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Abstract—Over the past ten years, Ultra Wideband (UWB) Radar
has been widely investigated as a biomedical imaging modality, used
to detect early-stage breast cancer and to continuously monitor vital
signs using both wearable and contactless devices. The advantages of
the technology in terms of low-power requirements and non-ionising
radiation are well recognised, with the technology being applied to
a range of non-invasive medical applications, from respiration to
heart monitoring. Across all these applications, there is a strong
necessity to efficiently manage the large quantities of UWB data which
will be captured. For wearable devices in particular, the efficient
compression of UWB data allows the monitoring system to conserve
limited resources such as memory and battery capacity, by reducing
data storage and in some cases transmission requirements. In contrast
to lossless compression techniques, lossy compression algorithms can
achieve higher compression ratios and consequently greater power
savings, at the expense of a marginal degradation of the reconstructed
signal. This paper compares the lossy JPEG2000 and Set Partitioning
In Hierarchical Trees (SPIHT) algorithms for UWB signal compression.
This study examines the effects of lossy signal compression on an UWB
breast cancer classification algorithm. This particular application was
chosen because the classification algorithm relies heavily on shape
and surface texture detail embedded in the Radar Target Signature
(RTS) of the tumour, and therefore will provide both a robust and
easily quantifiable test platform for the compression algorithms. The
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study will evaluate the performance of the classification algorithm as a
function of Compression Ratio (CR) and Percentage Root-mean-square
Difference (PRD) between the original and reconstructed UWB signals.

1. INTRODUCTION

Ultra Wideband (UWB) Radar is one of the most promising emerging
imaging modalities. UWB imaging and monitoring is based on the
detection of reflected UWB signals from tissue-boundaries within
the human body. These boundaries reflect UWB signals due to
difference in dielectric properties between these various constituent
tissues at microwave frequencies. The wide frequency-spectrum of
the UWB signal means they are relatively robust to interference,
while also allowing for very fine spatial resolution, making the
technology ideal breast cancer detection and classification [1–17],
heart and respiration monitoring [18–21]. Furthermore, UWB Radar
uses low-power non-ionising radiation and is therefore a safe method
for imaging and continuous monitoring. However, many UWB
monitoring devices generate large quantities of data and therefore
bio-signal data compression will be an important means of power
conservation in wearable UWB monitoring systems. Approaches to
dealing with this data generally fall into two broad categories: Storage
or transmission. Storage implies saving the information locally on
the device, while transmission removes the need for large amounts
of local storage, but requires an integrated wireless transmitter to
facilitate data communication to a central location. An essential
advantage of transmission is that an immediate clinical response can
be initiated. Transmission, however, is expensive from a power-
perspective and battery-life consequently suffers. A wireless sensor
network for ambulatory health monitoring is described in [22], where
the authors state that “95% of the sensor’s power consumption can
be attributed to wireless communications”. With this in mind, data
compression algorithms should be examined to reduce the amount
of UWB information to be transmitted/stored, considerably reducing
the power and memory requirements of ambulatory UWB devices in
particular.

There are two main types of compression algorithm: lossless and
lossy. Lossless compression can achieve perfect reconstruction of the
compressed data. While this is a desirable objective, it limits the
Compression Ratio (CR), and hence the power/memory savings that
can be attained. Conversely, lossy compression does not allow for
perfect reconstruction of the data, but has the advantage that much
higher CRs can be obtained. Therefore, it is desirable to use a



Progress In Electromagnetics Research, Vol. 117, 2011 53

compression algorithm which maximises CR, while also maximising
signal fidelity. JPEG2000 [23] and Set Partitioning In Hierarchical
Trees (SPIHT) [24] are state of the art compression algorithms, which
encode Discrete Wavelet Transform (DWT) output coefficients into a
binary stream. The DWT provides good localisation of the signal’s
energy components from both a time and frequency perspective.
The DWT coefficients therefore represent the signal’s energy more
compactly than the original representation. JPEG2000 and SPIHT
efficiently encode DWT coefficients into a binary stream suitable for
transmission or storage. This paper compares the JPEG2000 and
SPIHT algorithms for UWB signal compression.

In order to quantitatively examine the performance of these
compression algorithms on UWB signals, the JPEG2000 and SPIHT
algorithms are applied to UWB signals used for breast cancer
classification. The reasons that these signals were chosen as a
test platform for the compression algorithms are twofold: firstly,
tumour classification algorithms rely on shape and surface-texture
information embedded in the Radar Target Signature of the tumour,
and therefore the classification algorithm is very sensitive to errors in
the signal reconstruction process; secondly, the classification accuracy
provides a easily quantifiable measure to evaluate the performance
of the compression algorithms. This study looks at the compression
performance of each algorithm, both in terms of reconstructed signal
fidelity at a particular CR and the percentage accuracy of the
tumour identification classifier with varying degrees of compression.
Signal fidelity is quantified by the Percentage Root-mean squared
Difference (PRD) between original and reconstructed signals. The
remainder of the paper is organised as follows: Section 2 describes
both the JPEG2000 and SPIHT compression algorithms; Section 3
describes the simulation setup, while Section 4 presents the results
and corresponding conclusions.

2. COMPRESSION ALGORITHMS

Transform-based compression involves projecting a signal onto a
suitable basis, before the projected coefficients are compressed and
encoded. This projection allows the data to be expressed much
more concisely than in its original form. The Fourier and Discrete
Cosine transforms employ stationary waveforms as basis functions.
Alternatively, the DWT employs non-stationary waveforms as basis
function to extract both time and frequency information from a
signal [25]. JPEG2000 and SPIHT are state of the art compression
algorithms, which encode DWT output coefficients into a binary
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stream, for transmission or storage.

2.1. Discrete Wavelet Transform (DWT)

The DWT [26, 27] expresses a signal as a weighted sum of basis
functions. These bases are composed of dilated and translated versions
of a function, known as the mother wavelet. This transformation
(projection of the original signal onto the basis functions) produces
an alternative representation of the original signal, expressed as
coefficients of the set of basis functions. The mother wavelet is
translated and varied in scale to extract both time and frequency
information from the signal. Basis functions associated with large
scales extract low-frequency information from the signal, while small
scales extract high-frequency or fine-detail components. The DWT
coefficients cm,k are defined as the inner product of the original signal
x(n) and the selected basis functions ψm,k, where m controls the
wavelet’s scale and k controls the wavelet’s translation (1).

cm,k = 〈x(n), ψm,k〉 (1)

These wavelet coefficients provide an alternative representation of
the original signal, giving good localisation of the signal’s energy
components from both a time and frequency perspective. An efficient
implementation of the DWT for discrete-time signals consists of
recursive decomposition of the original signal using quadrature mirror
low-pass and high-pass filters [28]. Following filtering and decimation
of the filters’ outputs by a factor of two, the process of low and high-
pass filtering is reapplied in a cascaded fashion to the decimated output
of the low-pass filter. An interesting by-product of recursive wavelet
decomposition is the temporally oriented tree structure produced,
when each of the levels of the detail coefficients are arranged in order
of frequency. A single coefficient in one layer corresponds temporally
to two coefficients in the next layer, as a result of the downsampling
employed. These temporal relationships are illustrated by arrows in
Figure 1. The higher layers in this temporal tree contain more low-
frequency information. Since most of a signal’s energy is usually
focused in the low-frequency end of the spectrum, coefficients generally
decrease in magnitude from top to bottom within the tree. It is these
temporal and magnitude relationships between coefficients that are
exploited by wavelet compression algorithms, such as SPIHT.

2.2. Set Partitioning in Hierarchical Trees (SPIHT)

SPIHT is a state-of-the-art wavelet-based compression algorithm,
originally proposed by Said and Pearlman [24]. The SPIHT algorithm
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Figure 1. The DWT output arranged in a temporally oriented binary
tree structure.

operates on the temporally oriented binary hierarchical wavelet tree
(Figure 1), and benefits from the fact that coefficients generally
decrease in magnitude from top to bottom. SPIHT scans the wavelet
tree progressively according to a threshold t, which is initially selected
according to (2). This threshold is reduced by a factor of 2 at each
iteration of the algorithm.

t0 = 2blog2(max(i) |Ci|)c (2)

SPIHT maintains wavelet coefficients in three lists, known as the List
of Insignificant Points (LIP), the List of Insignificant Sets (LIS) and
the List of Significant Points (LSP). The SPIHT algorithm recursively
performs two passes of these coefficients at each threshold in order to
encode the wavelet information. The first pass, known as the sorting
pass, assigns each coefficient to a list depending on the coefficient’s
significance. A coefficient can either be significant, insignificant or
part of an insignificant set.

Following the step of sorting the coefficients into their respective
lists, the second pass, known as the refinement pass compares
coefficients on the LSP to the threshold, and outputs a single bit
depending on their significance. As the bits are ordered by importance
(with the most significant bits encoded first), the encoder can
terminate encoding at any point. This ability to gradually reconstruct
an encoded signal using a partial bit-stream is known as embedded
encoding. This approach allows for exact bit-rate control and means
that the signal can be reconstructed to a deterministic fidelity at the
decoder, using the transmitted bit-stream.
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2.3. JPEG2000

JPEG2000 is a transform-based compression algorithm, intended for
both lossless and lossy compression of images. JPEG2000 Part 1 was
ratified by the Joint Photographic Experts’ Group in 2000 [29] and was
designed to replace the older JPEG file format with more advanced
features, including: superior low bit-rate performance, lossless and
lossy compression and good error-resilience [23]. Part 1 of the
JPEG2000 standard includes the specifications for the core coding
system. These core components include: Discrete Wavelet Transform
(DWT), Quantisation and an Arithmetic Coder.

In addition to the core elements of the JPEG2000 Part 1 Standard,
a thresholding step similar to that used in [30], is incorporated in
this research to increase compression gains. This thresholding step
is performed following quantisation. Coefficient values below the pre-
selected threshold are deemed “insignificant” and are set to zero. The
greater the number of coefficients with the same value, the more
efficiently the AC can encode them and thus; the CR and accuracy
of the reconstructed signal may be controlled.

A static Probability Density Function (PDF), constructed at
different thresholds over the entire UWB database, is employed to
encode each frame. The PDF is centred about zero, with the number
of zero coefficients rising as the threshold increases.

3. SIMULATION SETUP

In this section, the Gaussian Random Spheres method, used to model
the shape and surface texture of tumours is described, before the
Finite-Difference Time-Domain (FDTD) method used to simulate the
propagation and reflection of UWB signals in the breast is presented.
Finally, the compression preprocessing and performance metrics are
also described.

3.1. Gaussian Random Spheres & FDTD model

Tumours present different physical characteristics based on their
nature, i.e., whether they are benign or malignant. The most relevant
features from the perspective of UWB imaging are size, shape and
texture of surface, as these are characteristics that most significantly
influence the RTS of tumours. Benign tumours typically have
smooth surfaces and have spherical, oval or at least well-circumscribed
contours. Conversely, malignant tumours usually present rough and
complex surfaces with spicules or microlobules, and their shapes are
typically irregular, ill-defined and asymmetric [31]. Shape and texture
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of the surface of a tumour are the two most important characteristics
that will help differentiate between a benign and a malignant tumour.
The tumour models are based on the Gaussian Random Spheres (GRS)
method [32, 33]. GRS can be modified mathematically to model both
malignant and benign tumours by varying the mean radius α and the
covariance function of the logarithmic radius. The shape is determined
by the radius vector, r = r(θ, ψ), which is described in spherical
coordinates (r, θ, ψ) by the spherical harmonics series for the logradius
s = s(θ, ψ):

r(θ, ψ) = α exp
[
s(θ, ψ)− 1

2
β2

]
(3)

s(θ, ψ) =
∞∑

l=0

l∑

m=−l

slmYlm(θ, ψ) (4)

In the equations above, β is the standard deviation of the logradius, slm

are the spherical harmonics coefficients and Ylm are the orthonormal
spherical harmonics. Three different tumour models at two different
sizes are considered in this paper. Malignant tumours are represented

(a) (b)

(c)

Figure 2. (a) Benign, (b) macrolobulated, and (c) malignant tumour
model.
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by spiculated and microlobulated GRS, whereas benign tumours are
modelled by smooth GRS. Microlobulated and smooth GRS are
obtained by varying the correlation angle from low to high. Spiculated
GRS are obtained by adding 3, 5 or 10 spicules to smooth GRS. The
average radius of all types of spheres are 2.5 and 7.5mm. Between all
sizes and shapes, the number of tumour models developed was 190. A
sample of each of the types tumour models is shown in Figure 2.

The tumours are placed in a 3D Finite-Difference Time-Domain
(FDTD) model. The FDTD model has a 0.5 mm cubic grid resolution
and the backscattered signals were generated through a Total-
Field/Scattered-Field (TF/SF) structure, in which the tumours are
completely embedded in the Total Field (TF) [34]. The TF/SF region
has the following dimensions: the Scattered Field (SF) is a square
geometric prism with square bases measuring 153.5 mm on the side
and the height measuring 137.5mm. The TF is located at the centre
of the SF and is represented by a 50mm-sided cube (the origin of
the SF and the TF are at the point (0, 0, 0) mm). The dielectric
properties of both adipose and cancerous breast tissue are incorporated
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Figure 3. Cross-section of the 3D FDTD space lattice partitioned
into Total Field (TF), Scattered Field (SF) and UPML regions, for a
homogeneous breast model. The target, a spiculated tumour located
at the centre of the TF in this example, is illuminated by a pulsed
plane wave propagating in the +z direction (represented by a dark
line) and backscatter is recorded at the first observer location: (0, 0,
−74)mm (represented by a filled circle). All four observation points
are represented by small circles in the image.
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using a Debye model, based on the dielectric properties established
by Lazebnik et al. The TF/SF region is terminated with a 6 mm-
layer Uniaxial Perfectly Matched Layer (UPML) which suppresses any
boundary reflections [35].

A pulsed plane wave is transmitted towards the target from
four different equidistant angles (0, 90, 180 and 270◦) and the
resulting cross-polarised backscatter is recorded and analysed from
four observation points located at: (0, 0, −74), (−74, 0, 0), (0,
0, 74) and (74, 0, 0) mm in (x, y, z) axes. The incident pulse is
a modulated Gaussian pulse with center frequency at 6 GHz where
the 1/e full temporal width of the Gaussian envelop was 160 ps. For
two transmitters, the pulse is linearly polarised in the x-y plane and
transmitted in the z direction, and for the remaining transmitters, the
pulse is polarised in the y-z plane and transmitted in the z direction.
Each observation point is located in the Scattered Field at a distance
of 74 mm from the center of the tumour, which is located at the
centre of the Total Field. The acquired backscattered recorded signals
are then downsampled from 1200GHz to 75GHz. Figure 3 shows a
representation of the TF/SF grid, with the location of the origin of
the first incident plane wave and respective observer point as well as
the position of the tumour.

3.2. Preprocessing

A total of 190 tumour models were considered (95 of size 2.5 mm and
95 of size 7.5 mm). Within that group, there were 95 type 1 tumours
(malignant), 47 type 2 tumours (macrolobulated benign) and 48 type
3 tumours (smooth benign). In order to extract the most relevant
features for classification, Principal Component Analysis (PCA) is
applied to the backscattered signals.

As a first step in UWB signal compression, a 7-level DWT
decomposition (using the CDF 9/7 biorthogonal wavelet [36]) was
employed, since it was observed to concentrate the signal’s energy in
the fewest number of wavelet coefficients. Following transformation,
wavelet coefficients are quantised to a signed 11-bit resolution, using
a standard integer quantisation method and then passed to the two
compression algorithms under investigation. SPIHT is implemented
as described in [37]. The embedded SPIHT bit-stream is truncated
to provide reconstructions at compression ratios ranging from 2 to 70.
The JPEG2000 thresholding step, described above, is performed for
threshold values ranging from zero to 360.

Next, a direct “tumour-type” classifier, based on Support
Vector Machines (SVM), classifies each tumour as either benign or
malignant. Similar tumour classifiers have been previously examined
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by Conceicao et al. [15]. In order to evaluate the SVM classifier, the
entire data-set is randomly shuffled and divided into 75%-25% training
and test groups respectively. This classification process is repeated 10
times and the average performance of each classifier is calculated. The
classification performance is then evaluated across a range of different
CRs. The performance metrics are described in Section 3.3.

3.3. Metrics

Evaluation of the compression algorithms is based upon three metrics:
• Compression Ratio (CR)
• Percentage Root mean square Difference (PRD)
• Classifier Accuracy

The CR describes the compression algorithms’ efficiency in represent-
ing the original data. The CR for each UWB frame is calculated as:

CR =
Frs ∗Qo

b
(5)

where Frs refers to the frame size used for performing compression (512
samples), Qo refers to the quantisation applied to the original signal
during sampling (16 bits) and b is the number of bits representing the
compressed signal.

With regard to signal fidelity, the quality of compression is
dictated by the reconstructed signal’s similarity to the original. The
measure of distortion is quantified by employing the PRD measure
(6) [38]. PRD is calculated by expressing the difference between
original and reconstructed signals, relative to the original signal’s
mean, as follows:

PRD =
||xo − xr||
||xo|| (6)

where xo and xr are the original and reconstructed signals, respectively,
and ||x|| represents the Euclidean or L2 norm of x. Finally, the
Classifier Accuracy is a measure (expressed as a percentage) of the total
number of tumours correctly classified as either benign or malignant.

4. RESULTS & CONCLUSIONS

UWB signal compression algorithms could potentially be used in
the development of a variety of UWB systems, ranging from breast
cancer detection and classification, to vital sign monitoring, and
early warning systems for Sudden Infant Death Syndrome. In order
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Figure 5. Plot of Classifier Ac-
curacy versus PRD for JPEG2000
and SPIHT.

to investigate the effect of UWB signal compression, the SPIHT
and JPEG2000 compression algorithms are applied to the UWB
data at varying CRs before the reconstructed signals are classified.
As a baseline, the Classification Accuracy before compression was
established and found to be 89.16%. Classification Accuracy versus
CR for both JPEG2000 and SPIHT is shown in Figure 4. Results
indicate that CRs of up to 20 are achievable using SPIHT and up to
15 using JPEG2000 while still maintaining a classification accuracy
of above 80%. Beyond these CRs, classifier performance degrades.
This is an interesting result considering that tumour classification,
which relies on fine shape detail, can be performed with 1

20th of
the original data. Although both algorithms are comparable in
maintaining signal fidelity at low CRs, SPIHT outperforms JPEG2000
in achieving a lower PRD (reconstruction error) at higher CRs
(above 20). SPIHT thereby retains more diagnostically relevant
information than JPEG200 for a given CR. This is because SPIHT
employs an embedded encoding scheme, whereby the most relevant
information is contained at the beginning of the bitstream. This
contrasts with JPEG2000 where no such prioritisation of information
is employed. SPIHT’s progressive ordering of information means that
information is represented more concisely as CR increases. In addition,
JPEG2000 has an added transmission overhead, associated with the
PDF employed for encoding. With JPEG, the entire set of coefficients
must be encoded in the message while SPIHT only encodes the most
relevant information within the bits allocated.

While CR vs. Classification Accuracy allows a compression
comparison of both algorithms, it does not inform on the PRD
that can be tolerated by the classification algorithm. Figure 5
illustrates Classifier Accuracy versus PRD for both JPEG2000 and
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SPIHT. Both algorithms exhibit similar PRD trends reflecting that
loss (PRD error) is introduced by each compression approach in a
similar fashion. JPEG2000 employs an implicit thresholding step to
increase the efficiency of the arithmetic encoder, while SPIHT employs
a progressively decreasing threshold which governs the transmission of
coefficients. Figure 5 indicates that clinically relevant information is
preserved in UWB signals, allowing for classification accuracy above
80% for PRDs of up to 15%. This PRD range relates to an application
where fine details in the UWB signal contain information on a tumour’s
shape and size.

The SPIHT algorithm encodes wavelet coefficients in order of
their magnitude so that larger coefficients are prioritised over small
coefficients. Smaller coefficients are therefore only transmitted if the
target transmission bit-rate allows. Similarly, JPEG2000 performs
compression by setting coefficients whose magnitudes are below a
threshold to zero, thereby increasing the efficiency of the arithmetic
encoder (by reducing the number of discrete symbols that must be
encoded). With UWB, like many other real world signals, most of
the signal’s energy is contained in the low frequency part of the
spectrum. Consequently the majority of large wavelet coefficients
represent the low-frequency portion of the signal. Since JPEG2000 and
SPIHT prioritise the transmission of large coefficients, the net effect
of compression is that smaller high-frequency signal components are
suppressed. By varying the compression ratios at which JPEG2000
and SPIHT are applied, it is possible to identify the compression
algorithms’ tolerance for removing smaller, mainly high-frequency,
coefficients.

Future work will investigate the application of compression to
applications which are not so sensitive to the shape but rather the
energy of the signal.
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