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Abstract—The distribution of fields travelling in the laminated
structure with assumed values for the tangential components of the
magnetic field intensities on the top and bottom surfaces of the
structure, has been obtained using linear electromagnetic field theory.
The treatment takes cognizance of interlaminar capacitance inherently
present in a laminated structure. Analysis presented in this paper
assumes identical field distribution in each lamination. It has been
concluded that convection currents are developed at the interface
between iron and insulator regions.

1. INTRODUCTION

In dynamo electric machines, poles are usually made of solid
iron. Excitation windings on these poles carry dc current. The
iron surface across the air gap is slotted. Air gap permeance
therefore varies periodically in the peripheral direction. This causes
a periodic variation of excitation field in the peripheral direction.
Travelling electromagnetic fields result when the machine is rotating.
Consequently, eddy currents are induced on the pole surface. To reduce
eddy currents, solid poles are often fitted with laminated pole-shoes.

Eddy currents are induced in conductors subjected to time
varying electromagnetic fields [1–3]. Eddy current phenomena in
laminated cores subjected to sinusoidally time varying electromagnetic
fields have been studied by many authors [4–7]. Theoretical and
experimental investigations of eddy currents in laminated pole-shoes
are reported in literature [8–12]. Bondi and Mukherji [10] have
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analyzed electromagnetic fields in the laminated poleshoe using a
model with negligible thickness of insulation on iron surfaces of
each pole-shoe lamination and infinite air gap length. Greig and
Sathirakul [11] in their treatment based on finite air-gap length,
conclude that the length of the air gap in a practical machine has
little effect on the eddy current loss. Both treatments [10, 11] assume
that the normal component of eddy current density vanishes at the
iron-insulator interfaces. Clearly, these treatments ignore the presence
of distributed capacitance in the path of eddy currents [3, 7]. As a
result, the continuity condition for the tangential component of electric
field intensity at the boundary between adjacent laminations [10, 11] is
violated. Analyses presented in these two references are quite involved.
A simplified version of the eddycurrent loss equation for laminated
pole-shoes is presented by Greig and Freeman [12].

The laminated armature core of any common type of rotating
electrical machine is subjected to travelling electromagnetic fields [13].
This paper attempts to provide a simple treatment for eddy currents
in laminated structures with assumed values for the tangential
components of the magnetic field intensities on the top and bottom
surfaces of the laminated structure. The analysis takes cognizance of
the presence of distributed capacitance in the path of eddy currents.
It is believed that the treatment can be adapted for the study of eddy
currents in smooth laminated pole-shoes as well as in the laminated
armature core of rotating electrical machines.

2. FIELD EQUATIONS

The rectangular Cartesian co-ordinates as shown in Fig. 1, are defined
as follows: X1 and X2 are parallel to the axial, Y to the peripheral
and Z to the radial directions The co-ordinate system is fixed on
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Figure 1. Laminated structure.
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the laminated structure. The space, 0 < z < `, is occupied by
the laminated structure consisting of iron and insulator regions laid
alternately along the axial direction. Let the positive direction of Y be
taken along the direction of motion of the travelling electromagnetic
field. If U is the relative peripheral velocity and λ the wavelength, the
electromagnetic fields will be functions of ej(ω·t−k·y), where k = 2π/λ,
and ω is the product of U and k. The exponential factor has, however,
been suppressed to present field expressions in the phasor form.

With constant values of permeability µ, permittivity ε, and
conductivity σ, Maxwell’s equations for harmonic fields in source-free
regions of the laminated structure, are:

∇ ·B = ∇ ·H = 0 (1a)
∇ ·D = ∇ ·E = 0 (1b)

∇×E = −jωµH (1c)
∇×H = σ̂E (1d)

where the complex conductivity σ̂, is defined as:

σ̂
4= (σ + jωε) (2)

From the above, following field equations are found:

∇ 2E = η2E (3)
∇ 2H = η2H (4)

where η2 = jωµσ̂ (5)

3. SOLUTION OF FIELD EQUATIONS

Let the suffixes 1 and 2 indicate respectively, the iron and insulator
regions in the laminated structure, as shown in Fig. 1. In view of the
geometric symmetry about the plane x1 = 0, the magnetic field H1x

is an odd function of x1. It is assumed that H1x vanishes at z = 0
as well as at z = `. The solution of Eq. (4), for H1x can therefore be
expressed as:

H1x=
∞∑

q=1

b1q · sinh (δ1q · x1)
sinh

(
δ1q · 1

2h1

) sin
(qπ

`
· z

)
(6)

where,

δ1q =

√(qπ

`

)2
+ η2

1 + k2 (6a)

η2
1 = jωµ1σ̂1 (6b)

σ̂1 = (σ1 + jωε1) (6c)
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while, b1q indicates a set of arbitrary constants.
The magnetic field H1y is an even function of x1, and it is assumed

that this field component vanishes at z = `. Let the magnetic field,
H1y on the surface z = 0 be given as (−H0). Therefore, a tentative
solution of Eq. (4), gives:

H1y = H0 · sinh δ10(z − `)
sinh (δ10 ·`) +

∞∑

q=1

c1q · cosh (δ1q ·x1)
sinh

(
δ1q · 12h1

) sin
(qπ

`
·z

)
(7)

where, c1q indicates a set of arbitrary constants.
Using Eqs. (1a), (6) and (7), one obtains:

H1z = −H0 · jk

δ10
· cosh δ10(z − `)

sinh (δ10 · `) +
∞∑

q=1

d1q · cosh (δ1q · x1)
sinh

(
δ1q · 1

2h1

)

· cos
(qπ

`
· z

)
+ d10

cosh (δ10 · x1)
sinh

(
δ10 · 1

2h1

) (8)

where, d1q indicates a set of arbitrary constants.
In view of Eq. (1a), for regions 1 and 2:

b1q · δ1q+c1q · jk − d1q · qπ

`
= 0 (1a1)

b2q · δ2q+c2q · jk − d2q · qπ

`
= 0 (1a2)

for q = 1, 2, 3, . . ..
Using Eqs. (6)–(8) and (1d), the components of electric field

intensity found are as follows:

E1x = − 1
σ̂1
·
[
H0 · η2

1

δ10
· cosh δ10 ·(z − `)

sinh(δ10 ··`) +d10 ·jk · cosh (δ10 · x1)
sinh

(
δ10 · 1

2h1

)

+
∞∑

q=1

{
c1q · qπ

`
+d1q · jk

}
· cosh (δ1q · x1)
sinh

(
δ1q · 12h1

) ·cos
(qπ

`
·z

)

 (9)

E1y =
1
σ̂1
·


∞∑

q=1

{
b1q · qπ

`
−d1q ·δ1q

}
· sinh (δ1q ·x1)
sinh

(
δ1q · 12h1

) ·cos
(qπ

`
· z

)

−d10 · δ10 · sinh (δ10 · x1)
sinh

(
δ10 · 1

2h1

)
]

(10)

E1z =
1
σ̂1
·


∞∑

q=1

{b1q ·jk + c1q ·δ1q}· sinh (δ1q ·x1)
sinh

(
δ1q · 12h1

) ·sin
(qπ

`
·z

)

 (11)



Progress In Electromagnetics Research M, Vol. 18, 2011 163

Considering Fig. 1, the field distributions for the insulation region,
−1

2h2 < x2 < 1
2h2, can be obtained if the suffix-1, in all equations of

this section is replaced by suffix-2. As a result, new sets of arbitrary
constants are introduced.

4. BOUNDARY CONDITIONS

4.1. Boundary Conditions at x1=1
2h1 (or x2= −1

2h2)

Boundary conditions for the tangential components of electric field
intensity are as follows:

E1y|x1= 1
2
·h1

= E2y|x2=− 1
2
·h2

over 0 < z < `. (12a)

E1z|x1= 1
2
·h1

= E2z|x2=− 1
2
·h2

over 0 < z < `. (12b)

The boundary condition for the continuity of current is:

σ̂1 ·E1x|x1= 1
2
·h1

= σ̂2 · E2x|x2=− 1
2
·h2

, over 0 < z < `. (13)

while, the boundary condition for the normal component of magnetic
field intensity is:

µ1H1x|x1= 1
2
·h1

= µ2H2x|x2=− 1
2
·h2

, over 0 ≤ z ≤ `. (14)

4.2. Boundary Conditions at Z = 0

The magnetic field, Hy on the z = 0 surface, is assumed to be given
as (−Ho). Further, it is assumed that the magnetic field, Hx on this
surface will vanish. Expressions for these field components are chosen
to satisfy these boundary conditions identically.

4.3. Boundary Conditions at Z = `

It is further assumed that the tangential components of magnetic
field intensity take zero value on the surface z = `. Expressions for
these field components are chosen to satisfy this boundary condition
identically.

5. EVALUATION OF ARBITRARY CONSTANTS

With the help of the orthogonal property of Fourier series and all
boundary conditions stated in Section 4.1 above, linear simultaneous
algebraic equations are found between various arbitrary constants (vide
Appendix A). Solution of these equations, together with Eqs. (1a1)
and (1a2), determines all arbitrary constants involved in the field
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expressions. These arbitrary constants are complex functions of various
parameters (geometric as well as electromagnetic), of the laminated
structure. For instance, expressions for d10 and d20 found from
Eqs. (A1) and (A2) are:

d10=−H0 ·
jk
` · σ̂1 · δ20 ·

{
1

δ2
10
− 1

δ2
20

}

σ̂2·δ10 · coth
(
δ20 · 1

2h2

)
+σ̂1 · δ20 · coth

(
δ10 · 1

2h1

) (15)

d20=H0 ·
jk
` · σ̂2·δ10 ·

{
1

δ2
10
− 1

δ2
20

}

σ̂2·δ10 · coth
(
δ20 · 1

2h2

)
+σ̂1 · δ20 · coth

(
δ10 · 1

2h1

) (16)

The general solutions of simultaneous Eqs. (A3)–(A6), (1a1)
and (1a2), can be readily found giving expressions for remaining
arbitrary constants. These, however, are of little use as the arbitrary
constants are not simple functions of various parameters. On the basis
of practical values of geometric and electromagnetic parameters of the
laminated structure, using simplified albeit approximate expressions
for various arbitrary constants are found as given in the Appendix B.

6. CONVECTION CURRENT DENSITY

The distributions of current density components, Ky and Kz, on the
surface x1 = 1

2 ·h1 (or x2 = − 1
2 · h2), are given by:

Ky = H1z

∣∣
x1= 1

2
·h1
−H2z|x2=− 1

2
·h2

, over 0 < z < `. (17)

and

Kz = H1y

∣∣
x2= 1

2
·h2
−H1y|x1=− 1

2
·h1

, over 0 < z < `. (18)

Thus, using Eqs. (7) and (8)

Ky = −H0 ·
{

jk

δ10
· cosh δ10(z − `)

sinh (δ10 · `) − jk

δ20
· cosh δ20(z − `)

sinh (δ20·)
}

+
{

d10 · coth
(

δ10 · 1
2
h1

)
−d20 · coth

(
δ20 · 1

2
h2

)}

+
∞∑

q=1

{
d1q ·coth

(
δ1q · 12h1

)
−d2q ·coth

(
δ2q · 12h2

)}

· cos
(qπ

`
· z

)
over 0 < z < `. (19)



Progress In Electromagnetics Research M, Vol. 18, 2011 165

and

Kz =−H0 ·
{

sinh δ10(z−`)
sinh (δ10 ·`) −sinh δ20(z−`)

sinh (δ20 ·`)
}
−
∞∑

q=1

{
c1q ·coth

(
δ1q · 12h1

)

−c2q · coth
(
δ2q · 1

2
h2

)}
·sin

(qπ

`
· z

)
over 0 < z < `. (20)

7. DISCUSSION

The solution of the boundary-value problem is based on a set of
continuity conditions on the boundary between two adjacent regions.
In the present case it was found that the continuity of the two
tangential components of the vector E and the normal component
of the vector B at the boundary do not provide sufficient equations
for the determination of various arbitrary constants. Similar situation
has been reported earlier as well [14, 15]. The additional boundary
condition used is the well known continuity of the total current crossing
the boundary surface (x1 = 1

2 · h1), at every point.
Discontinuity in the normal component of the vector D at the

boundary surface (x1 = 1
2 · h1), indicates deposition of electric

charges on this surface due to the capacitive effect of the interlaminar
insulation.

Discontinuity in the two tangential components of the vector H at
this boundary surface determines the convection current density with
components Ky and Kz on the boundary surface. It has been noticed
that, since:

Ky=H1z

∣∣
x1= 1

2
·h1
−H2z|x2=− 1

2
·h2

and Kz=H2y|x2=− 1
2
·h2
−H1y|x1= 1

2
·h1

hence on the surface x1 = 1
2 · h1

(
or, x2 = −1

2 · h2

)
,

∇ ·K=
∂Ky

∂y
+

∂Kz

∂z

=

[
∂H1z

∂y

∣∣∣∣
x1= 1

2
·h1

−∂H2z

∂y

∣∣∣∣
x2=−1

2
·h2

]
+

[
∂H2y

∂z

∣∣∣∣
x2=−1

2
·h2

−∂H1y

∂z

∣∣∣∣
x1= 1

2
·h1

]

=
[
∂H1z

∂y
− ∂H1y

∂z

]∣∣∣∣
x1= 1

2
·h1

−
[
∂H2z

∂y
− ∂H2y

∂z

]∣∣∣∣
x2=− 1

2
·h2

= σ̂1 · E1x|x1= 1
2
·h1
− σ̂2 · E2x|x2=− 1

2
·h2

In view of Eq. (13), the right hand side of this equation is zero.
Therefore,

∇ ·K = 0 (21)
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Power loss per unit surface area of iron-insulator interface is
obtained from:

℘s =Re

[
1
2
E·K∗

∣∣∣∣
x1= 1

2
h1

]
= Re

[
1
2

(
E1y ·K∗

y + E1z ·K∗
z

)∣∣∣∣
x1= 1

2
h1

]
(22)

While the power loss per unit volume of the iron in each lamination is
given as:

℘v =Re

[
1
2
E1 · J∗1

]
=Re

[
1
2
σ1

(
E1x · E∗

1x + E1y · E∗
1y + E1z · E∗

1z

)]
(23)

Therefore, total eddy current loss per unit peripheral length, ℘e, for
each lamination will be:

℘e = 2
∫ `

0
℘s dz +

∫ `

0

∫ 1
2
·h1

− 1
2
·h1

℘vdx1dz (24)

In the design of large electrical machines efficiency and cooling are
important considerations. Last three equations could be useful in the
study of machine efficiency and thermal circuits.

8. CONCLUSION

In view of Uniqueness theorem [16] for the solution of Maxwell’s
equations, Fourier series based field expressions are developed in
Section 2. These solutions satisfy assumed values for the tangential
components of the magnetic field intensities on the surfaces, z = 0 and
z = `. Therefrom it is possible to infer following features of the eddy
current phenomena associated with travelling electromagnetic field in
laminated structures.

(1) Because of capacitive effects, the axial component of eddy current
density in the iron J1x, does not vanish on the iron-insulator
interface. Consequently, charges are deposited on these surfaces
(i.e., x1 = ± 1

2 ·h1 or, x2 = ± 1
2 ·h2).

(2) These surface-charge distributions, travelling in the peripheral
direction constitute a surface distribution of convection currents
with density Ky.

(3) Since Ky varies sinusoidally along the peripheral direction-y,
radial component of convection currents with density Kz is also
present on these surfaces.

(4) The presence of these convection currents is one of the deciding
factors for shaping the distributions of electromagnetic fields in
laminated structures.
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(5) From approximate calculations it appears that the axial
component of magnetic field Hx in both conducting as well as non-
conducting regions, is negligible for practical values of geometric
and electromagnetic parameters of the laminated structure.

(6) From the approximate expressions for arbitrary constants given in
the Appendix B, it may be inferred that the various Fourier series
describing field distributions converge satisfactorily.

APPENDIX A.

Equations between various arbitrary constants found using boundary
conditions are as follows:

d10 · δ10

σ̂1
+d20 · δ20

σ̂2
= 0 (A1)

d10 · coth
(
δ10 · 12h1

)
−d20 · coth

(
δ20 · 12h2

)
= −H0 · jk

`
·
{

1
δ2
10

− 1
δ2
20

}
(A2)

Other equations, for q = 1, 2, 3, . . ., are as follows:
1
σ̂1
·
{

b1q · qπ

`
−d1q · δ1q

}
+

1
σ̂2
·
{

b2q · qπ

`
−d2q · δ2q

}
= 0 (A3)

1
σ̂1
{b1q · jk + c1q · δ1q}+

1
σ̂2
· {b2q · jk + c2q · δ2q} = 0 (A4)

µ1 · b1q+µ2 · b2q = 0 (A5)
{

c1q · qπ
`

+d1q ·jk
}
· coth

(
δ1q · 12h1

)
−

{
c2q · qπ

`
+d2q ·jk

}

· coth
(

δ2q · 1
2
h2

)
= −H0 · 2

`
·
{

η2
1

δ2
1q

− η2
2

δ2
2q

}
(A6)

APPENDIX B.

Approximate expressions for various arbitrary constants found are as
follows:

b1q
∼= b2q

∼= 0 (B1)

c1q
∼=

[
−H0 · jωµ1σ

2
1

(σ1+jωε2)

]
· 2`2/π3

q ·
[
q2− (k`/π)2

] 4=
C1

q ·
[
q2− (k`/π)2

] (B2)
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c2q
∼=

[
−H0 · ω2µ1ε2σ1

(σ1+jωε2)

]
· 2`2/π3

q ·
[
q2− (k`/π)2

] 4=
C2

q ·
[
q2− (k`/π)2

] (B3)

d1q
∼=

[
H0 · kωµ1σ

2
1

(σ1+jωε2)

]
· 2`3/π4

q2·
[
q2− (k`/π)2

] 4=
D1

q2 ·
[
q2− (k`/π)2

] (B4)

d2q
∼=

[
−H0 · jk ·ω

2µ1ε2σ1

(σ1+jωε2)

]
· 2`3/π4

q2·
[
q2− (k`/π)2

] 4=
D2

q2·
[
q2− (k`/π)2

] (B5)

for q = 1, 2, 3, . . ., where, C1, C2, D1 and D2 are known constants as
defined above.

For the remaining arbitrary constants, approximate expressions
are:

d10
∼= H0 · j

k`
(B6)

d20
∼= 0 (B7)

Therefore, over 0 < z < `,

Ky
∼= −H0 ·

{
jk

δ10
· cosh δ10(z − `)

sinh (δ10 · `) − jk

δ20
· cosh δ20(z − `)

sinh (δ20 · `) +
j

k`

}

+
∞∑

q=1





D1−D2

q2 ·
[
q2− (k`/π)2

]


 cos

(qπ

`
· z

)
(B8)

Kz
∼= −H0 ·

{
sinh δ10(z − `)
sinh (δ10 · `) −sinh δ20(z − `)

sinh (δ20 · `)
}

−
∞∑

q=1





C1 − C2

q ·
[
q2− (k`/π)2

]


 · sin

(qπ

`
· z

)
(B9)
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