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Abstract—An equivalent circuit, made of the chain connection of
a number of T-type two-port networks, is proposed for the very
accurate representation of the frequency-domain behavior of radially
inhomogeneous solitary cylindrical structures, the individual two-port
networks being made of frequency-independent R, L and C lumped
elements. The accuracy of the model is dictated by the number of
two-port networks, a number that increases with the frequency. The
equivalent circuit approach is validated with the help of an application
example concerning a special type of inhomogeneous tubular structures
where exact closed-form field solutions do exist.

1. INTRODUCTION

Waves and fields in inhomogeneous media is a recognized subject
of major importance in electromagnetics research [1]. In a recent
paper, the author proposed a matrix approach for the evaluation of
the internal impedance of multilayered cylindrical structures [2]. The
present work is based on [2] and elaborates on a novel, very accurate,
equivalent-circuit approach for the frequency-domain representation
of radially inhomogeneous cylindrical structures (solid and hollow
cylinders), which allows the evaluation of the electric and magnetic
fields inside the structure, as well as the evaluation of the per-unit-
length internal impedance.

Boosted by the availability of increasingly powerful circuit sim-
ulators, the modeling of electromagnetic structures using equivalent-
circuit approaches is a current topic of interest, in particular, when
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dealing with skin effect problems [3–8]. One novelty with this work,
which also deals with problems related to skin effect [9, 10], resides in
the consideration of inhomogeneous materials, which can display pre-
dominant conducting properties, insulation properties, magnetic prop-
erties, or a mix of all.

Most skin-effect equivalent-circuits are concerned with homoge-
neous structures. They employ ladder-type circuit models which are
obtained by optimizing its R and L elements considering a discrete
set of sampling frequencies. A strong point with this new work is
that the equivalent-circuit is derived from electromagnetic principles
and its accuracy can be as higher as wished, for all frequencies under
consideration.

2. BACKGROUND RESULTS

Consider a solitary inhomogeneous circular cylindrical structure of
outer radius rN . The conductivity, permeability, and permittivity of
the material medium are described by radial functions σ = σ(r), µ =
µ(r), and ε = ε(r), for 0 <r <rN .

For analysis purposes the global structure is discretized into a
convenient number of N homogeneous regions: N −1 concentric layers
and 1 inner cylinder, the size of each region being chosen as deemed
appropriate, taking into account the steepness or smoothness of the
functions σ(r), µ(r) and ε(r). The generic nth layer is characterized
by: outer radius rn, inner radius rn−1, conductivity σn, permeability
µn, and permittivity εn (see Fig. 1 in [2]).

For time harmonic regimes, of frequency ω, each region is
described by a complex wave number k̄n [2],

k̄n =
√

ω2µnεn − jωµnσn (1)

The relationship between the axial electric fields and the azimuthal
magnetic fields, referred to the outer an inner surfaces of the nth layer,
were obtained in [2]:

[
Ēn

H̄n

]
=

[
an bn

cn dn

] [
Ēn−1

H̄n−1

]
(2)

where

an =
πx′n
2

(
J1(x′n)N0(xn)− J0(xn)N1(x′n)

)
(3a)

bn =
ωπrnµnx′n

2jxn

(
J0(xn)N0(x′n)− J0(x′n)N0(xn)

)
(3b)
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cn =
jπxnx′n
2ωrnµn

(
J1(x′n)N1(xn)− J1(xn)N1(x′n)

)
(3c)

dn =
πx′n
2

(
J1(xn)N0(x′n)− J0(x′n)N1(xn)

)
(3d)

where Jν and Nν denote the Bessel function of the first kind and
the Neumann function of order ν, respectively; and xn = k̄nrn,
x′n = k̄nrn−1.

The homogeneous inner cylinder, of radius r1, is characterized by
a surface impedance [2], given by

Z̄1 =
Ē1

H̄1
=

ωµ1r1

jx1

J0(x1)
J1(x1)

[Ω] (4)

3. TWO-PORT ANALYSIS

From the view point of circuit analysis the set of layers can be
interpreted as a two-port network, the output port being loaded by
the impedance corresponding to the inner cylinder.

In order to define the constituent parts of the two-port network
we need to make a previous change of variable. In (2), we are going to
substitute the axial current intensities Īn and Īn−1 for the azimuthal
magnetic fields H̄n and H̄n−1 caused by those currents

Īn =
∫

Sn

(J̄ + jωD̄) · ~ez dS = 2πrnH̄n, for 1 < n ≤ N (5)

where ~ez is the unit vector of the axial direction and Sn is the circular
surface of radius rn. Note that the current intensity Ī ′n carried by the
individual nth layer is obtained through

Ī ′n = Īn − Īn−1 = 2π
(
rnH̄n − rn−1H̄n−1

)
(6a)

The global current intensity carried by the cylindrical structure is

ĪN =
N∑

n=1

Ī ′n (6b)

Plugging (5) into (2) we get[
Ēn

Īn

]
=

[
a′n b′n
c′n d′n

]

︸ ︷︷ ︸
Tn

[
Ēn−1

Īn−1

]
(7)

where

a′n = an , b′n =
bn

2πrn−1
, c′n = 2πrncn , d′n = dn

rn

rn−1
(8)
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The transmission matrix Tn in (7), associated to the nth layer, is a
unimodular matrix, whose determinant is equal to +1, (as it happens
with any reciprocal multiport network [11]),

det(Tn) = a′nd′n − b′nc′n = (andn − bncn) rn
rn−1

= 1 (9)

Note, in (9), according to [2], that (andn − bncn) = rn−1/rn.
The set of N − 1 layers is also globally characterized by a

unimodular transmission matrix T,
[

ĒN

ĪN

]
=T

[
Ē1

Ī1

]
; T=

N∏

n=2

Tn =TN · · ·Tn · · ·T2 =
[

a b
c d

]
(10)

where ĒN represents the per-unit-length (pul) voltage drop measured
at the outer surface of the cylindrical structure.

The inhomogeneous structure under analysis can be described
indistinctly by a π-type or by a T-type equivalent circuit. We choose
the T-type — see Fig. 1(a).

Due to the change of variable mentioned before, the load connected
to the output port (representing the inner cylinder of radius r1) is
given, from (4), by

Z̄11 =
Ē1

Ī1
=

Ē1

2πr1H̄1
=

Z̄1

2πr1
=

ωµ1

j2πx1

J0(x1)
J1(x1)

[Ω/m] (11)

The transmission matrix of the T-circuit, shown in Fig. 1(a), is
readily evaluated through

T =
[

1 + Z̄αȲ0 Z̄α + Z̄β + Z̄αZ̄βȲ0

Ȳ0 1 + Z̄βȲ0

]
(12)

Comparison established between (12) and (10) leads to the
determination of the series impedances Z̄α, Z̄β [Ω/m], and shunt
admittance Ȳ0 [Sm],

Z̄α = (a− 1)/c; Z̄β = (d− 1)/c; Ȳ0 = c (13)

At last, the per unit length (pul) internal impedance of
the cylindrical structure Z̄int, which coincides with the input-port
impedance of the equivalent circuit, can be evaluated from

Z̄int =
ĒN

ĪN
= Z̄α +

1

Ȳ0 +
(
Z̄β + Z̄11

)−1 (14)

We would like to emphasize that the equivalence between
the circuit in Fig. 1(a) and the cylindrical structure itself is an
equivalence that strictly speaking only applies to the input port
quantities, ĒN and ĪN . The interior of the equivalent circuit does
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not have any special significance; the evaluation of the frequency-
dependent parameters Z̄α, Z̄β and Ȳ0 may even lead to non-realizable
physical components, for example, they may exhibit negative real
parts.

4. CHAIN CONNECTION OF N − 1 TWO-PORTS

From a practical point of view, the equivalent circuit in Fig. 1(a) is
of very little use, mainly because the resulting circuit elements, Z̄α,
Z̄β and Ȳ0, depend on the operating frequency, that is, whenever the
frequency changes the equivalent circuit in Fig. 1(a) needs to be re-
computed. Nonetheless, the theoretical development that led to the
equivalent circuit in Fig. 1(a) is very helpful, because it can be utilized
for formulating a new equivalent circuit whose intrinsic components
are frequency-independent elements.

The new proposed equivalent circuit is made of the chain
connection of N − 1 two-port networks (T-type), each one
corresponding to an individual layer of small thickness tn = rn− rn−1.

Figure 1(b), which is identical to Fig. 1(a), depicts the two-port
representation of the nth layer, where, from (13),

Z̄αn = (a′n − 1)/c′n; Z̄βn = (d′n − 1)/c′n; Ȳ0n = c′n (15)

Let us start with the evaluation of Ȳ0n . Taking (15), (8), and (3c)
into account we obtain

Ȳ0n = c′n =
jπ2xnx′n

ωµn

(
J1(x′n)N1(xn)− J1(xn)N1(x′n)

)
(16)

Next, the Bessel and Neumann functions J1(x′n) and N1(x′n) are
written in the form of truncated Taylor expansions around xn = k̄nrn{

J1(x′n)
N1(x′n)

}
≈

{
J1(xn)
N1(xn)

}
− δn

d

dx

{
J1(x)
N1(x)

}

x=xn

+
1
2
δ2
n

d2

dx2

{
J1(x)
N1(x)

}

x=xn

(17)
where δn = (xn − x′n) = k̄ntn.

The first and second derivatives in (17) are given by, [12],

d

dx

{
J1

N1

}
=

{
J0−J1/x
N0−N1/x

}
;

d2

dx2

{
J1

N1

}
= −

{
J1+J0/x−2J1/x2

N1+N0/x−2N1/x2

} (18)

Plugging (18) into (17), and (17) into (16), yields

Ȳ0n =
jπ2xnx′n

ωµn
δn

(
1 +

δn

2xn

)
(J1(xn)N0(xn)− J0(xn)N1(xn)) (19)
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But, from Bessel functions theory [12], we know that

J1(xn)N0(xn)− J0(xn)N1(xn) =
2

πxn
(20)

Hence, we find

Ȳ0n ≈
j2πxn

ωµn
δn

(
1− δn

2xn

)
(21)

Taking into account that xn = k̄nrn, δn = k̄ntn, where k̄n is given
by (1), we obtain for the shunt admittance

{
Ȳ0n ≈ j2πrntn

k̄2
n

ωµn
(1−∆n) = G0n + jωC0n

G0n ≈ (2πrntnσn) (1−∆n) ; C0n ≈ (2πrntnεn) (1−∆n)
(22)

where ∆n = 1
2 tn/rn is a small correction factor that may be

disregarded.
Therefore, we conclude that the shunt admittance is made of the

parallel connection of a capacitor and a resistor. The capacitance of
the capacitor is C0n ≈ 2πrntnεn [Fm], and the conductance of the
resistor is G0n ≈ 2πrntnσn [Sm].

Following the same rationale the series impedances Z̄αnand Z̄βn

can be determined.
After some algebra we find for Z̄αn




Z̄αn = a′n−1
Ȳ0n

; a′n = πx′n
2 (J1(x′n)N0(xn)− J0(xn)N1(x′n))

a′n − 1 ≈ −δ2
n

(1−2∆n)
2 = −k̄2

nt2n
(1−2∆n)

2

Z̄αn ≈ jωLαn ; Lαn = µn

4π
tn
rn

(1−∆n)

(23)

Likewise, taking into account that, [12],

d

dx

{
J0

N0

}
= −

{
J1

N1

}
;

d2

dx2

{
J0

N0

}
= −

{
J0 − J1/x
N0 −N1/x

}
(24)

we find for Z̄βn



Z̄βn = d′n−1
Ȳ0n

; d′n = πxn
2 (J1(xn)N0(x′n)− J0(x′n)N1(xn))

d′n − 1 ≈ − δ2
n
2 = − k̄2

nt2n
2

Z̄βn ≈ jωLβn ; Lβn = µn

4π
tn
rn

(1 + ∆n)

(25)

Therefore, from (23) and (25), we conclude that the pul series
impedances Z̄αnand Z̄βnare almost equal, both described by an
inductor whose inductance is Lαn ≈ Lβn ≈ µntn/(4πrn) [H/m].
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Figure 1(c) shows the equivalent circuit of the inhomogeneous
cylindrical structure, described by the chain connection of N − 1 two-
port networks, loaded by the internal impedance Z̄11 pertaining to the
inner homogeneous cylinder of radius r1.

The radius r1 should be chosen in a way such that Z̄11, itself,
may be represented by an association of frequency-independent circuit
elements. For this to be possible we have to ensure that |x1| =∣∣k̄1r1

∣∣ << 1 for the highest frequency ωmax being considered. Taking
(1) into account the following condition will apply

r1 << r1max ; r1max = ω−1
maxµ

−1/2
1

(
ω2

maxε
2
1 + σ2

1

)−1/4 (26)

For r1 << r1max , the result in (11) leads to

Z̄11 =
ωµ1

j2πx1

J0(x1)
J1(x1)

≈ ωµ1

jπx2
1

(
1− x2

1

8

)

≈ 1(
πσ1r

2
1

)
︸ ︷︷ ︸

G1

+jω
(
πε1r

2
1

)
︸ ︷︷ ︸

C1

+ jω
(µ1

8π

)

︸ ︷︷ ︸
L1

(27)

The equivalent circuit of the load, corresponding to the result in
(27), is also shown in Fig. 1(c) — the parallel association of a resistor
and a capacitor in series with and inductor; the impedance of the
parallel association being much larger than the inductor’s contribution.

A wealth of information can be retrieved from the equivalent
circuit in Fig. 1(c).

Step 1) The pul internal impedance Z̄int = Z̄NN = ĒN/ĪN can
be determined using a recursive method, starting with Z̄11 and ending
with Z̄NN :

Z̄11 → Z̄22 → · · · Z̄nn · · · → Z̄N−1,N−1 → Z̄NN
↑︷ ︸︸ ︷

Z̄22 = Z̄α2 + 1

Ȳ02+(Z̄β2+Z̄11)
−1

↑︷ ︸︸ ︷
Z̄NN = Z̄αN + 1

Ȳ0N
+(Z̄βN

+Z̄N−1,N−1)
−1

(28)

From which the pul power losses can be obtained through PJ =
1
2Re

(
Z̄int

) (
ĪN Ī∗N

)
.

Step 2) Given the current intensity ĪN flowing in the cylindrical
structure, the pul voltage drop is obtained: ĒN = Z̄intĪN . The
output currents of the two-port networks are determined iteratively,
beginning with ĪN and ending with Ī1. Concretely, the output current
of the nth T-circuit is obtained from its input-port variables using
Īn−1 = (1− Ȳ0nZ̄αn)Īn− Ȳ0nĒn. After gathering the current intensities
ĪN · · · Īn · · · Ī1, the radial evolution of the azimuthal magnetic field
H̄(r) is obtained: H̄(rn) = Īn/(2πrn) for n ∈ [1, N ].
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Figure 1. (a) Whole structure’s equivalent circuit, where Z̄α, Z̄β and
Ȳ0 are complex functions of the frequency. (b) nth layer’s equivalent
circuit, where Z̄αn , Z̄βn and Ȳ0n are made of frequency-independent
elements. (c) Whole structure’s equivalent circuit, made of the chain
connection of N − 1 two-port networks similar to the one in (b) and
terminated on the load impedance Z̄11. (d) Equivalent circuit, common
to all the layers, for a tubular geometry where σ ∝ 1/r, ε ∝ 1/r and
µ ∝ r.
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Step 3) The pul output voltages of the two-port networks are
determined iteratively, beginning with ĒN and ending with Ē1.
Concretely, the output pul voltage of the nth T-circuit can be obtained
from Ēn−1 = Ēn − Z̄αn Īn − Z̄βn Īn−1. After gathering the pul voltages
ĒN · · · Ēn · · · Ē1, the radial evolution of the axial electric field Ē(r) is
obtained: Ē(rn) = Ēn for n ∈ [1, N ].

5. EXAMPLE OF APPLICATION TO A TUBULAR
STRUCTURE

The application example offered here corresponds to a rather
interesting situation. Consider a solitary inhomogeneous tubular
structure of inner radius r1. The internal cylinder of radius r1 is empty
(σ1 = 0), which means that Z̄11 → ∞ for ω < ωmax (the load of the
equivalent circuit in Fig. 1(c) is practically an open circuit).

In general, the two-port networks that make up the equivalent
circuit are different from layer to layer. However, from (22), (23) and
(25), it can be concluded that there is a particular situation when the
T-circuits turn to be equal. In fact, by enforcing the conditions

∀n > 1 :





rnσn = rNσN = rσ(r) = invariant
rnεn = rNεN = rε(r) = invariant
µn/rn = µN/rN = µ(r)/r = invariant
tn = ∆r = (rN − r1)/(N − 1) = invariant

(29)

we get

G0n ≈ 2πrNσN∆r, C0n ≈ 2πrNεN∆r, Lαn ≈ Lβn ≈
µN

rN

∆r

4π
(30)

for 1 < n ≤ N .
Therefore, each and every T-circuit is approximately characterized

by the following shunt admittance and series impedance (see Fig. 1(d)):

Ȳ ∆r ≈ (2πrN (σN + jωεN ))︸ ︷︷ ︸
G+jωC

∆r, Z̄
∆r

2
≈ jω

(
µN

2πrN

)

︸ ︷︷ ︸
L

∆r

2
(31)

5.1. Transmission Line Model

The representation in Fig. 1(d) resembles the equivalent T-circuit
corresponding to a uniform transmission line of infinitesimal length
∆r, without longitudinal losses but with transverse losses [13]. Such
a transmission line would be described by a complex propagation
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constant γ =
√

Z̄Ȳ , and by a complex characteristic wave impedance
Zw =

√
Z̄/Ȳ [13],

γ =
√

jωµN (σN + jωεN ); Zw =
1

2πrN

√
jωµN

σN + jωεN
(32)

Hence, the chain connection of N − 1 identical two-port networks
corresponding to the tubular structure with N − 1 layers (N >>1),
loaded by Z̄11 →∞, can be interpreted as a uniform transmission line
of finite length l ≡ rN − r1, terminated on an open circuit load. The
voltage and current evolutions along this “uniform transmission line”
are given by well known results, from transmission line theory [13]:

Ē(y)=
Ēy=0

1 + Γ̄
(
eγy + Γ̄e−γy

)
; Ī(y) =

Ēy=0

Zw(1 + Γ̄)
(
eγy − Γ̄e−γy

)
(33)

where y ≡ r − r1, and the load reflection coefficient is Γ̄ = 1 for an
open line. Therefore, (33) transforms into

Ēn =Ē1 cosh (γ(rn − r1)) ; Īn =
Ē1

Zw
sinh (γ(rn − r1)) (34)

for n ∈ [1, N ].
The input impedance of the transmission line, which is to be

identified with the pul internal impedance of the tubular conductor,
is given by Z̄input = ĒN/ĪN = Z̄int = Zw coth(γl); taking (34) into
account we may write

Z̄int =

(
1

2πrN

√
jωµN

σN +jωεN

)

︸ ︷︷ ︸
Zw

coth(
√

jωµN (σN +jωεN )︸ ︷︷ ︸
γ

(rN−r1)) (35)

The rationale for the results in (34)–(35) was based on the
properties of the equivalent circuit developed in Sections 3 and 4.
Based on direct integration of Maxwell equations, employing the
magnetic vector potential as primary field, a purely theoretical
validation of (34)–(35) is offered in Appendix A. With that validation,
sound evidence is provided concerning the consistency of the equivalent
circuit in Fig. 1(c).

5.2. Numerical Results and Discussion

For illustration purposes consider a solitary inhomogeneous tubular
conductor characterized by the following data: rN = 4mm, r1 = 2mm,
σN = 5× 106 S/m, µN = 2µ0, and satisfying (29).
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In a good conductor the displacement current can be neglected
up into the optical frequency range, [13], therefore, the term ωεN will
be disregarded. Consequently, the results in (31) lead to: Ȳ = G ≈
2πrNσN = 125.7 kS; Z̄ = jωL; L ≈ µN/(2πrN ) = 0.1mH.

A useful parameter for the analysis of skin effect phenomena in
conducting materials is the skin depth δskin = (πfµNσN )−1/2, which,
in this example, is a radially invariant parameter. Taking into account
the values assigned to µN and σN we get

δskin =
ξ√
f

; ξ = 0.159 ms−1/2 (36)

Next, the pul internal impedance of the tubular conductor was
computed using (28), from the equivalent circuit approach, which leads
to a finite continued fraction [14], with N terms

Z̄int(ω) = jωL
∆r

2
+

1

G∆r +
1

jωL∆r +
1

G∆r +
1
...

jωL∆r+
1

G∆r

(37)

The accuracy of (37) depends on the number N of terms involved
in the continued fraction, that is, depends on the number of chained
T-circuits that make up the equivalent circuit in Fig. 1(c). In fact, the
validity of the truncated Taylor expansions utilized in Section 4 (see
eqn (19)) requires that |δn| =

∣∣k̄∆r
∣∣ << 1 or, in other words

N >> (rN − r1) /δskin → N >> 12.57× 10−3
√

f [Hz] (38)

The higher the frequency the larger the number of two-port
networks necessary.

For example, for f = 0.1MHz, we must have N>>4. We chose
N = 40.

Figure 2 shows computation results for the pul internal impedance,
Z̄int = R(ω) + jX(ω), for a frequency sweeping from 0 to 0.1 MHz.
Circle marks correspond to the equivalent circuit approach (Eqn. (37)),
whereas the solid lines correspond to the exact theoretical result in
(A14). The agreement is remarkable.

Setting ĪN =1A, and following the procedure outlined at the end
of Section 4 (steps 2 and 3) we have also computed the voltages and
currents at the successive ports of the equivalent circuit. Next, that
information being accounted, we plotted the radial variation of the
absolute values of the electric and magnetic field strengths, En, Hn,
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for n ∈ [1, N ], with N = 40. The corresponding results, identified
by circle marks, are shown in Fig. 3 and Fig. 4, where, in addition,
and for comparison purposes, the exact theoretical results from (A10)
and (A11) are also represented (solid lines). The graphical plots
depicted in Fig. 3 and Fig. 4 were obtained for f = 0.1 kHz and
f = 0.1 MHz. Again, the agreement between exact and approximate
results is remarkable.
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Figure 2. Real and imaginary parts of the per-unit-length internal
impedance against frequency in the range 0 to 0.1MHz. Solid lines are
theoretical curves from (A14). Circle marks were obtained using the
equivalent circuit approach, with N = 40.
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6. CONCLUSION

Inhomogeneous structures find application in many areas from
microwaves to power systems. In this work attention was paid to
radially inhomogeneous cylindrical structures, where the constitutive
medium can be a conductor, a dielectric, a magnetic material, or a mix
of all them.

An equivalent circuit consisting in a cascade of N two-port
networks (T-type), with frequency-independent R, L and C elements,
was proposed to accurately simulate the behavior of inhomogeneous
structures. The accuracy of the developed model is as higher as wished,
since it only depends on the number of T-circuits being employed —
such a number typically increases with the square-root of the frequency.
The presented approach permits not only the computation of the per-
unit-length internal impedance of the solitary cylindrical structure, but
also the evaluation of the radial variations of the electric and magnetic
fields inside the structure. The equivalent-circuit model was validated
by resorting to an application example of an inhomogeneous tubular
conductor, characterized by µ ∝ r and σ ∝ 1/r, for which simple, but
exact, closed-form solutions are available.

Inhomogeneous solitary cylindrical structures were dealt with here
and in [2]. However, ordinary real structures do include more than
one cylinder, like, for example, multilayered conductors belonging to
multiconductor cables. In the latter case skin and proximity effects
are interlinked. Their analysis, in the framework of inhomogeneous
structures, is suggested for future work.

APPENDIX A.

Radially inhomogeneous cylindrical structures have been analyzed in
a recently published paper [2], where from

{ ∇× H̄ = (σ + jωε)Ē
∇× Ē = −jωµH̄ →




∇2Ā + k̄2Ā = 0
Ē = −jωĀ
H̄ = ∇× Ā/µ

an equation for the complex amplitude of the axial magnetic vector
potential A was obtained

r2 d2Ā

dr2
+

(
1− r

µ(r)
dµ(r)

dr

)
r
dĀ

dr
+

(
r k̄(r)

)2
Ā = 0 (A1)

where k̄2(r) = −jωµ(r) (σ(r) + jωε(r)), for r1 <r <rN .
The evaluation of Ā(r) on the cylinder’s outer radius, r = rN ,

permits the determination of the pul internal impedance of the
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structure

Z̄int =
ĒN

ĪN
=
−jωĀ(rN )

ĪN
(A2)

where ĪN is the structure’s total current intensity, and ĒN = Ē(rN ).
Considering that the radial variations of ε(r), σ(r), and µ(r) are

such that (A1) can be transformed into an Euler-Cauchy equation [15],
a general closed-form analytical solution for the magnetic vector
potential in the form of a sum of two complex powers of r was obtained
in [15]. Here, however, we offer a new, simpler, particular solution for
(A1), which can be expressed in terms of two exponential functions.

Let

1− r

µ(r)
dµ(r)

dr
= 0 → µ(r) = µN

(
r

rN

)
(A3)

Next, consider that k̄ is radially invariant, which requires{
σ(r)
ε(r)

}
=

rN

r

{
σN

εN

}
→ k̄2 = −jωµN (σN + jωεN ) (A4)

Plugging (A3) and (A4) into (A1) leads to the trivial equation
d2Ā

dr2
+ k̄2Ā = 0 (A5)

whose solution is
Ā(r) = A1 eγr + A2 e−γr (A6)

where γ, the so-called complex propagation constant, is given by
γ = jk̄ =

√
jωµ(r) (σ(r) + jωε(r)) =

√
jωµN (σN + jωεN ) (A7)

The azimuthal magnetic field, associated to A, is obtained from

H̄(r) = − 1
µ(r)

d

dr
Ā(r) =

−γ

µ(r)
(
A1 eγr −A2 e−γr

)
(A8)

By enforcing the boundary conditions at the inner (r = r1) and
outer (r = rN ) radius of the solitary tubular cylindrical structure,
i.e., H̄(r1) = 0 and H̄(rN ) = ĪN/(2πrN ), a solution for the complex
constants A1 and A2 is found{

A1

A2

}
=
−µN ĪN

4πrNγ
× 1

sinh (γ(rN − r1))
×

{
e−γr1

e+γr1

}
(A9)

Plugging (A9) into (A6), and into (A8), gives the electric and
magnetic field radial variations inside the inhomogeneous tubular
structure

Ē(r) = −jωĀ(r) =
jωµN ĪN

2πrNγ
× cosh (γ(r − r1))

sinh (γ(rN − r1))
(A10)

H̄(r) =
ĪN

2πr
× sinh (γ(r − r1))

sinh (γ(rN − r1))
(A11)
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The pul internal impedance of the structure, (A2), is determined
by making r = rN in (A10), yielding

Z̄int =
jωµN

2πrNγ
coth (γ(rN−r1))=

1
2πrN

√
jωµN

σN + jωεN
coth (γ(rN−r1))

(A12)
If the cylindrical structure is made of a good conducting medium,

where ωε << σ, then (A7) and (A12) can be simplified

γ =
√

jωµNσN =
1 + j

δskin
(A13)

Z̄int =
1 + j

2πrNσNδskin
coth

(
(1 + j)× rN − r1

δskin

)
(A14)

where δskin is the skin effect penetration depth, δskin =√
2/(ωµNσN ) [13].
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