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Abstract—A new formalism for electromagnetic and mechanical
momentum in a metamaterial is developed by means of the technique
of wave-packet integrals. The medium has huge mass density
and can therefore be regarded as almost stationary upon incident
electromagnetic waves. A clear identification of the momentum
density and momentum flow, including their electromagnetic and
mechanical parts, is obtained by employing this formalism in a
lossless dispersive metamaterial (including the cases of impedance
matching and mismatching with vacuum). It is found that the
ratio of the electromagnetic momentum density to the mechanical
momentum density depends on the impedance and group velocity
of the electromagnetic wave inside the metamaterial. One of the
definite results is that both the electromagnetic momentum and the
mechanical momentum in the metamaterial are in the same direction
as the energy flow, instead of in the direction of the wave vector. The
conservation of total momentum is verified. In addition, the law of
energy conservation in the process of normal incidence is also verified
by using the wave-packet integral of both the electromagnetic energy
density and the mechanical energy density, of which the latter is caused
by the interaction between the induced electric/magnetic currents and
the electric/magnetic field components of the electromagnetic wave.
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1. INTRODUCTION

The expressions/definitions for the electromagnetic momentum density
and momentum stress tensor in vacuum have been clearly identified
and widely accepted [1]. However, the expressions for the
electromagnetic momentum density and momentum stress tensor in
a non-vacuum medium have been debated for over a century. The
earliest expressions for the momentum density in a dielectric medium
were proposed by Abraham [2] as ~g = ε0µ0

~E× ~H and by Minkwoski [3]
differently as ~g = ~D × ~B. Many theoretical and experimental
works have been carried out [4–18], trying to solve this controversy.
Early experiment by Jones and Richards found that the radiation
pressure on a mirror immersed in a refracting liquid medium is
proportional to the refractive index of the liquid [4]. Theoretical
analyzes by Gordon [5] and Peierls [7] have concluded that: (a)
Abraham’s momentum gives the electromagnetic part momentum of
waves in the medium, but excludes the mechanical part momentum
carried by the medium itself; (b) Minkwoski’s momentum is actually
a pseudo-momentum, which results from the invariance of physical
laws with respect to the displacement of medium coordinates; This
can be illustrated more clearly using both spatial (Eulerian) and
material (Lagrangian) coordinates [9, 10]. (c) Minkwoski’s momentum
is mathematically useful in determining the radiation pressure exerted
on a mirror by an incident light, though the radiation pressure origins
from both the electromagnetic momentum and mechanical momentum
of waves. Recent studies focus on the momentum calculation for
waves in different media, from ordinary dielectrics [12] to magnetic
media [13, 16], and even to dispersive media [8, 14, 15, 19]. Some
investigations based on relativistic approaches have also been carried
out [6, 11, 17, 18]. Some review papers can be found on this subject
(but not for a metamaterial) [20–22].

Metamaterials with simultaneously negative permittivity and
negative permeability may achieve unprecedented electromagnetic
properties, such as negative refraction [23, 24] and potentially perfect
imaging [25]. However, far less attention has been paid to
the investigation of the momentum for electromagnetic waves in
metamaterials [15, 26, 27]. Scalora et al. [15] showed that the
Lorentz force in a metamaterial was consistent with the rate
of change of Abraham’s momentum, but they did not give a
complete description/expression [like Eqs. (27) and (29) below for the
impedance-mismatched case] for both the electromagnetic momentum
and the mechanical momentum. Kemp et al. [26] claimed that
the momentum flow in a left-handed material was opposite to the
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power flow direction, but this is incorrect as we show in the present
paper. Veselago has noticed the incompatibility between the photon
momentum flow and the energy transfer for electromagnetic waves in
metamaterials, and assumed that the momentum inside a metamaterial
is in the same direction as the wave vector [27], which is also incorrect
as we show in the present paper.

2. MODELING

It has been pointed out that a complete expression for the
total momentum in a medium should take into account both
the electromagnetic part momentum and the mechanical part
momentum [6, 7, 11, 28], though the division of the electromagnetic
part and the mechanical part of the moment is not definite to some
extent [21]. The continuity equations for them are

∂

∂t
~gem +∇ · ¯̄Tem = −~fmech (1)

∂

∂t
~gmech +∇ · ¯̄Tmech = ~fmech (2)

where ~gem, T em, ~gmech and ¯̄Tmech represent the momentum density
and momentum flow density tensor (momentum stress tensor) for the
electromagnetic part and the mechanical part, respectively.

The sum of the above two equations yields the expression for the
conservation of the total momentum

d
dt

∫

V
~gtotdV +

∮

S
d~S · ¯̄Ttot = 0 (3)

Here, ~gtot and ¯̄Ttot represent the total momentum density and
momentum flow density tensor inside the medium, respectively.

By directly applying Maxwell’s equations, we can obtain the
following expressions for the momentum density of electromagnetic
field ~gem, the generalized Lorentz force density ~fmech, and the
electromagnetic momentum flow density ¯̄Tem,

~gem=ε0µ0
~E × ~H (4)

~fmech=−
(
∇· ~P

)
~E −µ0

(
∇· ~M

)
~H +µ0

(
∂ ~P/∂t

)
×~H−µ0ε0

(
∂ ~M/∂t

)
×~E (5)

¯̄Tem=
1
2

(
ε0

~E · ~E + µ0
~H · ~H

)
I −

(
ε0

~E ~E + µ0
~H ~H

)
(6)

where ~D = ε0
~E + ~P and ~B = µ0( ~H + ~M) have been substituted.

The momentum density of the electromagnetic field is in Abraham’s
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form, and the four terms in Eq. (5) represent the force on an
electrically polarized charge by the electric field, the force on a
magnetically polarized charge (i.e., the effective magnetic charge
due to inhomogeneous magnetization) by the magnetic field, the
force on an electrically polarized current by the magnetic field and
the force on a magnetically polarized current by the electric field,
respectively. The electromagnetic momentum flow density tensor
relates to ~E and ~H, rather than ~D and ~B. Note that there is a
long-lasting dispute about the momentum in a medium and conflicting
expressions for the momentum density and momentum stress tensor
exist [20, 21]. Eqs. (4)–(6) are similar (but not identical) to
Einstein-Laub’s expressions for the momentum density and momentum
tensor [29]. It is shown in the present paper that Eqs. (4)–(6) are quite
suitable for momentum analysis, since the calculated results based on
our formalism gives a perfect consistency with the fundamental laws
of energy conservation and momentum conservation. In fact, the same
expressions have been used in [19] for energy and momentum analysis
inside a dispersive medium (but not for a metamaterial).

It can be verified that ~fmechδV equals the mechanical momentum
increase rate inside the macroscopic small volume δV [19]. In other
words, the generalized Lorentz force plays the role of converting the
electromagnetic momentum into the mechanical momentum, while the
total momentum is conserved. Due to the action of the generalized
Lorentz force, the unit cell of the medium will gain certain mechanical
momentum and, therefore, be set into motion.

In general, the motion of unit cells inside the medium will not only
give rise to the mechanical momentum and mechanical momentum
flow, but also have an impact on the constitutive relation of the
medium [10]. Therefore, the mechanical properties of a dielectric
material have to be specified, in order to describe how it responses to
the action of the generalized Lorentz force. To simplify the calculation,
in this paper we aim at deriving an explicit expression for the
momentum in a homogenous isotropic medium, which is constituted
by unit cells with very large mass, i.e., huge mass density M , such that
the motion of dielectrics is sufficiently small and the medium remains
almost stationary and consequently the constitutive relation of the
medium remains the same upon electromagnetic wave incidence.

Although velocity ~v of the mass center of the unit cell is
infinitesimal as a result of huge mass density M , their product M~v,
representing the accompanied mechanical momentum density ~gmech,
is a comparable quantity with respect to electromagnetic momentum
density ~gem. Note that the mechanical momentum flow ¯̄Tmech, of the
order (M~v)~v, is still negligibly small compared with electromagnetic
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momentum flow ¯̄Tem.
Based on the above analysis, we can obtain a clear physical in-

terpretation of the momentum transfer and conversion for propagating
waves inside our medium model. When the leading edge of a travel-
ing wave passes though a macroscopic small volume, the volume will
not only gain a momentum carried by the electromagnetic wave itself,
but also acquire a mechanical momentum carried by the infinitesimal
movement of the huge mass, namely M~v, due to the presence of the
generalized Lorentz force. The force will decrease gradually as the
electromagnetic field grows inside this volume and eventually vanish
when the electromagnetic field becomes time-harmonic. After that,
both the electromagnetic momentum density and the mechanical mo-
mentum density of this small volume reach some steady values, and a
constant momentum flow is carried by the electromagnetic field, which
transmits the required momentum to establish a time-harmonic field
at the new leading edge of the propagating wave.

The additional mechanical momentum density M~v can be
evaluated by integrating the Lorentz force over the time for establishing
a time-harmonic field. For a plane wave in a dispersion-free non-
magnetic dielectric with refractive index n, it has been shown
that [7, 12]

gmech =
n2 − 1

2
gem (7)

In this paper, we would like to focus on the momentum density and
momentum flow in a metamaterial, which is intrinsically dispersive.
Inside a dispersive medium, the medium’s response to the driving of
an incident field is time-dependent in a causal way, i.e., its response at
time τ0 is related not only to the driving field at time τ0, but also to the
driving field at times previous to τ0. To treat this dispersive property,
it is convenient to construct a wave packet, and investigate the increase
of the mechanical momentum along with the establishment of this wave
packet inside the medium. In the limit that the wave packet is long
enough, a correct expression for the momentum density can be derived
(see [14] for a dispersive dielectric case). It is interesting to notice that
the momentum flow density tensor is independent of dispersion.

3. MOMENTUM DENSITY, MOMENTUM FLOW AND
MOMENTUM CONSERVATION

Now we use the method of wave-packet integrals to study the case
when a plane wave normally incident from vacuum into a semi-
infinite medium. The electromagnetic part of the momentum inside
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a metamaterial can be derived by spatially integrating over a wave-
packet. The calculation of the mechanical part momentum, however,
requires integration of Lorentz force over both the spatial domain and
the time domain. This way, the total momentum of the electromagnetic
wave inside the metamaterial can be unambiguously obtained (for
both its direction and magnitude). Moreover, we show below that
our formalism is consistent with the fundamental law of momentum
conservation.

3.1. Momentum for the Case of Matched Impedance

Now we study the case when a plane wave normally impinges
from vacuum on a semi-infinite metamaterial with negative relative
permittivity εr and negative relative permeability µr.

A metamaterial is always dispersive. First we assume εr and µr

have the same dispersion, i.e., εr(ω) = µr(ω), so that its impedance
matches with the vacuum impedance for all frequencies to ensure
total transmission. In order to deal with a dispersive material, it
is convenient to construct a wave packet by using two spectrum
components whose frequencies are close to each other, similar to
the treatment given in [1] for the energy density inside a dispersive
dielectric medium. Since the difference δk between the two wave
vectors of the two plane waves is quite small, the length scale 2π/δk of
the two-mode superposition state would be very long and the energy
of the two waves is not localized. Thus, such an electromagnetic
superposition state is not a wave packet in a strict sense. Instead,
it may be viewed as a “quasi wave-packet” or “long wave-packet”. In
this paper, for convenience, we still call it “wave packet”.

In vacuum, the incident field components are
{

Ei
x = E0 sin (ka

0z − ωat)−E0 sin
(
kb

0z − ωbt
)

H i
y =

√
ε0/µ0E0 sin (ka

0z − ωat)−
√

ε0/µ0E0 sin
(
kb

0z − ωbt
) (8)

where kν
0 is the vacuum wave vector corresponding to ων with ν = a, b.

In the metamaterial, the transmitted field components are
{

Et
x = E0 sin(kaz − ωat)− E0 sin(kbz − ωbt)

Ht
y =

√
ε0/µ0E0 sin(kaz − ωat)−

√
ε0/µ0E0 sin(kbz − ωbt)

(9)

where kν = −√εν
rµ

ν
rk

ν
0 = εν

rk
ν
0 , εν

r and µν
r = εν

r are the wave vector,
relative permittivity and relative permeability at frequency ων with
ν = a, b. In the limit of ωa → ωb → ω, the wave vector, relative
permittivity and relative permeability at the central frequency ω are
denoted by k, εr and µr, respectively.
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Now we focus on the momentum conversion process of this wave
packet during a time interval [0, τ ]. τ = 2π/(ωa − ωb) corresponds to
the period of this wave packet envelope.

At t = 0, the incident wave packet which locates at z ∈ [−cτ, 0]
has the following momentum

Pvac=
∫ 0

−cτ
(gem)indz =

∫ 0

−cτ
ε0µ0E

i
xH i

ydz

=
ε0E

2
0

c

∫ 0

−cτ

(
sin(ka

0z − ωat)−sin(kb
0z−ωbt)

)

(
sin(ka

0z−ωat)−sin(kb
0z−ωbt)

)
dz =

ε0E
2
0

c

∫ 0

−cτ{
1− cos(2ka

0z−2ωat)
2 − cos(2kb

0z−2ωbt)
2

+ cos
[
(ka

0 +kb
0)z−(ωa+ωb)t

]−cos
[
(ka

0−kb
0)z−(ωa−ωb)t

]
}

dz(10)

where c is the speed of light in vacuum.
It is noted that the one-packet spatial integral of the

highly-oscillating terms cos(2ka
0z − 2ωat), cos(2kb

0z − 2ωbt) and
cos

[
(ka

0 + kb
0)z − (ωa + ωb)t

]
would vanish when we take the limit of

ωa → ωb → ω, and that the wave-packet spatial integral of the slowly-
oscillating term cos

[
(ka

0 − kb
0)z − (ωa − ωb)t

]
is also zero, i.e.,

−ε0E
2
0

c

∫ 0

−cτ
cos

(
(ka

0 − kb
0)z − (ωa − ωb)t

)
dz

=−ε0E
2
0

c

1
ka

0−kb
0

[
sin

(
(ka

0 − kb
0)(cτ)+(ωa−ωb)t

)
−sin((ωa−ωb)t)

]
=0

Therefore, the incoming momentum is easily found as
Pvac = ε0E

2
0τ (11)

At t = τ , this wave packet will completely penetrate into the
metamaterial at the location z ∈ [0, vgτ ], where vg ≡ dω

dk = ωa−ωb
ka−kb

is the
group velocity. In this case, vg ≡ dω

dk = dω
d(ωεr/c) = c

d(ωεr)/dω is always
positive since a normal dispersion, i.e., dεr/dω > 0, is assumed in our
investigation. The total momentum inside the metamaterial consists of
two parts, the electromagnetic part and the mechanical part. Similar
to the calculation of Pvac, electromagnetic part momentum Pem, and
spatially averaged momentum density gem are

Pem =
∫ vgτ

0
gemdz =

∫ vgτ

0
ε0µ0E

t
xHt

ydz = ε0E
2
0vgτ/c (12)

gem = Pem/vgτ = ε0E
2
0/c (13)



88 He, Shen, and He

The mechanical part of the momentum is produced by the action
of Lorentz force, so that it can be calculated by integrating the Lorentz
force exerted on this wave packet, i.e.,

Pmech =
∫ τ

0

∫ vgt

0
fmech(z, t)dzdt (14)

In this situation, the z component of Lorentz force, fmech
z , becomes

fmech
z = µ0ε0

[
− ωa (εa

r − 1)E0 cos (kaz − ωat)

+ωb

(
εb
r − 1

)
E0 cos (kbz − ωbt)

]
Ht

y

+µ0ε0

[
− ωa (µa

r − 1)
√

ε0/µ0E0 cos (kaz − ωat)

+ωb

(
µb

r − 1
)√

ε0/µ0E0 cos (kbz − ωbt)
]
Et

x (15)

After calculation (see Appendix), it is found that the mechanical
momentum is

Pmech = ε0µ0

√
ε0/µ0E

2
0τ

[
(εa

r − 1) ωa − (εb
r − 1)ωb

]
/(ka − kb) (16)

In the limit of ωa → ωb → ω, we obtain the following mechanical
momentum inside this wave packet

Pmech = ε0E
2
0τ

(
d(ωεr)

dω
− 1

)
/
d(ωεr)

dω
= ε0E

2
0τ(1− vg/c) (17)

and subsequently the following spatially averaged mechanical momen-
tum density is obtained

gmech = Pmech/vgτ = ε0E
2
0(1/vg − 1/c) (18)

It follows from Eqs. (11), (12) and (17) that Pvac = Pem +
Pmech, which means that the law of momentum conservation holds
during the period when the electromagnetic wave penetrates into the
metamaterial from vacuum (see Fig. 1).

Since a total momentum of Pem + Pmech is transmitted into the
metamaterial from the vacuum during a time interval [0, τ ], the total
momentum flow in metamaterial is

ptot
z = (Pem + Pmech)/τ = ε0E

2
0 (19)

This result is in agreement with the theoretical prediction by
the momentum flow density tensor T tot

zz = T em
zz = ε0E

2
0 in the

metamaterial, according to Eq. (6).
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Figure 1. Illustration of momentum conservation at the interface
between vacuum and an impedance-matched metamaterial. The
incident wave packet (in blue) carries momentum Pvac, while the
transmitted wave packet (in red) carries momentum Pem + Pmech.

In a brief summary, for a +z propagating plane wave in a
metamaterial, our results show that





k = −√εrµrk0 = εrk0

Sz =
√

ε0/µ0E
2
0

ptot
z = ε0E

2
0

gem = Sz/c2

gmech = (c/vg − 1)gem

(20)

It is worth noticing that, inside the metamaterial the wave vector
is in −z direction, but the momentum density and momentum flow
(both the electromagnetic part and mechanical part) of the plane wave
is in +z direction (as the energy flow). Therefore, we conclude that,
within the classical electrodynamics framework, the total momentum
of electromagnetic waves in a metamaterial has the same direction as
the energy flow, instead of as the wave vector [26, 27].

3.2. Momentum for the Case of Mismatched Impedance

In this situation, we would like to perform a calculation on a more
general case, i.e., εr(ω) 6= µr(ω), to show that our formalism is
applicable for more general situations.

The components for the incident field, reflected field and
transmitted field in this case are as follows,

{
Ei

x =E0 sin(ka
0z − ωat)− E0 sin(kb

0z − ωbt)

H i
y =

√
ε0/µ0E0 sin(ka

0z − ωat)−
√

ε0/µ0E0 sin(kb
0z − ωbt)

(21)
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{
Er

x =raE0 sin(ka
0z − ωat)− rbE0 sin(kb

0z − ωbt)

Hr
y =−

√
ε0/µ0raE0 sin(ka

0z − ωat)+
√

ε0/µ0rbE0 sin(kb
0z−ωbt)

(22)





Et
x = taE0 sin(kaz − ωat)− tbE0 sin(kbz − ωbt)

Ht
y =

√
ε0εa

r/µ0µa
rtaE0 sin(kaz−ωat)

−
√

ε0εb
r/µ0µb

rtbE0 sin(kbz−ωbt)

(23)

Here, rν = 1−
√

εν
r /µν

r

1+
√

εν
r /µν

r

, tν = 2

1+
√

εν
r/µν

r

, and kν = −√εν
rµ

ν
rk

ν
0 are the

reflection coefficients, transmission coefficients (for the electric field),
and wave vector corresponding to ων with ν = a, b, respectively. In the
limit of ωa → ωb → ω, the reflection coefficient, transmission coefficient
and wave vector at the central frequency ω will be denoted by r0, t0
and k, respectively.

Again, we focus on the momentum conversion process of this wave
packet during a time interval [0, τ ] with τ = 2π/(ωa − ωb).

At t = 0, the incident wave packet which locates at z ∈ [−cτ, 0]
has the following momentum

Pvac =
∫ 0

−cτ
(gem)indz =

∫ 0

−cτ
ε0µ0E

i
xH i

ydz = ε0E
2
0τ (24)

At t = τ , part of this wave packet will penetrate into the metamaterial
at the regime z ∈ [0, vgτ ], while another part of this wave packet will
be reflected backward to regime z ∈ [−cτ, 0]. Note that the group
velocity vg ≡ dω

dk = dω
d(−ω

√
εrµr/c) is also positive in this case, since a

normal dispersion, i.e., dεr/dω > 0, and dµr/dω > 0 is assumed. The
reflected wave packet which locates at z ∈ [−cτ, 0] has the following
momentum

Pvac2 =
∫ 0

−cτ
(gem)reflectiondz =

∫ 0

−cτ
ε0µ0E

r
xHr

ydz = −ε0E
2
0r2

0τ (25)

The total momentum inside the metamaterial consists of two parts, i.e.,
the electromagnetic part and the mechanical part. They are shown to
have the following expressions (see Appendix A)

Pem=ε0E
2
0τ

√
εr

µr
t20/

d(−√εrµrω)
dω

(26)

gem=
Pem

vgτ
= ε0E

2
0

√
εr

µr
t20/c (27)
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Pmech = ε0E
2
0τt20

1
2

[
εr

µr

d
dω

(√
µr

εr
(εr − 1)ω

)

+
d
dω

(√
εr

µr
(µr − 1)ω

)]
/
d(−√εrµrω)

dω
(28)

gmech =
Pmech

vgτ

= ε0E
2
0t20

1
2

[
εr

µr

d
dω

(√
µr

εr
(εr−1)ω

)
+

d
dω

(√
εr

µr
(µr−1)ω

)]
/c (29)

The above expressions (24)–(29) are the limiting results when
ωa → ωb → ω. Through some tedious derivation, we can still show that
Pvac = Pvac2 +Pem +Pmech (see Appendix), which is the expression for
momentum conservation in this situation (see Fig. 2). The mechanical
momentum can be rewritten in a compact way,

Pmech = ε0E
2
0τ

(
1 + r2

0 − t20

√
εr

µr

vg

c

)
(30)

gmech = ε0E
2
0

(
1 + r2

0 − t20

√
εr

µr

vg

c

)
/vg (31)

It is shown that the mechanical momentum is in the same direction
as the energy flow, since

Pmech = ε0E
2
0τ

(
1 + r2

0 − t20

√
εr

µr

vg

c

)

> ε0E
2
0τ

(
1 + r2

0 − t20

√
εr

µr

)

= ε0E
2
0τ

(
t20

1+ εr
µr

2
−t20

√
εr

µr

)
=

ε0E
2
0τt20
2

(
1−

√
εr

µr

)2

≥ 0 (32)

It is noted that the total momentum flow in the metamaterial is

ptot
z = (Pem + Pmech)/τ =

(
1 + r2

0

)
ε0E

2
0 (33)

which is again consistent with momentum flow density tensor

T tot
zz = T em

zz =
1
2
[ε0(Et

x)2 + µ0(Ht
y)

2] =
1
2
ε0E

2
0t20

(
1 +

εr

µr

)
(34)

by the aid of (1 + r2
0)/t20 = (1 + εr/µr)/2.

Based on the above calculation, we again conclude that inside
a metamaterial, both the electromagnetic momentum and the
mechanical momentum are in the same direction as the energy flow,
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Figure 2. Illustration of momentum conservation at the interface
between vacuum and an impedance-mismatched metamaterial. The
incident wave packet (in blue) carries momentum Pvac, while the
reflected wave (in green) carries momentum Pvac2, and the transmitted
wave packet (in red) carries momentum Pem + Pmech.

instead of as the wave vector [see Eqs. (26), (28) and (32)]. Note that
the ratio of the electromagnetic momentum density to the mechanical
momentum density depends on the impedance and group velocity of
electromagnetic waves inside the metamaterial and simple relation (7)
is no longer valid for double negative dispersive metamaterials [see
Eqs. (27) and (29)]. For the previous impedance-matched case, the
ratio can be simplified to a simple expression which depends only on
the group velocity, as given by the last term of Eq. (20). Nevertheless,
simple relation (7) is not valid for the impedance-matched case, either.

4. ENERGY DENSITY, ENERGY OF WAVE PACKET
AND ENERGY CONSERVATION

In the previous section, we have utilized the formalism of Yaghjian [19],
where the field variables are ~E and ~H, to show that the law of
momentum conservation is preserved when the electromagnetic wave
is launched into the metamaterial. We can derive the Poynting-type
theorem using the formalism of Yaghjian [19], which is given by

∂

∂t

(
1
2
ε0

~E2 +
1
2
µ0

~H2

)
+∇ ·

(
~E × ~H

)
= −

(
∂ ~P

∂t
· ~E + µ0

∂ ~M

∂t
· ~H

)

(35)
This means that the power density that leads to the mechanical
energy of the induced (polarized) electric and magnetic currents is
(∂ ~P/∂t) · ~E + (µ0∂ ~M/∂t) · ~H.

Since ε0
~E2/2 = µ0

~H2/2 for the electromagnetic wave in vacuum,
the incident electromagnetic energy density in vacuum is wvac = ε0

~E2,
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which can be expressed explicitly by

wvac = ε0

[
E0 sin (ka

0z − ωat)−E0 sin
(
kb

0z − ωbt
)]2

= ε0E
2
0 − ε0E

2
0 cos

((
ka

0 − kb
0

)
z − (ωa − ωb) t

)

−ε0E
2
0

{
cos 2(ka

0z − ωat)
2

+
cos 2(kb

0z − ωbt)
2

− cos
((

ka
0 + kb

0

)
z − (ωa + ωb) t

)}
(36)

The electromagnetic energy of a wave packet which locates at
z ∈ [−cτ, 0] is defined by

Evac =
∫ 0

−cτ
wvac(z, t)dz (37)

Note that the one-packet spatial integral of the highly-oscillating
terms [where cos 2(kν

0z − ωνt) or cos
(
(ka

0 + kb
0)z − (ωa + ωb)t

)
are

involved] would vanish when we take the limit of ωa → ωb → ω,
and that the wave-packet spatial integral of the slowly-oscillating term
[−ε0E

2
0 cos

(
(ka

0 − kb
0)z − (ωa − ωb)t

)
] in wvac(z, t) is also zero, i.e.,

−ε0E
2
0

∫ 0

−cτ
cos

((
ka

0 − kb
0

)
z − (ωa − ωb)t

)
dz

=−ε0E
2
0

1
ka

0 − kb
0

[
sin

((
ka

0−kb
0

)
(cτ)+(ωa−ωb)t

)
−sin ((ωa−ωb)t)

]

= 0 (38)

Therefore, it follows that the incident electromagnetic energy of a wave
packet is Evac = ε0E

2
0cτ .

In the following part, we shall consider the problem of
energy conservation during the electromagnetic interaction when the
electromagnetic wave is launched normally into the metamaterial.
We will address two cases, namely, the impedance matching and
mismatching cases, to show that the total energy in these processes
is also conserved.

4.1. Energy Conservation in the Case of Matched Impedance

When the impedance of the metamaterial is matched with that of
vacuum, the explicit expression for electromagnetic energy Eem =∫ vgτ
0 wem(z, t)dz in the metamaterial can be obtained in a similar

manner as for obtaining electromagnetic energy Evac in vacuum. It
can be readily verified that the wave-packet spatial integral of the
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highly-oscillating terms involved in the electromagnetic energy density
wem(z, t) in the metamaterial vanishes under the condition of ωa →
ωb → ω. Besides, the wave-packet integral of the slowly-oscillating
term −ε0E

2
0 cos ((ka − kb)z − (ωa − ωb)t) in wem(z, t) can be expressed

by

−ε0E
2
0

∫ vgτ

0
cos ((ka − kb)z − (ωa − ωb)t) dz

= −ε0E
2
0

1
ka − kb

sin ((ka − kb)z − (ωa − ωb)t) |vgτ
0

= −ε0E
2
0

1
ka−kb

[sin ((ka − kb)vgτ − (ωa − ωb)t)−sin (−(ωa − ωb)t)]

= 0 (39)
Therefore, the electromagnetic energy of a wave packet propagating in
the metamaterial is Eem = ε0E

2
0vgτ .

Let us now consider the interaction energy, which is the mechanical
energy acquired by the induced electric and magnetic currents. The
energy transferred by the electric interaction, of which the power
density is

(
∂ ~P/∂t

)
· ~E, in one wave packet is

We =
∫ τ

0

(∫ vgt

0

∂ ~P

∂t
· ~Edz

)
dt (40)

where the induced electric current density is given by
∂P

∂t
=−ωa(εa

r−1) ε0E0 cos (kaz−ωat) + ωb

(
εb
r−1

)
ε0E0 cos(kbz−ωbt)

(41)
The explicit expression for the electric power density is
∂P

∂t
·E =

(
−ωa(εa

r−1)ε0E0 cos(kaz−ωat)+ωb

(
εb
r−1

)
ε0E0 cos(kbz−ωbt)

)

× (E0 sin(kaz − ωat)− E0 sin(kbz − ωbt))

= ε0E
2
0

[−ωa(εa
r − 1) sin 2(kaz − ωat)− ωb(εb

r − 1) sin 2(kbz − ωbt)
2

]

+ε0E
2
0

[
ωa(εa

r−1)
sin((ka+kb)z−(ωa+ωb)t)−sin((ka−kb)z−(ωa−ωb)t)

2

]

+ε0E
2
0

[
ωb

(
εb
r−1

)sin((kb+ka)z−(ωb+ωa)t)−sin((kb−ka)z−(ωb−ωa)t)
2

]

(42)
It should be noticed that the wave-packet integral of the highly-
oscillating terms in (∂ ~P/∂t) · ~E vanishes when the limit process of
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ωa → ωb → ω is taken. Thus, the only interesting term in (∂ ~P/∂t) · ~E
that deserves consideration is the following slowly-oscillating term

A(z, t)=−ε0E
2
0

2

[
ωa (εa

r−1)−ωb

(
εb
r − 1

)]
sin ((ka − kb)z−(ωa−ωb) t)

(43)
Thus, the acquired mechanical energy of the induced electric current
can be rewritten as

We =
∫ τ

0

(∫ vgt

0
A(z, t)dz

)
dt

=−ε0E
2
0

2

[
ωa(εa

r−1)−ωb(εb
r−1)

]

∫ τ

0

[∫ vgt

0
sin ((ka−kb)z−(ωa−ωb)t)dz

]
dt

=−ε0E
2
0

2

[
ωa(εa

r − 1)− ωb(εb
r − 1)

]

−1
ka − kb

∫ τ

0

[
cos ((ka − kb)z−(ωa−ωb)t) |vgt

0

]
dt

=
ε0E

2
0

2

[
ωa(εa

r−1)−ωb(εb
r−1)

]

1
ka − kb

{
sin [((ka−kb)vg−(ωa−ωb)) τ ]

(ka − kb)vg−(ωa−ωb)
− sin ((ωa−ωb)τ)

ωa−ωb

}
(44)

Since the group velocity of the electromagnetic wave is vg =
(ωa − ωb) / (ka − kb), the ωa → ωb → ω limit of the term
sin [((ka − kb)vg − (ωa − ωb)) τ ]/[(ka − kb)vg − (ωa − ωb)] is τ . Thus,
the mechanical energy transferred by the electric interaction reads

We =
ε0E

2
0

2

[
d(ωεr)

dk
− dω

dk

]
τ =

ε0E
2
0

2
(c− vg) τ =

ε0E
2
0

2

(
1− vg

c

)
cτ

(45)
when the ωa → ωb → ω limit is taken into account.

We now consider the mechanical energy Wm transferred by the
magnetic interaction µ0(∂ ~M/∂t)· ~H. For the present case of impedance
matching, we have the relation µ0(∂ ~M/∂t) · ~H = (∂ ~P/∂t) · ~E, which
implies Wm = We. Hence, the total mechanical energy Wmech caused
by the electromagnetic interaction (∂ ~P/∂t) · ~E +µ0(∂ ~M/∂t) · ~H in one
wave packet (propagating in the metamaterial) is given by

Wmech = We + Wm = ε0E
2
0

(
1− vg

c

)
cτ (46)

It can be found that there exists a relation of Evac = Eem + Wmech,
i.e., the incident electromagnetic energy in vacuum equals the sum
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of the mechanical energy caused by the induced currents and the
electromagnetic energy of the wave propagating in the metamaterial.

4.2. Energy Conservation in the Case of Mismatched
Impedance

The incident electromagnetic energy of one wave packet in vacuum is
Evac = ε0E

2
0cτ. Obviously, the electromagnetic energy of one wave

packet reflected back into vacuum is Evac2 = ε0E
2
0r2

0cτ . We will
calculate the transmitted electromagnetic energy density ε0

~E2/2 +
µ0

~H2/2 in the metamaterial. The explicit expression for the electric
energy density is given by
1
2
ε0E

2
t =

1
2
ε0 [taE0 sin(kaz − ωat)− tbE0 sin(kbz − ωbt)]

2

=
1
4
ε0E

2
0

(
t2a + t2b

)− 1
2
ε0E

2
0tatb cos ((ka − kb)z − (ωa − ωb)t)

−1
2
ε0E

2
0

{
cos 2(kaz − ωat)

2
t2a +

cos 2(kbz − ωbt)
2

t2b

−tatb cos ((ka + kb)z − (ωa + ωb)t)} . (47)

In the same fashion as the previous analysis, the spatial integrals of
both the highly- and slowly-oscillating terms in one wave packet vanish.
Thus, the electric energy, Ee =

∫ vgτ
0

1
2ε0E

2
t dz, of the wave propagating

inside the metamaterial is

Ee =
1
4
ε0E

2
0

(
t2a + t2b

)
vgτ (48)

On the other hand, the explicit expression for the magnetic energy
density is found to be

1
2
µ0H

2
t =

1
2
µ0

1
η2
0

[
1
ηa

taE0 sin(kaz − ωat)− 1
ηb

tbE0 sin(kbz − ωbt)
]2

=
1
4
ε0E

2
0

(
1
η2

a

t2a+
1
η2

b

t2b

)
− 1

2
ε0E

2
0

tatb
ηaηb

cos ((ka−kb)z−(ωa−ωb)t)

−1
2
ε0E

2
0

{
cos 2(kaz − ωat)

2
1
η2

a

t2a +
cos 2(kbz − ωbt)

2
1
η2

b

t2b

− tatb
ηaηb

cos ((ka + kb)z − (ωa + ωb)t)
}

(49)

where η0 ≡
√

µ0

ε0
is the vacuum impedance and ην ≡

√
µν

r
εν
r

is the
relative impedance corresponding to ων , with ν = a, b. In the limit
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of ωa → ωb → ω, the relative impedance corresponding to the central
frequency ω will be denoted by ηr. As the spatial integrals of both
the highly- and slowly-oscillating terms in one wave packet vanish, the
magnetic energy of a wave packet in the metamaterial is

Em =
∫ vgτ

0

1
2
µ0H

2
t dz =

1
4
ε0E

2
0

(
1
η2

a

t2a +
1
η2

b

t2b

)
vgτ (50)

Therefore, the total electromagnetic energy (for one wave packet) in
the metamaterial is expressed by

Eem = Ee + Em =
1
4
ε0E

2
0

[(
1 +

1
η2

a

)
t2a +

(
1 +

1
η2

b

)
t2b

]
vgτ (51)

which can be rewritten as Eem = 1
2ε0E

2
0(1 + 1

η2
r
)t20vgτ if we take the

limit of ωa → ωb → ω.
Now we shall consider the mechanical energy acquired through the

induced electric current. The power density of the electric interaction
is

∂P

∂t
·E

= ε0E
2
0

[
−ωa(εa

r−1)t2a sin 2(kaz−ωat)−ωb

(
εb
r−1

)
t2b sin 2(kbz−ωbt)

2

]

+ε0E
2
0


ωa(εa

r−1)tatb

sin ((ka+kb)z−(ωa+ωb)t)
−sin ((ka−kb)z−(ωa−ωb)t)

2




+ε0E
2
0


ωb(εb

r−1)tatb

sin ((kb+ka)z−(ωb+ωa)t)
−sin ((kb−ka)z−(ωb−ωa)t)

2


 (52)

Note that we only need to consider the slowly-oscillating term

B(z, t)=−ε0E
2
0

2
tatb

[
ωa(εa

r−1)−ωb(εb
r−1)

]
sin ((ka−kb)z−(ωa−ωb)t)

Thus, the transferred energy, We =
∫ τ
0

(∫ vgt
0

∂ ~P
∂t · ~Edz

)
dt, caused by

the electric interaction can be explicitly expressed by

We =
∫ τ

0

(∫ vgt

0
B(z, t)dz

)
dt = −ε0E

2
0

2
tatb

[
ωa(εa

r − 1)− ωb(εb
r − 1)

]

∫ τ

0

[∫ vgt

0
sin ((ka − kb)z − (ωa − ωb)t)dz

]
dt
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=
ε0E

2
0

2
tatb

[
ωa(εa

r − 1)− ωb(εb
r − 1)

] 1
ka − kb∫ τ

0
[cos ((ka − kb)vgt− (ωa − ωb)t)− cos (−(ωa − ωb)t)]dt

=
ε0E

2
0

2
tatb

[
ωa(εa

r − 1)− ωb(εb
r − 1)

] 1
ka − kb{

sin [((ka − kb)vg − (ωa − ωb)) τ ]
(ka − kb)vg − (ωa − ωb)

− sin ((ωa − ωb)τ)
ωa − ωb

}

=
ε0E

2
0

2
tatb

[
ωa(εa

r − 1)− ωb(εb
r − 1)

] 1
ka − kb

τ.

The ωa → ωb → ω limit of the above result reads

We =
ε0E

2
0

2
t20

[
d(ωεr)

dk
− dω

dk

]
τ (53)

which can be rewritten as

We =
ε0E

2
0

2
t20


d

(
−ω

√
µrεr

1
ηr

)

dk
− dω

dk


 τ

=
ε0E

2
0

2
t20

[
c

ηr
+ ω

√
µrεr

1
η2

r

dηr

dk
− dω

dk

]
τ (54)

Here, relations k = −ω
√

µrεr/c and d
(−ω

√
µrεr

)
/dk = c have been

used.
The energy density of the magnetic interaction is given by

µ0
∂M

∂t
·H =

1
2
ε0E

2
0

[
− 1

η2
a

ωa(µa
r − 1)t2a sin 2(kaz − ωat)

− 1
η2

b

ωb

(
µb

r − 1
)

t2b sin 2(kbz − ωbt)
]

+ε0E
2
0


ωa(µa

r−1)
tatb
ηaηb

sin ((ka + kb)z−(ωa+ωb)t)
− sin ((ka − kb)z−(ωa−ωb)t)

2




+ε0E
2
0


ωb

(
µb

r−1
)tatb
ηaηb

sin ((kb + ka)z − (ωb + ωa)t)
− sin ((kb−ka)z − (ωb−ωa)t)

2



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Similarly, the wave-packet integrals of all the highly-oscillating terms
vanish, and only the following slowly-oscillating term

C(z, t) = −ε0E
2
0

2
tatb
ηaηb

[
ωa(µa

r−1)−ωb

(
µb

r−1
)]

sin ((ka−kb)z−(ωa−ωb)t)

will be integrated for obtaining the magnetic interaction energy. The
result is as follows

Wm =
∫ τ

0

(∫ vgt

0
C(z, t)dz

)
dt

= −ε0E
2
0

2
tatb
ηaηb

[
ωa(µa

r − 1)− ωb(µb
r − 1)

]

∫ τ

0

[∫ vgt

0
sin ((ka − kb)z − (ωa − ωb)t)dz

]
dt

=
ε0E

2
0

2
tatb
ηaηb

[
ωa(µa

r − 1)− ωb(µb
r − 1)

] 1
ka − kb{

sin [((ka − kb)vg − (ωa − ωb)) τ ]
(ka − kb)vg − (ωa − ωb)

− sin ((ωa − ωb)τ)
ωa − ωb

}

=
ε0E

2
0

2
tatb
ηaηb

[
ωa(µa

r − 1)− ωb(µb
r − 1)

] 1
ka − kb

τ (55)

The ωa → ωb → ω limit of the above formula gives Wm =
ε0E2

0
2

t20
η2

r

[
d(ωµr)

dk − dω
dk

]
τ . It can be rewritten as

Wm =
ε0E

2
0

2
t20
η2

r

[
d

(−ω
√

µrεrηr

)

dk
− dω

dk

]
τ

=
ε0E

2
0

2
t20

[
c

ηr
− ω

√
µrεr

1
η2

r

dηr

dk
− 1

η2
r

dω

dk

]
τ (56)

Hence, the total mechanical energy caused by the induced electromag-
netic currents inside the metamaterial is

Wmech = We + Wm = ε0E
2
0t20

[
1
ηr
− 1

2

(
1 +

1
η2

r

)
vg

c

]
cτ (57)

Now we have obtained the incident electromagnetic energy
Evac = ε0E

2
0cτ in vacuum, the reflected electromagnetic energy

Evac2 = ε0E
2
0r2

0cτ , and the propagating electromagnetic energy
Eem = 1

2ε0E
2
0

(
1 + 1/η2

r

)
t20vgτ in the metamaterial. By aid of relation

r2
0 + t20/ηr = 1, one can find that the law of energy conservation,

Evac = Evac2 + Eem + Wmech, is preserved in this process.
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5. DISCUSSION AND CONCLUSION

The momentum of an electromagnetic wave in a medium has been
studied for over a hundred years, and yet contradictive conclusions
have been obtained by different approaches. Concerning the more
complicated case of negative index metamaterial, which is not only
polarized and magnetized, but also intrinsically dispersive, some
attempts have been made to study the momentum of electromagnetic
waves inside the metamaterial. In [27], the incompatibility between the
photon momentum flow and the energy transfer for electromagnetic
waves in a metamaterial has been pointed out. The inconsistency is
supposed to stem from particle-wave duality [27]. Another formalism,
based on the classical electromagnetic theory, has been developed
in [26]. The definitions of momentum density, momentum stress
tensor and Lorentz force, are different from those in our present
paper. Especially, the Lorentz force vanishes inside a lossless medium
according to their formalism, and the force arising from the sudden
change of electromagnetic stress tensor at the interface between
vacuum and the metamaterial lacks a physical explanation [26].

In contrast, the present formalism provides a clear illustration
of the electromagnetic momentum and the mechanical momentum,
by defining the Lorentz force at the very beginning. Momentum
conversion from the electromagnetic part into the mechanical part has
been clearly demonstrated. The calculated results are consistent with
the law of momentum conservation. Our additional calculation on
energy flow shows that our formalism also obeys the law of energy
conservation.

In summary, we have developed a theoretical approach for the
momentum in dispersive media with huge mass density. A clear
identification of the momentum density and momentum flow, for both
the electromagnetic part and the mechanical part, has been obtained
by implementing this formalism for a lossless dispersive metamaterial.
Contrary to previous studies on this subject [26, 27], our results show
that the momentum density and momentum flow inside a metamaterial
definitely have the same direction as the energy flow, rather than as
the wave vector. We expect that our formalism may pave the way for
easing the long-lasting dispute, or solving the incompatibility proposed
recently in [27].
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APPENDIX A.

Here we show the calculation of the mechanical momentum and
the proof of momentum conservation for the case of mismatched
impedance. The impedance matching case can be regarded as a special
case of impedance mismatching.

A.1. Calculation of Mechanical Momentum for the Case of
Mismatched Impedance

For the case of normal incidence, the generalized force is simplified to

~fmech = µ0

(
∂ ~P/∂t

)
× ~H − µ0ε0

(
∂ ~M/∂t

)
× ~E (A1)

Now we define fe = µ0(∂ ~P/∂t) × ~H, fh = −µ0ε0(∂ ~M/∂t) × ~E, then
the mechanical momentum acquired by the induced electric current is
given by

Pe =
∫ τ

0

∫ vgt

0
fe(z, t)dzdt

=
ε0E

2
0

c

∫ τ

0

∫ vgt

0




∂
∂t

[
(εa

r − 1)ta sin(kaz−ωat)−
(
εb
r−1

)
tb sin(kbz−ωbt)

]

×
[
ta

√
εa
r

µa
r

sin(kaz−ωat)−tb

√
εb
r

µb
r
sin(kbz−ωbt)

]


dzdt

=
ε0E

2
0

c

∫ τ

0

∫ vgt

0





[(−ωa)(εa
r − 1)ta cos(kaz − ωat)

−(−ωb)(εb
r − 1)tb cos(kbz − ωbt)

]

×
[
ta

√
εa
r

µa
r

sin(kaz − ωat)− tb

√
εb
r

µb
r
sin(kbz − ωbt)

]





dzdt
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=
ε0E

2
0

c

∫ τ

0

∫ vgt

0




(−ωa)(εa
r − 1)ta cos(kaz − ωat)ta

√
εa
r

µa
r

sin(kaz − ωat)

+ωa(εa
r − 1)ta cos(kaz − ωat)tb

√
εb
r

µb
r
sin(kbz − ωbt)

+ωb(εb
r − 1)tb cos(kbz − ωbt)ta

√
εa
r

µa
r

sin(kaz − ωat)

−ωb(εb
r − 1)tb cos(kbz − ωbt)tb

√
εb
r

µb
r
sin(kbz − ωbt)





dzdt

=
ε0E

2
0

c

∫ τ

0

∫ vgt

0



(−ωa)(εa
r − 1)t2a

√
εa
r

µa
r

1
2 sin(2kaz − 2ωat)

+ωa(εa
r − 1)tatb

√
εb
r

µb
r

1
2 {sin [(kb − ka)z − (ωb − ωa)t]

− sin [(kb + ka)z + (ωb + ωa)t]}
+ωb(εb

r − 1)tbta
√

εa
r

µa
r

1
2 {sin [(ka − kb)z − (ωa − ωb)t]

− sin [(ka + kb)z + (ωa + ωb)t]}
−ωb(εb

r − 1)t2b
√

εb
r

µb
r

1
2 sin(2kbz − 2ωbt)





dzdt

After integration over the spatial coordinate z, we obtain

Pe =
ε0E

2
0

c

∫ τ

0



(−ωa)(εa
r − 1)t2a

√
εa
r

µa
r

1
4ka

[cos(2ωat)− cos(2kavgt− 2ωat)]

+ωa(εa
r − 1)tatb

√
εb
r

µb
r

1
2





cos[(ωa+ωb)t]−cos[(ka+kb)vgt−(ωa+ωb)t]
ka+kb

+ cos[(ωb−ωa)t]−cos[(kb−ka)vgt−(ωb−ωa)t]
kb−ka





+ωb(εb
r − 1)tbta

√
εa
r

µa
r

1
2





cos[(ωa+ωb)t]−cos[(ka+kb)vgt−(ωa+ωb)t]
ka+kb

+ cos[(ωa−ωb)t]−cos[(ka−kb)vgt−(ωa−ωb)t]
ka−kb





−ωb(εb
r − 1)t2b

√
εb
r

µb
r

1
4kb

[cos(2ωbt)− cos(2kbvgt− 2ωbt)]





dt

It should be noted that, in the limit of ωa → ωb → ω, all the above
terms will vanish after integrating over the time interval [0, τ ], except
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the term cos[(kb − ka)vgt − (ωb − ωa)t], whose value is exactly one,
given that vg = ωb−ωa

kb−ka
. Thus, the mechanical momentum caused by

the electric current interaction is

Pe=
ε0E

2
0

c

τ

2(ka − kb)

[
ωa(εa

r − 1)

√
εb
r

µb
r

− ωb(εb
r − 1)

√
εa
r

µa
r

]
tatb

=
ε0E

2
0

c

τ

2(ka−kb)

[
ωa(εa

r−1)

√
µa

r

εa
r

−ωb(εb
r−1)

√
µb

r

εb
r

]√
εa
rε

b
r

µa
rµ

b
r

tatb (A2)

In the limit ωa → ωb → ω, we obtain

Pe =
ε0E

2
0τ

2
t20

εr

µr

d
dω

(
ω(εr − 1)

√
µr

εr

)

d(−ω
√

εrµr)
dω

(A3)

In a similar way, we obtain

Ph =
∫ τ

0

∫ vgt

0
fh(z, t)dzdt =

ε0E
2
0τ

2
t20

d
dω

(√
εr
µr

(µr − 1)ω
)

d(−√εrµrω)
dω

(A4)

Finally, we obtain the momentum expression (28).

A.2. The Proof of Pvac = Pvac2 + Pem + Pmech for the Case of
Mismatched Impedance

In Appendix A.1, the expression for the momentum inside the
metamaterial, Eq. (28), is decomposed into two parts,

Pmech = Pe + Pm (A5)

where Pe = ε0E2
0

2c
t20
η2

r

d[ω(εr−1)ηr]
dk τ , Pm = ε0E2

0
2c t20

d[ω(µr−1)/ηr]
dk τ with ηr =√

µr

εr
and k = −ω

c

√
εrµr. The two parts can be further rewritten as

Pe =
ε0E

2
0

2c

t20
η2

r

[
d

(−ω
√

µrεr

)

dk
− d(ωηr)

dk

]
τ

=
ε0E

2
0

2c

t20
η2

r

[
d

(−ω
√

µrεr

)

dk
− dω

dk
ηr − ω

dηr

dk

]
τ

=
ε0E

2
0

2c

t20
η2

r

[
c− vgηr − ω

dηr

dk

]
τ (A6)
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Pm =
ε0E

2
0

2c
t20

[
d

(−ω
√

µrεr

)

dk
− d (ω/ηr)

dk

]
τ

=
ε0E

2
0

2c
t20

[
d

(−ω
√

µrεr

)

dk
− dω

dk

1
ηr

+
ω

η2
r

dηr

dk

]
τ

=
ε0E

2
0

2c
t20

[
c− vg

ηr
+

ω

η2
r

dηr

dk

]
τ (A7)

Consequently, we have the total mechanical momentum

Pmech =
ε0E

2
0

2c
t20

[(
1 +

1
η2

r

)
c− 2vg

ηr

]
τ (A8)

As we have obtained the electromagnetic momentum of one wave
packet in vacuum and the metamaterial, i.e., Eqs. (24), (25) and (26),
which are rewritten here as

Pvac = ε0E
2
0τ (A9)

Pvac2 = −ε0E
2
0r2

0τ (A10)

Pem = ε0E
2
0τt20

vg

ηrc
(A11)

By the aid of (1 + r2
0)/t20 = (1 + 1/η2

r )/2, we can show that

Pvac = Pvac2 + Pem + Pmech (A12)

This means that the momentum is conserved in this process.
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