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Abstract—A novel compact dual-band bandpass filter using tri-
section stepped impedance resonators (SIRs) is presented for Wireless
Local Area Network (WLAN). SIRs and one stub between parallel
couple line are employed to realize two satisfactory passbands.
Meanwhile, one transmission zero is generated between the two
passbands to achieve a high out-of-band rejection. Simulated results
show that two central frequencies are located at desired 2.4 and 5.2 GHz
with 3 dB fractional bandwidths of 6.3% and 3.4% respectively. The
measured results are in good agreement with the simulated ones.

1. INTRODUCTION

With the rapid development of wireless communication systems, there
have been increasing demands for dual-band radio frequency (RF)
devices. Dual-band bandpass filters are the essential components in
the RF front ends of both receiver and transmitter. Compact size,
low losses, high selectivity, low cost, and high performance bandpass
filters are the goals for modern wireless communication applications.
In response to this need, many methods used to realize the dual-
band filter have been investigated. The traditional methods include:
a wide-band bandpass filter and a bandstop filter cascaded [1] and
two different filters set in parallel [2]. However, these solutions suffer
from large overall sizes. Other methods contain utilizing SIRs to shift
the spurious frequencies of the SIRs to create the second passband [3–
12]. However, it is difficult to control the passbands individually by
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using SIR, since the dual passbands response is synthesized by the two
resonator responses synchronously. In [13–17] although these filters
have high selectivity and low losses, the design procedure is complex.

To solve these problems, in this paper we propose a novel compact
structure of 2.4/5.2 GHz dual-band filters by cascading two folded SIRs
for WLAN applications. The proposed filter is simple in structure and
compact in size. In particular, one transmission zero can increase the
isolation between two separate passbands, and can reduce image signals
from the receiver link. Simulated and measured results are presented
to prove the feasibility of this design method.

2. FILTER DESIGN

The traditional folded half-wavelength SIR is shown in Fig. 1(a) and
the Proposed tri-section folded SIR is in Fig. 1(b). From Fig. 1(b) we
can see a half wavelength folded SIR is a dual-mode resonator, which
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Figure 1. (a) Traditional folded stepped impedance resonator. (b)
Proposed tri-section folded stepped impedance resonator. (c) Structure
of odd-even modes.
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can motivate odd mode and even mode. Fig. 1(c) shows the structure
of even-odd mode.

Ignoring the impact of step discontinuity and open-edge
capacitance, when even mode motivates, the input admittance is given
below:

Yeven

= j

tan θ4
Z1Z2

− tan θ3+K1 tan θ2+K1K2 tan θ1−K2 tan θ1 tan θ2 tan θ3

Z1Z2

(
−K1+tan θ2 tan θ3+

tan θ1(tan θ3+K1 tan θ2)
K2

) + tan θ0

Z2
1

1
Z1
−

(
tan θ4

Z4
− tan θ3+K1 tan θ2+K1K2 tan θ1−K2 tan θ1 tan θ2 tan θ3

Z2

(
−K1+tan θ2 tan θ3+

tan θ1(tan θ3+K1 tan θ2)
K2

)

)
tan θ0

(1)

With three sections of the SIR assumed to have the same electric length
(i.e., θ1 = θ2 = θ3 = θ), then the parallel resonance conditions can be
written:

(K3 tan θ4 + K2 tan θ0)(K2 tan θ3 + (1 + K1 + K2) tan θ2

−K1(1 + K2) tan θ −K1K2) = 0 (2)
where K1= Z3/Z2, K2= Z2/Z1 and K3= Z2/Z4 are the impedance
ratio. From the formula, we can understand the even mode resonance
condition of the SIR depends on θ0, θ, θ4 and the impedance ratio K1,
K2, K3.

When odd mode motivates, the expression of input admittance
can be shown:

Yodd =
Z1 tan θ1 + Z4 tan θ4 − Z4 tan θ0 tan θ1 tan θ4

jZ1Z4 tan θ1 tan θ4 + jZ1 tan θ0(Z1 tan θ1 + Z4 tan θ4)
(3)

So the parallel resonance condition can be given:
K3 tan θ1 + K2 tan θ4(1− tan θ0 tan θ1) = 0 (4)

From the formula, we know the odd mode resonance condition depend
on θ0, θ1, θ4 and the impedance ratio K2 and K3.

Figure 2 shows the mode distribution with different length L
shown in Fig. 1(b). It can be seen that the odd mode resonant
frequencies are scarcely affected by the length L and even mode
resonant frequency can be shifted by changing the length L.

The structure of the proposed dual-band bandpass filter is shown
in Fig. 3. It mainly consists of two symmetrically folded tri-section
SIRs with one stub loaded between parallel couple line. From the
above analysis the two center frequencies can be determined by the
length L and the impedance ratio K1, K2 and K3 conveniently. The
stub is loaded between parallel couple line to improve the performance
of passbands, which can be seen from Fig. 3 and Fig. 4. Without A
stub the return loss is unsatisfactory at the two passbands. With A
stub, the two center frequencies of filter do not change obviously and
the performance of filter is improved.
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Figure 2. Odd-even modes of folded stepped impedance resonator.
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Figure 3. Structure of proposed microstrip filter.
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Figure 4. Comparison of with and without A stub.

Figure 5. Photograph of fabricated filter.

3. SIMULATED AND MEASURED RESULTS

To verify the above-mentioned analysis, a novel filter is designed and
simulated by an EM simulation software, Sonnet. According to the
above analysis procedure, the dimensions of the filter are as follows:
W1 = 6mm, W2 = 0.6mm, W3 = 6.7mm, L1 = 12.8mm, L2 = 6mm,
L3 = 0.6mm, L4 = 1.2mm, L5 = 1.2mm, L6 = 7.2mm, L7 = 1.8mm,
G = 1.6 mm, S = 0.2mm. The thickness of the substrate is 0.8 mm,
and corresponding relative dielectric constant is 10.2. The overall size
of the filter is 24 mm × 30mm. Fig. 5 shows the photograph of
fabricated filter. The simulated and measured responses are compared
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Figure 6. Comparison of simulated and measured frequency
responses.

in Fig. 6. The S-parameters are measured by using an Agilent 8722ES
vector network analyzer. From Fig. 6 simulated results show that the
proposed filter yields two passbands at the centre resonant frequencies
of 2.4 and 5.2 GHz, respectively. Additionally, there is one transmission
zero located near the passband edges, resulting in sharp roll-off. In the
lower passband, the filter has a return loss > 15 dB and the insertion
loss is < 3 dB within 2.3–2.45 GHz. In the upper passband, the filter
has a return loss > 15 dB and the insertion loss is < 3 dB within 5.14–
5.32GHz. The filter has bandwidth of 6.3% at 2.4 GHz and 3.4% at
5.2GHz. The insertion loss is mainly attributed to the SMA connector,
conductor and dielectric loss. The slight shift of the frequency might
be due to the unexpected tolerance of fabrication. Comparison of
measured and simulated results shows very good agreement.

4. CONCLUSION

A novel compact dual-band bandpass filter by cascading two folded
tri-section SIRs is presented. Two passbands are centred at desired
2.4 and 5.2 GHz, with 3 dB fractional bandwidths of 6.3% and 3.4%
respectively. One transmission zero is realized between the two
passbands, resulting in high selectivity. Design curves are given for
the filter design procedure. An experimental circuit is fabricated and
measured to validate the design concept. Measured results show that
the proposed filter is suitable for WLAN applications.
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