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ON SMALL-SIGNAL AMPLIFICATION IN A GYRO-TWT
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Abstract—The corrected dispersion relation governing the linear
interaction of a TE mode in a circular cylindrical wave guide with
an annular beam of gyrating electrons in a gyro-TWT configuration
is derived. The derivation of the correct dispersion relation no longer
involves any integration with respect to the radial coordinate ro of the
electron guiding center as the relevant equilibrium distribution function
turns out to be independent of ro. When the cyclotron resonance
condition is satisfied by the TE mode for a positive s-number, the
small-signal theory is shown to predict an initial exponential growth
of the mode with interaction length over a small but finite band of
frequencies around the design frequency.

1. INTRODUCTION

The mechanism of small-signal amplification in gyro-TWTs and
cyclotron resonance masers (CRMs) was actively studied by many
researchers in the 1980s [1–4] culminating in the derivation of the
dispersion relation in the form of an infinite series. The celebrated
(Doppler-shifted) cyclotron resonance condition

ω − vzβmn(ω)− sΩe/γ = 0 (1)

was identified as a sufficient requirement for small-signal amplification.
In (1), ω is the operating (radian) frequency, βmn(ω) is the unperturbed
propagation phase constant of the mnth waveguide mode, vz is the
axial speed of the electrons, Ωe = eBo/me is the electron cyclotron
frequency corresponding to an applied uniform magnetic field ẑBo in
the axial direction and γ is the relativistic factor. In the expression
for Ωe and in the sequel, −e and me are respectively the charge and
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the rest mass of an electron. When the cyclotron resonance condition
is satisfied by a particular wave-guide mode for a given s = so,
the dispersion relation may be reduced to an algebraic equation by
retaining only the significant contribution from the soth term of the
infinite series. The resulting biquadratic algebraic equation may be
solved for the (complex) propagation phase constant as a function of
the operating frequency. The works of Edgcombe [1], Chu et al. [2],
Fliflet [3] and Chu and Lin [4] may be cited as being specifically
directed towards a derivation of the linear dispersion relation for
circular cylindrical wave-guide modes. Edgecombe [1] assumes without
adequate justification that the r.f. charge and current densities depend
linearly on the electric field of the TE mode in the derivation of the
dispersion relation. Also, the need for maximizing

Imss∆
1
4
(1 + δmo)

(
J2

s+m(kcrg) + J2
s−m(kcrg)

)
,

where rg is the gyro-radius and kc is the mode cut-off wave number,
with respect to kcrg to arrive at the biquadratic algebraic equation
satisfied by the normalized phase constant k/kc has not been brought
out clearly by him. Although the derivation of the dispersion relation
by Chu et al. [2] for TE modes is free from any of these drawbacks, their
treatment is too sketchy leaving out many details of analysis. However,
a complete derivation with all details filled in has been provided by Chu
et al. in a subsequent paper [4]. Fliflet [3], on the other hand, gives
a detailed derivation of the linear dispersion relation together with a
description of the single-particle quasilinear theory for both TE and
TM modes. Finally, Kou et al. [5] have, in the recent past, presented a
linear theory, using Laplace transforms, that is applicable to both gyro-
TWTs and gyro-BWOs, and used this theory to study the stability of
harmonic gyro-TWTs.

All of the above derivations of the dispersion relation make
use of kinetic theory based on linearized Vlasov equation and a
transformation from the polar coordinates (r, θ, pt, φ) of the transverse
position and momentum to the gyro-co-ordinates (ro, θ, rL, φ̃)
(Edgcombe starts initially with Cartesian coordinates of position and
momentum) where pt = (p2

x + p2
y)

1
2 = (p2

r + p2
θ)

1
2 is the magnitude of

the transverse momentum, φ = arctan(py/px), ro is the distance of the
electron guiding center from the waveguide axis, rL = pt/meΩe is the
gyro-radius and φ̃ is the gyro-phase (See Figure 1) [3].

It is well known that the functional dependence of the axially
symmetric equilibrium distribution function fo on the position and
the momentum variables can only be through the single-particle
constants of motion. For an z-directed uniform magnetic field ẑBo,
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Figure 1. Geometry of Interaction [3].

such constants of motion in absence of space-charge fields are the total
energy

H =
[
m2

ec
4 + c2

(
p2

t + p2
z

)] 1
2 −mec

2

the canonical angular momentum Pθ = rpθ − 1
2eBo

r2

c and the z-
component of the linear momentum pz [6] where c is the vacuum
speed of light. The relation Pθ = 1

2meΩe(r2
L − r2

o) implies that the
axisymmetric equilibrium distribution function

f̃o(r, pt, φ, pz)∆ fo(H(pt, pz), Pθ(pt, ro), pz)∆ f̂o(ro, pt, pz)

is a function only of ro, pt (or equivalently rL) and pz.
Fliflet’s derivation of the dispersion relation is based on the

observation that, “for configuration which optimize the cyclotron
maser interaction, f̂o may be assumed to be independent of ro with
negligible error”, and he sets ∂f̂o/∂ro equal to zero on this ground.
However, he contradicts this hypothesis in a subsequent step by
assuming a ‘delta-function’ dependence for f̂o on ro. Chu and Lin [4],
on the contrary, do no drop the ∂f̂o/∂ro terms at any stage of their
derivation of the dispersion relation except that they too assume a
‘delta-function’ dependence for a differentiable function of ro!

It is shown in Section 2 that the axially symmetric equilibrium
distribution function corresponding to an applied axially directed
uniform magnetic field will be independent of ro. As a consequence, the
derivation of the correct dispersion relation requires integrations with
respect to the momentum variables pt and pz only. This is in marked
contrast to everyone of the ‘derivations’ of the dispersion relation,
which necessitates an integration with respect to the position variable
ro also, attempted so far in the literature.



78 Kalyanasundaram and Saini

2. EQUILIBRIUM DISTRIBUTION FUNCTION

It is quite surprising that every one of the derivations of the
dispersion relation attempted so far in the literature has failed to
take the following fact into account; whenever an axially-symmetric
equilibrium distribution function f̂o for an applied axially directed
uniform magnetic field ẑBo turns out to be a function only of the
position variable ro and the momentum variables pt and pz, the steady-
state linearized Vlasov equation for f̂o reduces to

∂f̂o/∂ro = 0 (2)

Proof of (2): The steady-state linearized Vlasov equation satisfied by
an axially-symmetric equilibrium distribution function f̃o(r, pt, φ, pz)
for an applied axially directed magnetic field ẑBo is

v.∇rf̃o − ev × ẑBo.∇pf̃o = 0 (3)

in absence of any space-charge electric field. In (3), v is the electron
velocity. With the help of the mutually orthogonal unit vectors

êt = pt/pt = r̂ cos(φ− θ) + θ̂ sin(φ− θ)

and

êφ = êt × ẑ = −r̂ sin(φ− θ) + θ̂ cos(φ− θ),

Equation (3) may be expressed as

(vtêt + vz ẑ) · r̂ ∂f̃o

∂r
+
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meγ
Boêφ ·
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∂

∂pt
+ êφ

1
pt
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+ ẑ

∂

∂pz

)
f̃o

=
pt

meγ
cos(φ− θ)

∂f̃o

∂r
+

eBo

meγ

∂f̃o

∂φ
= 0 (4)

since
∂f̃o

∂θ
=

∂f̃o

∂z
= 0

and
êφ · êt = êφ · ẑ = 0

Under a transformation of coordinates from (r, θ, pt, φ) to (ro, θ, pt, φ̃),
the left side of (4) becomes

sin φ̃

[
pt

meγ

ro

r2
(ro − rL sin φ̃)− eBorL

meγ

]
∂f̂o

∂ro
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since

∂f̃o

∂pt
=

∂f̂o

∂pt
+

cos φ̃

meΩe

∂f̂o

∂ro
− sin φ̃

meΩe

1
ro

∂f̂o

∂φ̃

∂f̃o

∂φ
= − pt

meΩe
sin φ̃

∂f̂o

∂ro
+

(ro − rL cos φ̃)
ro

∂f̂

∂φ̃

and ∂f̂

∂φ̃
= 0 (Recall that f̂o is a function of only ro, pt and pz by

hypothesis). Canceling, the non-identically zero common factors, the
steady-state Vlasov equation for f̂o assumes the form

−rL(rL − ro cos φ̃)
∂f̂o

∂ro
= 0

that is

∂f̂o

∂ro
= 0

since neither rL nor rL − ro cos φ̃ vanishes identically. The proof is
complete. Equation (2) implies that (i) f̂o does not depend on the
position variable ro and (ii) there is no restriction on the functional
dependence of f̂o on the momentum variables.

3. CORRECTED DISPERSION RELATION

In order to arrive at the correct dispersion relation resulting from the
linear interaction of the TEmn mode of a circular cylindrical wave guide
with an annular beam of gyrating electrons, we follow the approach
and the notation of Fliflet [3] to the extent possible. The small-signal
assumption permits the electromagnetic field of the TEmn mode in the
presence of the electron beam to be represented as

E = Re
{
ΠoCmn[(jmJm(kmnr)/r)r̂+kmnJ ′m(kmnr)θ̂]expj(ωt−βz−mθ)

}
(5)

B = Re
{

ΠoCmn

ω
[−βkmnJ ′m(kmnr)r̂ + jmβ(Jm(kmnr)/r)θ̂

}

−jk2
mnJm(kmnr)ẑ]ej(ωt−βz−mθ)} (6)

In (5) and (6), the prime superscript denotes differentiation with
respect to the argument, Πo is an amplitude constant, kmn = xmn/rw

is the cut-off wave number of the TEmn mode, Cmn = {[π(x2
mn −

m2)]1/2Jmn(xmn)}−1 is the normalization constant, xmn is the nth
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zero of Jm
′, rw is the waveguide wall radius and β is the a priori

unknown value of the perturbed propagation phase constant of the
TEmn mode linearly interacting with the electron beam. Closely
following the standard procedure adopted by Fliflet for analyzing the
linear interaction of a TE mode with an annular electron beam, we
arrive at the equation

(
ω2

c2
− k2

mn − β2

)
r2
w

(
1−m2/x2

mn

)
J2

m(xmn)

= −e2µo

π

∑
q

∑
s

{∫ ∞

o
p2

t dpt

∫ (rw+bw)/2

(rw−bw)/2
rdr

∫ 2π

o
dφ

∫ ∞

o
dpz

∫ 2π

o
dθ

[
F TE

smn(ro, pt, pz)J ′m+q(kmnrL)Jq(kmnro)ej(q−s+m)φ̃

/meγ(ω − βvz − sΩe/γ)]} (7)

corresponding to the Equation (30) in [3]. In (7)

F TE
smn(ro, pt, pz)=J ′s(kmnrL)Js−m(kmnro)[(ω−βpz/meγ)∂f̂o(pt, pz)/∂pt

+(βpt/meγ)∂f̂o(pt, pz)/∂pz] (8)

and we have assumed an annular beam of width bw centered around
the cylindrical surface r = rw/2. Making a change of integration
variables from (r, θ, pt, φ) to (ro, θ, pt, φ̃) with the help of the Jacobian
∂(r, θ, pt, φ)/∂(ro, θ, pt, φ̃) = ropt/r, and performing the θ and φ̃
integrations of the resulting multiple integral, we have(

ω2/c2 − k2
mn − β2

)
r2
w

(
1−m2/x2

mn)J2
m(xmn

)

=
−4πe2µo

me
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t dpt
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2

−rL

rw−bw
2

+rL

rodro

∫ ∞

o
dpz

{
F TE

smn(ro, pt, pz)J ′s(kmnrL)Js−m(kmro)/ [γ(ω − βvz)− sΩe]
}

(9)

The requirement

rw + bw

2
− rL >

rw − bw

2
+ rL

implies that
rL < bw/2

or equivalently
pt < σw ∆meΩebw/2 (10)

Substituting for F TE
smn from (8) and carrying out the integration with

respect to ro in the triple integral appearing under the summation in
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(9), we have

∫ σw

o

∫ ∞

o

(∫ bu−rL

bl+rL

J2
s−m(kmro)rodro

) [(ωγ − βpz/me)∂f̂o/∂pt

+(βpt/me)∂f̂o/∂pz]
γ(ωγ − sΩe − βpz/me)

p2
t (J

′
s(kmrL))2dpzdpt =

∫ σw

o

∫ ∞

o
p2

t (J
′
s(kmnrL))2[Psmn(kmn(bu − rL))

−Psmn(kmn(bl + rL))]
{[

(ωγ − βpz/me)∂f̂o/∂pt + (βpt/me)∂f̂o/∂pz

]

/γ(ωγ − sΩe − βpz/me)} dpzdpt (11)

where bu ∆ (rw + bw)/2 and bl ∆ (rw− bw)/2 are respectively the upper
and the lower boundaries of the electron beam and

Psmn(X)∆X2[J2
s−m(X)− Js−m−1(X)Js−m+1(X)]/2k2

mn

Performing integration by parts with respect to pt and pz in (11), the
correct form of the exact dispersion relation works out to be

(
ω2

c2
− k2

mn − β2

)
= − 4e2πµo

meKmnr2
w

∑
s

∫ σw

o
ptdpt

∫ ∞

o
dpz

[
(ω2

c2
− β2)p2

t Hsmn(rL)

m2
eγ

2(ωγ − βpz

me
− sΩe)2

− (ωγ − βpz

me
)Qsmn(rL)

γ(ωγ − βpz

me
− sΩe)

]
f̂o(pt, pz) (12)

where

Kmn =
(

1− m2

x2
mn

)
J2

m(xmn),

Hsmn(rL) = [J ′s(kmnrL)]2[Psmn(kmn(bu − rL))− Psmn(kmn(bl + rL))],
Qsmn(rL) = 2

[
(s2 − k2

mnr2
L)Js(kmnrL)/kmnrLJ ′s(kmnrL)

]
Hsmn(rL)

−kmnrL(J ′s(kmnrL))2[P ′
smn(kmn(bu − rL)) + P ′

smn(kmn(bl + rL))],

and we have assumed that f̂o(pt, pz) has compact support within the
open rectangle (0, σw) × (0,∞) in order to make the integrated parts
vanish. It is to be emphasized that the coefficients Hsmn and Qsmn are
functions only of the gyro-radius rL. In order to evaluate the double
integral appearing in (12) in closed form, we choose the functional
dependence of the equilibrium distribution function f̂o on pt and pz to
be

f̂o(pt, pz) = noδN (pt − pto)δN (pz − pzo)/2πpto

where δN (x) is a smooth (C1 at least) function with support contained
within the interval [−1/N, 1/N ] tending to the Dirac delta “function”
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in the sense of distribution theory [7] as N → ∞, no is the number
density of the electrons in the beam, and pto ∈ (0, σw) and pzo ∈ (0,∞)
are respectively the mean values of the magnitudes of the transverse
momentum and the axial momentum with which the electrons enter
the interaction region. For the above choice of f̂o, the double integral
in (12) is well approximated by its limit as N → ∞ provided N is
sufficiently large. Evaluating the double integral in closed form in this
fashion for a sufficiently large value of N , the dispersion relation (12)
takes on a familiar look:(

ω2

c2
− k2

mn − β2

)

= − 2e2µono

meγoKmnr2
w

∑
s

[
p2

to(ω
2/c2−β2)Hsmn(rLo)/

(
ωγo−βpzo

me
−sΩe

)2

−(ωγo − βpzo/me)Qsmn(rLo)/(ωγo − βpzo/me − sΩe)] (13)

where
γo =

{
1 + (p2

to + p2
zo)/c2

}1/2

A closer look, however, reveals that (13) is fundamentally different from
what is available in the literature as the coefficients Hsmn and Qsmn

are no longer dependent on the radial coordinate ro of the electron
guiding center.

It is clear from the form of the dispersion relation that the
principal contribution to the infinite sum in (13) arises from that value
so of s for which

ωγo − βpzo/me − soΩe ≈ 0

which may be identified as the cyclotron resonance condition (1) since
the magnitude of the fractional deviation |∆β/βmn|∆|(β−βmn)/βmn|
of β from βmn is ¿ 1 in small-signal interactions. Retaining only this
contribution, the dispersion relation simplifies to(

ω2/c2−k2
mn−β2

)
(ωγo−βpzo/me−soΩe)2+σo

[
p2

to

(
ω2/c2−β2

)
Hsmn

−(ωγo − βpzo/me)(ωγo − βpzo/me − soΩe)Qsmn] = 0 (14)

where, in terms of the beam current

Ib = enoπrwbwvzo,

σo = 2e2µono/meγoKmnr2
w = 2eµoIb/πmer

3
wbwvzoγoKmn,

Hsmn = Hsmn(rLo), Qsmn = Qsmn(rLo) and rLo = pto/meΩe.
The one-term approximation (14) to the dispersion relation (13)

may be recast as a biquadratic algebraic equation for Z ∆β/βmn:

Z4 + 2Z3 + (Λ + Ω)Z2 + 2(Λ− σΩ/2)Z − (k2
mn/β2

mn)Λ = 0 (15)
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where the non-dimensional coefficients Λ and Ω and the parameter σ
are defined in terms of the non-dimensional quantities

k̂mn = ω̂mn = kmn/k11, ω̂ = ω/k11c, β̂mn = βmn/k11

by
Λ∆ σo(pto/pzo)2Hsmn/k11, Ω∆ σoQsmn/k2

11β̂
2
mn,

σ = cω̂/vzoβ̂mn − 1

From the wave-guide dispersion relation we have β̂mn = (ω̂2 −
k̂2

mn)1/2 which is real for ω̂ ≥ ω̂mn = k̂mn (normalized cut-off frequency
(wave number)) of the TEmn mode. In arriving at (15) we have not
resorted to the standard approximation of dropping the second term
within the square brackets of (14) in comparison with the first term.
This approximation is equivalent to setting Ω = 0 in (15). Such a
step cannot be justified a priori. The biquadratic equation (15) has
always a pair of real roots and a second pair complex conjugate roots
if the ratio pto/pzo is not too small. Thus, the interacting TEmn mode
splits into a growing wave, a decaying wave, and a pair of waves not
subjected to any attenuation or amplification. However, all four waves
undergo a shift in their propagation phase constant relative to that of
the unperturbed wave-guide mode as a result of the interaction with
the electron beam.

4. ILLUSTRATIVE DESIGN EXAMPLE

We now illustrate the small-signal theory developed in this paper by
indicating the steps involved in the preliminary design of a typical
gyro-TWT amplifier. The design specifications are collected together
in Table 1.

For the data in Table 1, we compute

ω11 = ck11 = cx11/rw = 1.0221× 1011 rad/sec
ω̂d = 2πfd/ω11 = 5.778508

and the required values of the axial electron speed vzo and magnetic
field strength Bo to be

vzo = c
√

1− (x02c/2πrwfd)2 = 0.751737c

and
Bo = meck02/e

√
s2
o − (x02/8)2 = 1.23127T

The following performance curves are plotted in Figs. 2–5 against the
normalized frequency variable ω̂ = ω/ω11:
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Table 1. Design Specifications.

Beam current 500A
Wave-guide radius rw = 0.54 cm

Operating (center) frequency fd = 94 GHz
Annular beam width bw = rw/2

Beam upper boundary bu = 3rw/4
Beam lower boundary bl = rw/4

Gyro radius at design frequency rLo = bw/4 = rw/8
Operating mode TE02

s-number so = 2

Figure 2. Variation of (pt0/pz0)
required for cyclotron resonance.

Figure 3. Variation of the
normalized initial growth rate.

Figure 4. Variation of the per-
turbed non-dimensional propaga-
tion constant.

Figure 5. Variation of the
normalized deviation of the per-
turbed propagation constant from
β02.
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(i) Value of the ratio pto/pzo required for cyclotron resonance as
function of ω̂.

(ii) Variation of the normalized initial growth rate |Im∆β|/k11 with
respect to the normalized frequency ω̂.

(iii) Perturbed non-dimensional propagation phase constant (β02 +
Re∆β)/k11 of the exponentially growing wave as a function of
ω̂.

(iv) Normalized deviation Re∆β/k11 of the propagation phase
constant Reβ from the unperturbed propagation phase constant
β02 of the TE02 mode as a function of ω̂.

5. CONCLUDING COMMENTS

It may be seen from Figs. 2 and 3 that the drop in gain around the
design frequency, which corresponds to the flat maximum in the pto/pzo

plot, arising from the slight mismatch is not significant. This means
that the amplifier is capable of a reasonable operating bandwidth
around the design frequency. Since, the perturbation of the electron-
beam characteristics arising out of the interaction is neglected in
a small-signal theory, it does not make sense to discuss about the
performance indices like power gain, efficiency, optimum interaction
length etc. on the basis of a small-signal analysis of the gyro-TWT
amplifier.

Work on a large signal field theory for a gyro-TWT amplifier
incorporating space-charge effects is in progress and will be reported
in due course.
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