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Abstract—While a radar target is illuminated under the condition
of spherical wave, two-dimensional ISAR image can be obtained in
near field, and the wavefront curvature must be compensated. A
novel two-dimensional mathematical model is set up, and a 2D-
ESPRIT super-resolution algorithm based on matrix pencil is applied
to estimate the accurate locations of the scattering centers in near
field. Numerical simulations are conducted in different distances as
well as with different SNRs. It is proved that the method can revise
the spherical wavefront curvature with a high accuracy. Finally, near
field ISAR imaging experiments were done outdoor, and raw data
were processed with this super-resolution method, which verify that
2D-ESPRIT algorithm based on matrix pencil can compensate the
spherical wavefront curvature effectively in near field.

1. INTRODUCTION

High-resolution radar techniques have led to much more advanced
radar capabilities in gathering information on the fine features of
a target. Radar targets imaging is of great value for multiple
scattering centers extraction and characteristics measurements [1].
Conventionally, two-dimensional imaging has been implemented in
far field. Nevertheless, targets will be illuminated by spherical wave
in many cases, which is so called near field imaging. So spherical
wavefront curvature must be compensated in precise measurements.

In last two decades, some procedures have been developed to deal
with this problem. The wavefront curve is presented in near field in [2].

Received 27 March 2011, Accepted 5 May 2011, Scheduled 24 May 2011
* Corresponding author: Weidong Hu (hoowind@bit.edu.cn).



132 Hu et al.

A planar near-field measurement for far-field RCS determination is
presented in [3]. Spherical wave near-field radar imaging techniques
are used to extract far-field RCS in [4]. High order ESPRIT method is
used to estimate near filed source in [5]. The fast cyclical convolution
is firstly used for computing the near-field image in [6]. However, there
exist some errors for all kinds of methods.

In the same time, super-resolution algorithms, especially Esprit
methods, have been widely used in estimations of directions of
arrival [7–9]. It also can be applied to the estimation of scattering
centers. In this paper, a new mathematical model is set up for near-
field ISAR imaging. A 2D-ESPRIT super-resolution algorithm based
on matrix pencil is applied to estimate the accurate location of near-
field multiple scattering centers. Numerical simulation is conducted
under variable distance condition, and three extinguishers imaging
experiment is done outdoor. Both prove that this method can revise
the near-field problem effectively.

2. MATHEMATICAL MODEL OF SPHERICAL WAVE
IMAGING

The geometry of the turntable target imaging is illustrated in Fig. 1, in
which a target consists of independent and non-directional scattering
centers, and its scattering reflectivity is g (x, y) with coordinate (x, y).
After it is rotated by a scan angle θ, the coordinate is changed to
(u, v). The imaging radar is located in the near field of the target, so
there exits spherical wavefront curvature. The measurement waveform
is supposed stepped frequency signal, and the wide effective bandwidth
can result in high range resolution.

Suppose that g(x, y) is the scattering function of a target. The
relation of the coordinates (u, v) and (x, y) is{

u = x cos θ + y sin θ
v = −x sin θ + y cos θ

(1)
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Figure 1. Geometrical parameters of the turntable situation.
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{
x = u cos θ − v sin θ
y = u sin θ + v cos θ

(2)

The scattered field z (k, θ) can be given by:

z(k, θ) =
∫∫

D

g(x, y)
exp(−j2πkRθ)

R2
θ

dxdy (3)

In this formula, there is

Rθ =
√

(R0 + u)2 + v2 =
√

R2
0 + ρ2 + 2R0ρ cos(ϕ− θ) (4)

and R0 is the range from the radar antenna to the rotation center.
k = 2f/c is the spatial frequency, f = f0 + n∆f , and ∆f is the
frequency step.

Rθ can be represented by Taylor series

Rθ ≈ R0 + ρ cos(ϕ− θ) +
ρ2 sin2(ϕ− θ)

2[R0 + ρ cos(ϕ− θ)]

= R0 + x cos θ + y sin θ +
(y cos θ − x sin θ)2

2(R0 + x cos θ + y sin θ)
(5)

According to the condition of small angle in ISAR imaging, here Rθ

can be simplified as

Rθ = R0 + x + yθ +
y2 − 2xyθ

2(R0 + x)
(6)

It can be deduced step by step

R2
θ ≈

(
R0 + x +

y2

2R0 + 2x

)2

(7)

If the radar signal is step frequency signal, there is
k = k0 + n∆k (∆k ¿ k0), n = 0, 1, . . . N − 1.

θ = m∆θ, m = 0, 1, . . . M − 1.

suppose that there are p scattering points, p < m, p < n, the scattering
function can be represented by Taylor series as

z(n∆k, m∆θ) =
P−1∑

p=0

g(xp, yp)∆x∆y/

(
R0 + xp +

y2
p

2R0 + 2xp

)2

· exp[−j2π(k0 + n∆k)R0] · exp

[
− j2π (k0 + n∆k)

·
(

xp +
y2

p

2R0 + 2xp

)]
· exp

[
−j2πk0m∆θ

(
yp − xpyp

R0 + xp

)]
(8)

This is the near-field two-dimensional imaging mathematical model.
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3. 2D-ESPRIT ALGORITHM BASED MATRIX PENCIL

Based on the two-dimensional imaging mathematical model, super-
resolution methods are taken into account to deal with the near-
field scattering centers extraction. A 2D-ESPRIT algorithm has
the capability of wavefront compensation while spherical wave
illuminating.

We can suppose these functions as

z′(n,m) = z(n∆k,m∆θ) exp[j2π(k0 + n∆k)R0]

x′p = xp +
y2

p

2R0 + 2xp
, y′p = yp − xpyp

R0 + xp

(9)

So (8) can be changed to

z′(n,m) =
P−1∑

p=0

g(xp, yp)/(R0 + x′p)
2 · exp

(−j2πk0x
′
p

)

· exp
(−j2πn∆kx′p

) · exp
(−j2πk0m∆θy′p

)
(10)

There exists a stable phase between these matrices,

z′(n, m), z′(n + 1,m), z′(n,m + 1)

Now three subspace matrices X, Y, Z can be divided from the original
data matrix.

According to the theory of Esprit algorithm, there exists this
formula {

X = AS + Nx

Y = AΦS + Ny

Z = AΘS + Nz

(11)

X, Y, Z are (N − 1)× (M − 1) dimensional matrices. A is (N − 1)×
(M − 1) × P dimensional matrix. Ni (i = x, y, z) is measured noise
matrix, and there are relations as follows:



A(n,m, p) = exp[−j2π(k0 + n∆k)x′p] · exp(−j2πk0m∆θy′p)
S = [g(x0, y0)/(R0 + x′0)

2, g(x1, y1)/(R0 + x′1)
2,

. . . , g(xP , yP )/(R0 + x′P )2]
Φ = diag(exp(−j2π∆kx′0), exp(−j2π∆kx′1),

. . . , exp(−j2π∆kx′P )]
Θ = diag(exp(−j2πk0∆θy′0), (exp(−j2πk0∆θy′1),

. . . , (exp(−j2πk0∆θy′P )]

(12)

The matrices A and S are not rank deficient by assumption. The
matrices Φ and Θ are diagonal and contain phase shift information of
scattering centers, and the accurate location of every scattering center
can be estimated.
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Two new matrices can be constructed by X, Y and Z data
matrices. Singular values decomposition is done, and the SVDs of
two matrices are computed.

[
XY Z

]
= U1D1V

H
1

[
X
Y
Z

]
= U2D2V

H
2 (13)

where U and V are unitary matrices. D is a diagonal matrix containing
the eigenvalues, and H denotes Hermitian conjugation. The TLS
approximation of the data matrices share the same column space range
of Û1 and row space range of V̂2, and are obtained by X, Y, Z onto
these subspaces: 




Ex = ÛH
1 XV̂2

Ey = ÛH
1 Y V̂2

Ez = ÛH
1 ZV̂2

(14)

Now, we can define:

Eϕ = E−1
x Ey, Eθ = E−1

x Ez

From this set of equations, the eigenvalues of Eϕ and Eθ need to be
computed. It is clear that they share, in the noise free case, the same
set of eigenvectors, which means that they can be tri-angularized by
the same unitary matrix Q. There exists the unitary matrix Q such
that

QHEϕQ = Tϕ, QHEθQ = Tθ

Here the upper triangular matrices Tϕ, Tθ have main diagonals with
regard to Φ and Θ, respectively. Suppose that there are p scattering
centers of the target, ϕp and θp are preserved in the positions
corresponding to the diagonals, and no pair matching operation needs
to be done. {

x′p = ϕp

−2π∆k

y′p = θP
−2πk0∆θ

(15)

According to this 2D-ESPRIT algorithm, the locations of the
scattering centers are estimated effectively. Because the spherical wave
mathematical model has been applied to this algorithm, near-field
effect can be revised at the same time.

4. NUMERICAL SIMULATION

To verify the method discussed in the previous section, a numerical
model is set up, which is composed of six scattering centers, and their
coordinates are A(2,2), B(3,3), C(4,4), D(5,5), E(6,6), F(7,7). All the
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values of their scattering strength are 0 dBm. The SNR is supposed as
20 dB. The rotating center locates in O(0,0).

The carrier frequency of the imaging radar is 35 GHz. The step
frequency is 2 MHz. The accumulating angle is 3 degree. Both M
and N are 128. The total bandwidth is 256 MHz. According to the
classical far field condition, the distance of plane wave illumination is
33600 meters.

Now, we chose the distances of 100 meters, 50 meters and 30
meters. The spherical wavefront curvature can be simulated and
demonstrated in Figs. 2, 3 and 4. At the same time, the wavefront
curvature is compensated by 2D-ESPRIT imaging algorithm.

When the measurements range is 100 meters, the spherical image
of six scattering centers is shown using six “cross” in Fig. 2(a). The
image of six scattering centers in far filed is shown using six “circle”. It
can be seen that the wavefront curvature is very clear. The point F(7,7)
is changed to the coordinate of (6.546, 7.224). After processing with
2D-ESPRIT algorithm, the deviation is compensated as in Fig. 2(b).

When the measurements range is 50 meters, the deviation of
curvature is larger than that in 100 meters. The image of six scattering
centers is shown using six “cross” in Fig. 3(a). The point F(7,7) is
changed to the coordinate of (6.091, 7.395). The difference will be
apparent. After processing with 2D-ESPRIT algorithm, the deviation
is compensated as in Fig. 3(b).

When the measurements range is changed to 30 meters, the
deviation of curvature is clearer. The image of six scattering centers is

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Cross range (m)

D
o
w

n
 r

a
n
g
e
 (

m
)

(a) (b)

Cross range (m)

D
o
w

n
 r

a
n
g
e
 (

m
)

Figure 2. Comparison of spherical-wave compensation effect of six
points in 100m. (a) Spherical-wave image and far-field image in 100m.
(b) Spherical-wave compensation image in 100 m.
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shown using six “cross” in Fig. 4(a). The point F(7,7) is changed
to the coordinate of (5.596, 7.659). The difference will be very
apparent. After processing with 2D-ESPRIT algorithm, the deviation
is compensated as in Fig. 4(b).

Of course, signal-noise-rate is of great importance to this
algorithm. Suppose that the measurement distance is 100 meters.
When SNR is 5 dB, 10 dB and 12 dB, the location estimation accuracy
will be different. It can be explained with Fig. 5 and Table 1.
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Figure 3. Comparison of spherical-wave compensation effect of six
points in 50 m. (a) Spherical-wave image and far-field image in 50m.
(b) Spherical-wave compensation image in 50 m.
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Figure 4. Comparison of spherical-wave compensation effect of six
points in 30 m. (a) Spherical-wave image and far-field image in 30m.
(b) Spherical-wave compensation image in 30 m.
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Figure 5. Comparison of scattering centers estimation with different
SNR. (a) Six scattering centers estimation when SNR = 5 dB. (b) Six
scattering centers estimation when SNR = 12 dB.

Table 1. The location estimation values of six scattering points with
different SNR.

SNR A B C D E F deviation

5 dB
x 1.9887 3.0156 4.1360 5.0939 5.8411 6.9330

0.1589
y 2.0400 3.0603 4.0850 5.0252 5.9703 6.9291

10 dB
x 2.0145 3.0148 4.0559 5.0067 5.9647 6.9690

0.0688
y 2.0688 3.0523 4.0625 5.0541 5.9973 7.0581

12 dB
x 2.0064 3.0469 4.0435 5.0468 6.0020 7.0152

0.0502
y 2.0003 3.0360 4.0502 5.0235 6.0325 7.0060

In Table 1, the locations of six scattering centers A(2,2),
B(3,3), C(4,4), D(5,5), E(6,6), F(7,7) are estimated with 2D-ESPRIT
algorithm with different SNRs. x is the crossrange, and y is the
downrange. The deviations all can be obtained with different SNRs.

According to these comparisons, when SNR is supposed to be
5 dB, the location deviation is 15.89% of the measurement distance;
when SNR is equal to 10 dB, the deviation is 6.88% of the distance;
and when SNR is 12 dB, the deviation accuracy is 5%, thus, we think
that it is can be accepted in experiments.

The deviation can be shown in Fig. 5, the same as in Table 1.
When SNR is 12 dB, the location deviation is not apparent, but
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Figure 6. Three extinguishers on a rotator outdoor.

suppose that it is 5 dB, the deviation is larger.
It can be seen from these comparisons, the spherical wavefront

curvature is distinct as the range is reduced. Whatever the distance
is, only if the SNR is larger than 12 dB, the 2D-ESPRIT imaging
algorithm can compensate the spherical wave effect entirely with a
high accuracy.

5. EXPERIMENTAL RESULTS

The experiment is executed outdoor. There is a big rotator, on which
three extinguishers are set as Fig. 6. Suppose that the rotator center
locates in O(0, 0). The coordinate of three extinguishers are O(0, 0),
P(4.6, 3.8), Q(−4.6,−3.8). The measurements radar is 100 meters from
the center of the rotator. The carrier frequency of the radar is 35 GHz.
The step frequency is 2 MHz. The accumulating angle is 3.4 degree.
Both M and N are 128. The total bandwidth is 256 MHz.

Three extinguishers on the rotator are shown in Fig. 6.
Traditionally, the convolution back-projection algorithm is often used
to spherical wave imaging, but the wavefront curvature cannot be
revised entirely. The 2-D images of three extinguishers are illustrated
in Fig. 7(a). When 2D-ESPRIT algorithm is applied to the real
data sets, compared with the CBP results, the deviation can be
demonstrated in Fig. 7(b). Three “cross” image shows the result of
CBP method, and three “circle” image shows the result of 2-D ESPRIT
method.

The image of three extinguishers is shown in Fig. 7(a). The
coordinate values of these scattering centers can be extracted. P
locates in (−4.48,−3.75); O locates in (−0.14,−0.07); and Q locates
in (4.41,3.86). They can also be shown using three “cross” in Fig. 7(b).
The image of 2D-ESPRIT processing is shown using three “circle” in
this figure. It is proved by experiment that the spherical wavefront
curvature appears while using CBP method, and 2D-ESPRIT method
can compensate the curvature effectively.



140 Hu et al.

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Cross range (m)

D
o
w

n
 r

a
n
g
e
 (

m
)

(a) (b)

Cross range (m)

D
o
w

n
 r

a
n
g
e
 (

m
)

Figure 7. Comparison of spherical-wave compensation effect of three
extinguishers image in 100m. (a) Three extinguishers image using
CBP. (b) Three extinguishers images using CBP and ESPRIT.

6. CONCLUSION

Two-dimensional ISAR image is easy to be obtained under far field
condition, but a target is often radiated by spherical wave, which is
near field imaging. CBP algorithm is used to give the ISAR image,
but the wavefront curvature cannot be compensated. The key of
2D-ESPRIT algorithm applied in ISAR imaging is the building of a
novel two-dimensional mathematical model. Based on this, the 2D-
ESPRIT super-resolution algorithm is used to estimate the accurate
locations of the scattering centers in near field. Numerical simulations
are conducted in 100 meters, 50 meters and 30 meters. It is obvious
that the spherical wavefront curvature is larger with shorter distance,
only if the 2D-ESPRIT method is used with enough SNR as 12 dB.
The compensation accuracy will be 5% of the measurement distance.
Finally, near field ISAR imaging experiments were done outdoor. Raw
data have been processed with this super-resolution method, which
verify that the 2D-ESPRIT algorithm based on matrix pencil can
compensate the spherical wavefront curvature effectively in near field.
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