) cos(mϕ) = F2r, r > a (15)
In these equations we don’t have imposed the limitation condition to
the second order spherical Bessel function yl(kr), to be finite at r = 0.
The characteristic equation which gives us all the information about
our resonator has been determined by matching tangential Electric and
Magnetic fields at r = a.

~r × ~E1 × ~r = ~r × ~E2 × ~r (16)

~r × ~H1 × ~r = ~r × ~H2 × ~r (17)
Also we require the relationships between A1, B1 and A2. So, we
impose the boundary conditions on r = b interface. Also, we would
have Et = 0 because the interior material is metal.

Here the relations between A1, B1, and A2 are:

B1 = −A1
jl(k0b)
yl(k0b)

(18)

A2 =
ε0

ε
A1

(
jl(k0r)− jl(k0b)

yl(k0b)yl(k0r)
)

hl(k0r)
(19)

After mathematical manipulation of these equations and considering
this point that in the TE mode the radial component of magnetic
vector potential ~A is zero (Ar = 0) we can obtain the TEr mode
characteristic equation.

n1−2c
s

(
j′l(nsk0r)−Dy′l(nsk0r)
jl(nsk0r)−Dyl(nsk0r)

)
=

(
h′l(k0r)
hl(k0r)

)
(20)

where D = jl(nsk0b)/yl(nsk0b), and ns is the refractive index of the
microsphere and b is the radius of the interior sphere. Here primes
denote the first derivatives of the Bessel and Hankel functions respect
to their arguments.
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2.4. The Evanescent Whispering Gallery Field in the Shell
Type Structure Microsphere

To study the properties of WGMs, first of all we should calculate the
roots of the characteristic equations. As we deal with the modes with a
large index of l; it is convenient to use the appropriate approximation
of the Bessel functions for calculation of these roots. An appropriate
approximation should be taken by considering this fact that, the
argument of Bessel function for a WGM near the surface is of the order
of its index. It is useful to start with some physical insight. For a ray
with wave number nsk0 inside the microsphere striking the microsphere
surface at an angle θ to the normal, the angular momentum is [25]

υ = nsk0a sin(θ) = nsx sin(θ) (21)

where ν = l + 1/2.
But sin(θ) ranges from unity (glancing incidence) to 1/ns (the

limit of total internal reflection), thus for large spheres, ν scales with
x, and it is therefore convenient to define µ = ν/x(ns ≥ µ ≥ 1).
Moreover, low order resonance modes (with small quantum number n)
correspond to nearly glancing rays, so we expect the absolute value
of |nsx− ν| to be relatively small; in fact, this difference turns out to
scale as ν1/3 [25]. So it is common to define a variable expected to be
O (1), by

nsx = ν + tν1/3 (22)

By these assumptions, the Bessel function can be well approximated
by Airy functions [20]:

jl(nx) = (2/ν)1/3Ai

(
−21/3t

)

1 +

∞∑

j=1

fj(t)/
(
ν2j/3

)



+
22/3

ν
A′i

(
−21/3t

) ∞∑

j=0

gj(t)/
(
ν2j/3

)
, (23a)

j′l(nx) = −(2/ν)2/3A′i
(
−21/3z

)[
1 +

∞∑

k=1

hk(z)/
(
ν2j/3

)]

+
21/3

ν4/3
Ai

(
−21/3z

) ∞∑

k=0

lk(z)/
(
ν2k/3

)
, (23b)
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yl(nx) = −(2/ν)1/3Bi

(
−21/3t

)

1 +

∞∑

j=1

fj(t)/
(
ν2j/3

)



−22/3

ν
B′

i

(
−21/3t

) ∞∑

j=0

gj(t)/
(
ν2j/3

)
, (23c)

y′l(nx) = (2/ν)2/3B′
i

(
−21/3z

)[
1 +

∞∑

k=1

hk(z)/
(
ν2k/3

)]

−21/3

ν4/3
Bi

(
−21/3z

) ∞∑

k=0

lk(z)/
(
ν2j/3

)
, (23d)

And similar expressions can be written down for the Hankel functions.
Where Ai(t) and Bi(t) are Pairs of linearly independent solutions of
airy function [20].

Inserting the asymptotic expansions into the characteristic
equation (main idea of our systematic analysis is illustrated by showing
the derivation to first nontrivial order) the two sides of Equation (21)
are asymptotically:

n1−2b
s

(
−(2/ν)1/3

(
A′i

(−21/3t
)

+ DB′
i

(−21/3t
))

Ai

(−21/3t
)

+ DBi

(−21/3t
)

)

=
√

µ2 − 1 (1− i exp(−2Tl)) (24)

which by taking ν → ∞ with µ fixed (n ≥ µ ≥ 1), we see that the
powers of l can only balances if

Ai

(
−21/3t

)
+ DBi

(
−21/3t

)
= O(ν−1/3) → 0 (25)

We named ‘t’, which satisfies this equation tp0.
So, unlike the normal microsphere, the resonance locations in

shell type structure are not just related to the roots of airy function
(Ai(t)). Here these locations depend both to the Airy functions
(Ai(t), Bi(t)) and also to other factors such as interior sphere’s radius.
These parameters give us two freedom degrees to control the resonance
locations.

We have observed in analytic equations of the quality factor for a
normal microsphere that by changing the qth root of Airy function, the
quality factor changes rapidly. For example as it is shown in Table 2,
in a microsphere by refractive index ns = 1.36 and radius a = 10µm,
the quality factors for the first and second roots of Airy function, for
respective l = 128 and l = 121, are Q = 5 × 1013 and Q = 4 × 109,
respectively [26]. This process will continue for the other successive
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Figure 3. Plot of t′ps for a shell type microsphere with, a = 12µm,
b = 11.5µm, and ns = 1.36.

roots of airy function, to control the value of quality factor. By the
proposed system we can handle the quality factor. This fact shows
the advantage of the our proposed system. The values of the first
15 roots of Equation (26) for the shell type microsphere structure by
radii, b = 11.5µm and a = 12 µm, and the refractive index for exterior
sphere ns = 1.36 has been brought in the Table 3. Also a plot of these
roots for the mentioned structure is shown in Figure 3.

Quality factor of the proposed structure can be obtained
analytically either by the above mentioned equations (for the normal
microsphere in the Section (2.1), and bearing in mind that now instead

Table 2. The values of quality factor of a microsphere, by refractive
index ns = 1.36 and radius, a = 10µm. The Value of Q for q = 1, 2,
3 decreases rapidly, respectively.

L c q QWGM

128 0 1 5× 1013

121 0 2 4× 109

115 0 3 6× 106

127 1 1 3× 1013

120 1 2 3× 109

114 1 3 5× 106
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Table 3. First 15th roots (tq) of the equation: With b = 11.5µm.

p tp

1 −1.0601

2 −2.6784

3 −3.09021

4 −4.9573

5 −5.9101

6 −6.7915

7 −7.6190

8 −8.4038

9 −9.1536

10 −9.8738

11 −10.5686

12 −11.2413

13 −11.9844

14 −12.5301

15 −13.1500

of tq we must use the tp), or by following equations:

Q =
ν − (

ν
2

)1/3
tp − n1−2c

s√
n2

s−1

n1−2c
s√
n2

s−1

× (exp(−2Tp)) (26)

where ν = l + 1/2 and Tp can be calculated from

Tp = (l + 1/2)(ηl − tanh ηl) (27)
where, ηl can be obtained from Equation (9) with replacing tq by tp.
∆tp relation with ηl can be obtained by the equation:

∆tp =
n1−2c

s

(
2
ν

)1/3

√
µ2 − 1

(1 + i exp(−2Tp)) (28)

One way to represent the resonance frequency of this structure is

w =
c

ans

[
l + 2−1/3t0pl

1/3 +
n1−2b

s√
n2

s − 1
(1 + i exp(−2Tp)) + O(1)

]
(29)

By mathematical manipulating of above equations, the resonance
locations for this structure can be given by following equation:
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x =
1
ns

(
ν + 2−1/3 (tp + ∆tp) ν1/3 + O(1)

)
(30)

where, ∆tp has been given by Equation (28).

3. THEORETICAL RESULTS AND CONCLUSIONS

3.1. Normal Microsphere

In this section, the discussed formulas for a normal microsphere and
also the derived formulas for the shell type microsphere have been used
or plotted to examine the trends in Q factor as a function of various
parameters. In the most of the following graphs, there are four curves.
In the n = 1 labeled curves (red color), the WGM is strongly confined
in a thin superficial layer. For this reason the effect of the spherical
bounding is not so strong on the propagation of this mode and the
quality factor is the highest. On the other hand, by maintaining fixed
the value of related parameters and increasing n, we can observe a
decrease of radiative quality factor QWGM. This is due to the fact
that, for higher values of quantum number n, the radial part of the
field presents an increase of maxima in this direction and the mode
extends towards deeper regions in the microsphere and the curvature
effect is more strength on it. For n = 2 labeled curves (green color), the
WGM has two maxima in the radial direction and it penetrates more
than the first case, n = 1, to the center of sphere and so the quality
factor will decrease. The same process continues for the n = 3 case
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Figure 4. Quality factor of
normal microsphere as a function
of quantum number l with ns =
1.36 and a = 10 µm.
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(blue color), and become the worst for n = 4 case (black color). As
it has been shown in Figure 4, Quality factor of a normal microsphere
increases as the quantum number l increases. This diagram discloses
this fact that for a sphere, maximum quality factor happens, (for the
fundamental mode n = 1), when l posses the maximum possible value.
As it can be seen in the Figure 4 for the fundamental mode, n = 1, of a
microsphere with the radius a = 10 µm, refractive index ns = 1.36, the
quality factor for l = 100 gets Q = 1.43×1010, and for quantum number
l = 128, become 2.7 × 1013. The possible exact values of quantum
number l for a normal dielectric microsphere can be obtained by solving
the characteristic equation of microsphere numerically. Figure 5, shows
the possible values of quantum number l for a sphere.

With radius a = 16µm, refractive index ns = 1.985, λ = 1480 nm
(Here these values has been selected to be compared with some
references [18]). Discrete values of quantum number l are 125, 118,
113, 107, 103, 99, 95, 91, 87, 83, 80, 77, 74, 70 and 67 which are closed
to those reported in [17].

Figure 6 shows the radiation quality factor of a normal dielectric
microsphere as a function of refractive index, ns. This diagram reveals
that for a sphere, quality factor increases as the refractive index of
the microsphere increases [17]. As a result, for the fixed quantum
numbers l, and the sphere radius a, maximum quality factor occurs for
a microsphere which has the highest refractive index possible. It can
be seen from Figure 6, that for the n = 1 case of a microsphere with
a = 10 µm and ns = 1.36 the value of quality factor is Q = 1.13×1013,
but for this situation when the refractive index become, ns = 1.6, the
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Figure 6. Quality factor as a
function of the refractive index ns

for a microsphere with a = 10 µm.
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mode of the shell type structure
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quality factor will be Q = 2.3 × 1025. Increasing of quality factor
by refractive index increasing is in result of this fact that when the
index contrast between the sphere index and the surrounding medium
increases, the confining of light inside the sphere become stronger,
therefore the quality factor increases [17].

3.2. Shell Type Structure Microsphere

Like as what have been done for a normal microsphere the set of l
values that satisfies characteristic equation of TE mode can be obtained
from numerical solving of the characteristic equation. Figure 7, shows
the possible values of quantum number l for the proposed shell type
structure with radii a = 16µm and b = 1µm, refractive index
ns = 1.985, and λ = 1280 nm. These parameters have been used
to compare the results with the normal dielectric sphere. The discrete
values of the used values for the quantum Number l are 127, 120, 114,
109, 102, 98, 93, 88, 83, 78 and 75.

Figure 8 shows that, like as what have been seen for the
normal microsphere, quality factor increases with the increasing of
the quantum number l for the shell type microsphere. Similar to the
normal sphere case, here in the shell type structure, maximum quality
factor for a sphere with known radii and dielectric refractive index
happens for the fundamental mode (n = 1). As it can be seen in
Figure 7, for the fundamental mode of a sphere with radii a = 12µm
and b = 11.5µm, when l = 100, quality factor becomes Q = 4.45×1012,
and for l = 127, quality factor becomes Q ≈ 1.03 × 1016. And it is
obvious that increasing the value of l will result in increasing of the
quality factor.

Comparing the results of quality factor for shell type structure
with normal one, for mentioned radii and refractive index, it can be
found that quality factor has been improved considerably. As it was
illustrated in Figures 6 and 9, by increasing the refractive index of the
sphere its quality factor increases. Therefore, to gain higher quality
factors it is desired to increase the refractive index as much as possible.
As in the normal sphere, the refractive indices of materials used to
form a sphere are limited, by selecting the shell type microsphere and
handling the radius and material of metal, we can get quality factors
which are analog to the high refractive index normal microsphere.

Last discussion can be better revealed in Figure 9. It shows the
quality factor of the shell type structure microsphere as a function of
its dielectric refractive index (ns). It could be predicted that quality
factor of this structure will increase by increasing of its refractive index
too. It has been illustrated that for the fundamental mode (n = 1)
of the shell type microsphere with radii, a = 12µm, b = 11.5 µm, and
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Figure 8. Quality factor of
the shell type microsphere as a
function of the quantum number
l with ns = 1.36, a = 12µm and
b = 11.5µm.
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Figure 9. Quality factor of
the shell type microsphere as a
function of the refractive index ns

with a = 12µm and b = 11.5µm.

dielectric refractive index ns = 1.36, we obtain the radiative quality
factor of Q ≈ 1.03 × 1016 and when ns = 1.6, quality factor becomes
Q ≈ 1.05 × 1029. Comparing these results with those for a normal
sphere verifies the considerable improving of quality factor for this
structure. The quality factor for this structure with the dielectric
refractive index ns = 1.36, and for the normal microsphere with
refractive index ns = 1.415 are approximately equal.

4. CONCLUSIONS

Analytic equations have been developed for Whispering gallery mode
quality factor of the proposed shell type microsphere. For this means,
electric and magnetic potential vectors of this structure have been
discussed. Then its Characteristic equation has been obtained and
a discrete set of quantum numbers l have been given to satisfy
characteristic equation. By analytic formulas of the normal dielectric
microsphere, it has been demonstrated that whispering gallery mode
quality factor depends strongly to the roots location of the Airy
function, Ai(t). As the root number ‘qth’ of airy function increases,
quality factor decreases rapidly. Therefore, always the first root of the
Airy function will give us the highest ultimate quality factor of the
microsphere. This fact made us to search if it is possible to change the
location where the first zero of Airy function happens. Then it was
found that by using a shell type microsphere with metal sphere interior
to the dielectric exterior sphere, it is possible to handle locations of
Airy function which here are calculating from a combination of the
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Airy functions Ai and Bi. Then by changing radii of the metal and
dielectric spheres we were able to change the roots of combination of
Airy functions and handling the value of quality factor. As a result,
considerable improvement of the quality factor has been demonstrated.
The diagrams of the shell type microsphere showed us that this
structure with lower dielectric sphere refractive index can replace a
normal microsphere with a higher refractive index to obtain a given
quality factor. Higher refractive contrast between normal sphere and
its surrounding medium is desired to better confinement of photons
and as a result to obtain higher radiation quality factor. Also because
we have tradeoff between loss parameters and coupling to and from
the microsphere, in the normal microsphere, if we choose the sphere
with the bigger radius, we will have better confinement of photons and
as a result loss parameters will decrease and the quality factor will
improve but in this situation coupling will decrease. So in the normal
microsphere we are limited to a radius which we have both parameters
acceptable. Now by this proposed structure, in practical situations we
can choose smaller spheres with the same quality factor, while we will
have better coupling to and from the shell type microsphere. Another
benefit of using this structure is that in normal spheres, for higher
order modes, fields penetrate to the center of sphere and this is not
desired. By this structure we prevent high order modes to go through
the center of sphere (because the interior layer is metal) and will confine
them in the shield between two spheres which is one of our goals of
using this structure (only modes which are confined to the surface of
the microsphere are WGMs). Coupling from tapered fibers to and
from our proposed structure and comparing the analytic results and
numerical results are the subject of the next publication.
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