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Abstract—We present a rigorous full wave calculation of the optical
force on a dielectric cylindrical particle of an arbitrary size under
the illumination of one dimensional (1D) Airy beam. The radiation
force is written in terms of the cylindrical partial wave expansion
coefficients of the non-paraxial 1D Airy beams. Our simulation results
demonstrate that an Airy beam can accelerate the microparticles along
its parabolic trajectory, while transverse to which the particles are
trapped at the center of its main lobe, corroborating the possibility of
the long distance particle transport by means of an Airy beam.

1. INTRODUCTION

Airy beams, inspired by the nonspreading Airy wave packet solution
in the context of quantum mechanics [1, 2], was first successfully
generated using phase-modulated Gaussian beam in 2007 [3, 4], decades
after the proposal of its theoretical quantum mechanics analogue. In
contrast to other non-diffracting beams such as Bessel beams [5, 6] and
Mathieu beams [7], resulting from an appropriate conical superposition
of plane waves [8, 9] and showing non-spreading characteristics along
straight trajectories, Airy beams remain quasi-diffraction-free over
long distance while their main lobes accelerate during propagation
along parabolic trajectories. As Airy beams do not originate from
the conical superposition of plane waves, they are realizable even
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in one-dimension [4]. The unique features of Airy beams enable
many applications, which, amongst others, include novel optical
micromanipulation such as “optically mediated particle clearing” [10].

Pioneered by Ashkin [11, 12], optical micromanipulation based
on optical force has become a substantial field that has a major
impact on a variety of disciplines ranging from the microscopic
to atomic scales [13–15]. Microparticles can be guided to follow
trajectories incommensurate with the flow direction of fluid with the
help of the gradient and scattering forces originated from light beams.
The use of exotic light beams, in addition to Gaussian beams, has
come into prominence for the optical micromanipulation in biological
and colloidal sciences [10, 16, 17]. For instance, the “nondiffracting”
Bessel beams have been employed to trap microscopic particles in
multiple planes [16]. Trapping by optical vortices, namely, by beams
that carry optical angular momentum, may exhibit supercritical
Andronov-Hopf bifurcation [17]. In particular, the quasi-diffraction-
free Airy beams have also been used in achieving highly robust
and efficient optical manipulation termed “optically mediated particle
clearing” [10]. However, there appears no theoretical analysis of the
optical force experienced by microparticles in the Airy beam field. In
this paper, we present a rigorous full wave calculation of the optical
force exerted on a two-dimensional (2D) particle of arbitrary size by
Airy beams. The results presented are expected to be applicable to the
optical micromanipulation of micro-rods with finite length using one
dimensional Airy beams, provided that their lengths are much greater
than the diameters.

2. DESCRIPTION OF AN AIRY BEAM

An incident Airy beam propagating along x-axis with its electric field
polarized along z-axis is considered in 2D case. The configuration is
shown in Fig. 1 where the input plane of the system is set to be x = 0.
The initial field profile is [3, 4, 18–20]

Ez(x = 0, y) = E0Ai(y/y0) exp(αy/y0), (1)
where α > 0 is the parameter measuring the power conveyed by
beams, y0 is the transverse scale, and E0Ai(∆y/y0) exp(α∆y/y0) with
∆y = −0.937173y0 is the amplitude in the center of the main lobe.
As α becomes smaller, the Airy beam with finite power tends to be
a real non-diffraction beam. For the case when α = 0, it becomes a
non-spreading wave packet discussed firstly by Berry and Balazs [1] in
1978. With the increase of the transverse scale y0, the spatial width
of the main lobe [4] becomes larger and larger. In the paper, the time
harmonic factor exp(−iωt) is assumed and suppressed.
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Figure 1. The schematic diagram of an incident Airy beam interacting
with a dielectric circular cylinder. R and (xc0, yc0) are the radius and
the center of the cylinder, respectively. The origin of the coordinates
system xc-oc-yc is chosen to be located at the center of the cylinder.
The inset (a) shows the intensity distribution of the incident Airy beam
propagating along x-axis. And the inset (b) is the initial field profile
along y-axis in the plane x = 0.

Based on the plane wave spectrum representation [21, 22], an Airy
beam can be written in Cartesian vector components as

Ez(x, y) =
∫ ∞

−∞
cz(p, q) exp [ik(px + qy)] dq, (2)

where k is the wavenumber in the background medium, (p, q) is
the propagation direction of the component plane wave (p = cos γ,
q = sin γ, with γ the propagation angle of the plane wave), and cz(p, q)
is the complex amplitude of the plane wave, determined by the field
profile in the initial plane x = 0. It can be obtained from the following
inverse Fourier transform

cz(p, q) =
1
λ

∫ ∞

−∞
Ez(x = 0, y) exp [−ik(px + qy)] dy

= E0
y0

λ
exp

[
(α− iky0q)3/3

]
, (3)

where λ is the wavelength of the Airy beam in the background medium.
A useful relation can be found in P55 in [23] to calculate the above
angular spectrum. With these knowledge, the field profile at an
arbitrary point can be obtained from Eq. (2).

We then focus on the Cartesian coordinate system xc-oc-yc for the
circular shape boundary, and its corresponding cylindrical coordinate
is (r, θ), i.e., xc = r cos θ, yc = r sin θ. Since there is no rotation
between two Cartesian coordinate systems (shown in Fig. 1), so the



412 Lu et al.

transformation between them are x = xc + xc0 and y = yc + yc0.
Accordingly, the term exp [ik(px + qy)] in Eq. (2) can be written in
the form [24] below in the coordinate system xc-oc-yc as

exp [ik(px + qy)] = exp [ik(pxc0 + qyc0)] exp [ik(pxc + qyc)]

= exp [ik(pxc0 + qyc0)]
∞∑

n=−∞
inJn(kr) exp [in(θ − γ)] , (4)

where we have used the following relation

exp(ik · r) = exp [ikr(p cos θ + q sin θ)]

=
∞∑

n=−∞
inJn(kr) exp [in(θ − γ)] , (5)

with Jn(kr) the Bessel function of order n. Then we get the field
profile of a non-paraxial Airy beam at an arbitrary point described in
the cylindrical coordinates

Ez(r, θ) =
∫ ∞

−∞

y0

λ
exp

[
(α− iky0q)3/3

]
exp [ik(pxc0 + qyc0)]

×
∞∑

n=−∞
E0i

nJn(kr) exp [in(θ − γ)] dq, (6)

where the term
∑

inJn(kr) exp(inθ) is independent on q, and can be
extracted from the integral. For convenience, we set

p1n =
∫ ∞

−∞

y0

λ
exp

[
(α− iky0q)3/3

]
exp [ik(pxc0 + qyc0)]

× exp(−inγ)dq. (7)

In this manner, the incident Airy beam can be expanded into
cylindrical waves in the form

Ez(r, θ) =
∞∑

n=−∞
E0i

np1nJn(kr) exp(inθ). (8)

To make Eq. (8) applicable in realistic situation, we have to
evaluate the expansion coefficients p1n of the incident Airy beam
numerically. The integrand in Eq. (7) is highly oscillatory, adding
considerably to the difficulty of numerical calculation. It follows from
Eq. (7) that exp(−inγ) = (p − iq)n, with p =

√
1− q2 for the case

when (q2 ≤ 1) and p = i
√

q2 − 1 for the case when (q2 > 1). Then,
with a simple mathematical manipulation Eq. (7) is decomposed into,

p1n = c(1)
n + c(2a)

n + c(2b)
n , (9)
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where

c(1)
n =

∫ 0

−∞

y0

λ
exp

[
(α−iky0q)3/3

]
exp[ik(pxc0+qyc0)](p−iq)ndq,

c(2a)
n =

∫ 1

0

y0

λ
exp

[
(α−iky0q)3/3

]
exp[ik(pxc0+qyc0)](p−iq)ndq,

c(2b)
n =

∫ +∞

1

y0

λ
exp

[
(α−iky0q)3/3

]
exp[ik(pxc0+qyc0)](p−iq)ndq.

(10)

The integrand in Eq. (10) can be regarded as functions of complex
variable z given by

f(n, z) =
y0

λ

(√
1− z2 − iz

)n
exp

[
(α− iky0z)3/3

]

× exp
[
ik

(√
1− z2xc0 + zyc0

)]
,

(11)

g(n, z) =
y0

λ

(
−

√
1− z2 − iz

)n
exp

[
(α− iky0z)3/3

]

× exp
[
ik

(
−

√
1− z2xc0 + zyc0

)]
.

(12)

With the contours shown in Fig. 2, it is easy to arrive at

c(1)
n = −

∫

C−
f(n, z)dz = −

∫

C̃−
f(n, z)dz,

c(2a)
n =

∫

C̃+

f(n, z)dz −
∫

Ĉ+

f(n, z)dz,

c(2b)
n =

∫

C+

g(n, z)dz =
∫

Ĉ+

g(n, z)dz,

(13)

where use has been made of lim
z→∞zf(n, z) = 0 and lim

z→∞zg(n, z) = 0 for

0 ≤ arg z < π/3 or 2π/3 < arg z ≤ π.

3. ANALYTICAL EXPRESSION FOR OPTICAL FORCE

For the convenience of discussion, we still use the coordinate system
xc-oc-yc in the derivation of the optical force. For the region outside the
dielectric cylinder r > R, the total field is a summation of the incident
Airy beam field and the scattered field from the cylinder [25, 26], it can
be written in form

Eout
z (r, θ) =

∞∑
n=−∞

E0i
n

[
p1nJn(kr) + b1nH(1)

n (kr)
]
exp(inθ), (14)



414 Lu et al.

Figure 2. Schematic drawing of the contours C− and C+ for
integration in Eq. (7). The alternative contours C̃−, C̃+, and Ĉ+ in
realistic numerical evaluation [Eq. (13)] are schematically shown as
well.

where b1n is the expansion coefficients of the scattered field and
H

(1)
n (kr) is the first kind Hankel function of the order n. As the

dielectric cylinder is isotropic, the electric field inside the cylinder
r < R can be written as

Ecore
z (r, θ) =

∞∑
−∞

E0i
nd1nJn(kcr) exp(inθ), (15)

where d1n is the expansion coefficients and kc is the wave vector inside
the cylinder. By using the the boundary conditions at the dielectric
cylinder surface r = R, the Mie coefficients of the dielectric cylinder
can be obtained

d1n

p1n
=

kµc

[
Jn(kR)H(1)′

n (kR)− J ′n(kR)H(1)
n (kR)

]

kµcJn(kcR)H(1)′
n (kR)− kcµJ ′n(kcR)H(1)

n (kR)
,

b1n

p1n
=

kcµJn(kR)J ′n(kcR)− kµcJ
′
n(kR)Jn(kcR)

kµcJn(kcR)H(1)′
n (kR)− kcµJ ′n(kcR)H(1)

n (kR)
,

(16)

where µ and µc are the permeabilities of the background medium and
the the dielectric cylinder, respectively. For the case considered in
present work, the nonmagnetic medium is considered so that µ = µc =
1. The superscript “′” in J ′n and H

(1)′
n denotes the derivative of the

Bessel function and the first kind Hankel function with respect to the
argument. For a given Airy beam, the expansion coefficients p1n can
be easily determined by Eq. (7), and then the expansion coefficients
d1n and b1n are uniquely determined according to Eq. (16). In this
way, the electromagnetic field in the whole space can be obtained.

Now we turn to the calculation of the optical force imposed on the
dielectric cylinder by an Airy beam. Starting from the time-averaged
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Maxwell stress tensor [27]
〈

¯̄T
〉

=
1
2
Re

[
ε0εEE∗+µ0µHH∗− 1

2
(ε0εE ·E∗ + µ0µH ·H∗) ¯̄I

]
, (17)

where ¯̄I is the unit tensor, ε0 (ε) and µ0 (µ) are the permittivity and
permeability in the vacuum (background medium), respectively, and
Re denotes the real part. E = Ezêz is the total electric field, and
H = Hxc êxc + Hyc êyc = Hrêr + Hθêθ is the total magnetic field. For
2D case, the time-averaged electromagnetic force is

F =
∮

L

〈
¯̄T
〉
· n̂dl, (18)

where n̂ is the outward unit normal vector, and dl is the length element
of the integral curve L which can be chosen as any curve enclosing the
dielectric cylinder if the background medium is lossless with real ε and
µ. We choose an integral circle with radius r (r > R), and then the
time-averaged force is

F =
∫ 2π

0

〈
¯̄T
〉
· êrrdθ, (19)

where êr is the unit radial vector.
By using the asymptotic behavior of the Bessel function, the

first kind Hankel function, and their first derivatives, we can obtain
analytically the time-averaged force according to Eq. (19). The
components are in form

Fx = Re[F ],
Fy = Im[F ],
Fz = 0,

(20)

where
F = −ε0ε

k

[
p∗1,nb1,n−1 + p1,n−1b

∗
1,n + 2b1,nb∗1,n+1

]
. (21)

Fz = 0 implies that the dielectric cylindrical particle experiences no
optical force along z-axis due to the perpendicular incidence of the
Airy beam. In the derivation of Eqs. (20)–(21), we have considered

the the fact that the integral
∫ 2π
0

cos θ
sin θ

dθ makes the double summation
∑∞

m=−∞
∑∞

n=−∞ zero unless m = n± 1. In addition, for n runs from
−∞ to +∞, we also have

∑
n p1,n+1b

∗
1,n =

∑
n p1,nb∗1,n−1. It is evident

from Eq. (20)–(21) that the optical force is independent of the integral
curve r due to the lossless characteristic of the ambient considered in
our situation.
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The local optical ray of the Airy beam is a parabolic curve, and
the slope of the ray is x/2k2y3

0 when the parameter α = 0. For the
case when α 6= 0, the slope is close to x/2k2y3

0 provided that α is very
small [4, 18]. The intensity maxima of the Airy beam is a parabolic
trajectory characterized by

y ∼= 1
4

x2

k2y3
0

− 0.937173y0, (22)

where 0.937173y0 is the distance of the intensity maxima away from
x-axis. Along the parabolic trajectory of the Airy beam particles can
be accelerated, and the corresponding transverse acceleration of the
Airy beam is x2/4k2y3

0 [4, 10]. The optical force along the tangent and
the normal direction of the parabolic intensity maxima read

Ft = Fx cosβ + Fy sinβ,

Fn = Fx sinβ − Fy cosβ,
(23)

with tanβ = x/2k2y3
0 being the slope of the parabolic trajectory, as

shown in Fig. 1.
It should be noted that with the increase of the parameter y0 the

width of the main lobe becomes larger and larger, meanwhile, the slope
of the parabolic trajectory becomes lower and lower. When y0 tends to
infinity, the field in the main lobe of the Airy beam will be reduced to a
plane wave propagating along x direction. The amplitude of this quasi-
plane wave is E0Ai(∆y/y0) exp(α∆y/y0) with ∆y = −0.937173y0. By
taking E0 = 1

Ai(∆y/y0) exp(α∆y/y0) , we have calculated the optical force
imposed on a cylindrical particle placed in the center of the main lobe.
As can be expected, the optical force in such case is the same as that
imposed by a plane wave of unit amplitude [28]. This result can be
served as an evidence that our method is correct and effective.

4. RESULTS AND DISCUSSION

For a particle placed in the Airy beam, an optical force will exert on
it. At the same time, the particle also has effect on the field pattern of
the Airy beam as shown in Fig. 3. Interestingly, the non-diffractive
and self-healing properties [29] of the Airy beam can be observed.
The Airy beam used in Fig. 3 has the wavelength λ = 460 nm,
y0 = 4λ = 1.84 µm, α = 0.08, and E0 = 1, propagating in the air. The
dielectric cylinder placed in the center of the main lobe of the Airy
beam has the permittivity ε = 2.59 and the radius R = λ/4 = 115 nm.
The location of the dielectric cylinder is (xc0, yc0) = (4.6µm,−1.72µm)
with yc0 determined according to Eq. (22). It can be seen from the
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Figure 3. The field intensity pattern |Ez|2 of the Airy beam scattered
by a dielectric cylindrical particle. It is denoted by a white circle as can
be seen from the inset where the amplified view of the field intensity
pattern around the cylinder is presented.

inset that, locally, the Airy beam is remarkably disturbed. However,
it recovers itself back after a finite distance.

To examine the acceleration property of a cylindrical particle by
the Airy beam, we have calculated the optical force for the particle
at different positions of the main lobe. The considered positions
(xc0, yc0) are sampled uniformly in the center of the main lobe along the
parabolic trajectory, satisfied by Eq. (22). They are also schematically
illustrated in the inset of Fig. 4 where we present the tangent and
the normal optical forces as the functions of the abscissa xc0 of the
particle positions. They are calculated according to Eq. (23) and
the parameters used are the same as those in Fig. 3. It is evident
that the normal optical force is near zero, suggesting the frozen of the
particle transverse to the parabolic curve, while a finite value of the
tangent optical force indicates the acceleration of the particle along
the parabolic curve. In addition, it can also be seen from Fig. 4
that the tangent optical force is slowly decreased in the long range of
the parabolic curve, demonstrating the possibility to realize the long
distance particle transport.

For a cylindrical particle placed off the center of the main lobe,
it will lose the balance along the y direction. In Fig. 5, we have
shown the x and y components of the optical force imposed on the
particle versus its y coordinate. In the inset of Fig. 5, we also show
schematically the particle positions. The tangent direction of the
parabolic trajectory is nearly parallel to the x-axis, corresponding to
the slope of about 0.002 at x = 4.6µm. At the center of the intensity
maxima, the y component of the optical force is approximately zero,
corresponding to the equilibrium position. If the particle is deviated
away from this position, a y-component optical force will be exerted on
the cylindrical particle, pulling it back as illustrated by the red dashed
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Figure 5. The x and y components of the optical force plotted as a
function of the vertical coordinate yc0 of the particle position. The inset
shows schematically the particle positions (4.6µm, yc0) as denoted by
the white dots. The parameters used are λ = 460 nm, y0 = 4λ =
1.84µm, α = 0.08, E0 = 1, ε = 2.59, and R = λ/4 = 115 nm.

line in Fig. 5. The left and right zero points of the y component optical
force correspond to the edge of the main lobe. The x component of
the optical force is also shown in Fig. 5 as indicated by the black solid
line. It can be seen that at the main lobe center of the Airy beam
the x component of the optical force is the largest. At the edge of the
main lobe, it also equal to zero as well. Accordingly, the particle can
be accelerated along the parabolic trajectory of the main lobe of an
Airy beam.
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Our simulation also indicates that the trajectory for the particle
acceleration depends on the size of the cylindrical particle. In Fig. 6,
we present the positions at which zero normal optical force (Fn = 0)
are imposed on the cylindrical particle of different radii R in the main
lobe. At the positions given in Fig. 6, the tangent optical force exerted
on the particle is positive and maximal. Accordingly, these positions
correspond to the accelerating trajectory of the particles with different
radii. As a reference, we also present the parabolic curve of the main
lobe that is characterized by Eq. (22). It can be seen that for a very
small particle, the accelerating trajectory coincides with the parabolic
curve. With the increase of the particle size, the accelerating trajectory
will deviate away from the parabolic curve. However, the particle can
still be accelerated by the Airy beam along a nearly parabolic curve
over long distance.

Figure 6. The positions correspond to the zero normal force (Fn = 0)
in the main lobe of Airy beam for dielectric cylindrical particles of
different radii R. The parameters used in the numerical calculations
are λ = 460 nm, y0 = 4λ = 1.84 µm, α = 0.08, E0 = 1, and ε = 2.59.

5. CONCLUSION

We have developed a rigorous full wave solution for the calculation of
the optical force imposed on a cylindrical particle by an Airy beam.
The non-diffractive and self-healing property of an Airy beam from
the disturbance of a dielectric cylindrical particle is demonstrated in
our simulation. The calculation of the optical force indicates that
transverse to the parabolic curve of the main lobe of the Airy beam a
cylindrical particle can be trapped, while along the parabolic curve of
an Airy beam a finite optical force will be exerted on it, suggesting the
capability of an Airy beam in accelerating the particle. At last, we have
also examined the dependence of the effect on the size of the cylindrical
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particle, which suggests that although the accelerating trajectories are
a little different the long distance particle transport is still operable.
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