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Abstract—The dyadic Green’s functions (DGFs) for unbounded
and layered general anisotropic media are considered in this paper.
First, the DGF for unbounded problem is derived using the eigen-
decomposition method. Two different approaches are proposed to
obtain the DGF for layered problem when the source is located inside
the anisotropic region. The first approach is to apply the modified
symmetrical property of DGF to obtain the DGF for the field in the
isotropic region when the source is located inside the anisotropic region,
from the DGF for the field in anisotropic region when the source is
in the isotropic region. This modified symmetrical property can be
applied for the layered geometry with bounded anisotropic region being
either reciprocal or non-reciprocal medium. However, this method can
not give the DGF for the field inside the anisotropic region. Thus,
the second approach is presented to obtain the complete set of DGFs
for all the regions including the anisotropic region, by applying the
direct construction method through eigen-decomposition together with
matrix method.

1. INTRODUCTION

Radiation from the source embedded inside a layered anisotropic
structure has been of considerable interest among the researchers
for a long time [1–5]. One of the well-established tools for the
analysis of electromagnetic radiation problems is the method of Green’s
function. Several different methods have been proposed so far to
obtain the Green’s function of a layered planar geometry. They include
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the Fourier transform method [6–10], the transition matrix method
proposed by Krowne [11], the equivalent boundary method by Mesa
et al. [12] and the cylindrical vector wave function method by Li and
his group [13, 14]. The transmission line method is proposed in [15], in
which an isotropic medium is analyzed based upon the decomposition
of fields into TE and TM modes.

However, the DGFs of a layered structure obtained so far are
mostly for the case of the source located inside the isotropic region
or for the case of the tangential source parallel to the interface. In
this paper, the DGF of a layered structure with an arbitrarily directed
source embedded inside the general anisotropic region is considered.
The region where the source is located is assumed to have electric
anisotropy, which is characterized by a 3 by 3 permittivity tensor with
no constraint imposed on the property of the medium.

If the region where the source is located is a reciprocal medium
such as uniaxial medium, a common method to obtain the DGF is to
apply symmetrical property of DGF [16] to the available DGF with the
source inside the isotropic region. However, this symmetrical property
has two limitations. First, it cannot be used to obtain the DGF for
the layered geometry if the bounded region is non-reciprocal medium.
Secondly, the symmetrical property can not give the DGF for the field
in the region where the source is located. Thus, two corresponding
methods are proposed in this paper to overcome the limitations of the
existing symmetrical property.

This paper is organized as follows. First the DGF for the general
unbounded anisotropic medium with no limitations on the permittivity
and permeability tensor is presented using the eigen-decomposition
method in Section 2. The complete DGFs for all the regions of a layered
planar geometry with the source located in the isotropic medium are
then presented in Section 3. The modified symmetrical property is
proposed in Section 4 to obtain the DGF for the field in the isotropic
region with the source located inside the general anisotropic region for
a two layered geometry. Finally, the complete DGFs for all the regions
of a two layered geometry with the source located inside the anisotropic
slab are obtained via the direct construction method in Section 5,
followed by discussion in Section 6 and conclusions in Section 7.

2. DYADIC GREEN’S FUNCTION FOR UNBOUNDED
GENERAL ANISOTROPIC MEDIUM

DGF for a two layered geometry filled with uniaxial medium with
arbitrarily oriented optic axis is presented in [6]. The similar
method is then used to obtain the DGF of unbounded and layered
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biaxial anisotropic medium by Mudaliar and Lee [7] and unbounded
gyroelectric medium by Eroglu and Lee [8]. The form of DGF shown
above is dependent on the type of the medium and can not apply to
the general anisotropic medium. In this section, a general formula of
DGF obtained using the eigen-decomposition method is proposed for
the unbounded general anisotropic medium characterized by ε and µ
with all nine non-zero elements.

A medium is called anisotropic when its electrical and/or magnetic
properties depend upon the directions of the field vectors. The
relationship between the fields is given by D = ε0ε ·E and B = µ0µ ·H,
where ε and µ are the relative permittivity and permeability tensors,
respectively. For a reciprocal medium such as uniaxial or biaxial
medium, ε and µ are symmetric matrices. For a non-reciprocal medium
such as gyrotropic medium, the permittivity and/or permeability
matrices are not symmetric. Even in the principal coordinate (i.e.,
the coordinate axis aligned along the direction of the biasing magnetic
field), the off-diagonal elements of the permittivity and permeability
matrix are non-zero and satisfy ε = ε

† and µ = µ
† for loss-free

medium [17]. It needs to be noted here that a coordinate-free approach
can also be applied to obtain the spectral domain DGF for unbounded
general anisotropic medium [18]. However, to obtain the DGF of
the layered geometry, it is more convenient to use the DGF of the
unbounded medium proposed in this section.

The Maxwell’s equations (with a time variation of e−iωt) for an
unbounded medium are given as

∇× E = iωµ0µH

∇×H = −iωε0εE + J
(1)

The electric field due to a current source in the unbounded medium
can be written in terms of the dyadic Green’s function Gee(r, r′) as

E =
∫

v′

Gee(r, r′) · J(r′)d3r′, (2)

Substituting (2) into (1) and eliminating the magnetic field, a
second order differential equation for the DGF is obtained as follows.

(
∇× µ

−1∇× I − k2
0ε

)
Gee(r, r′) = iωµ0δ(r − r′)I (3)

Applying the Fourier transform to (3), we obtain the following in
the spectral domain:

−(kµ
−1

k + k2
0ε)Gee(k, r′) = iωµ0e

−ik·r′ , (4)
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where

k =

[ 0 −kz ky

kz 0 −kx

−ky kx 0

]
(5)

The wave vector is given as k = x̂kx + ŷky + ẑkz and we used the fact
that k × G = k · G. The spatial domain DGF Gee(r, r′) and spectral
domain DGF Gee(k, r′) are related by

Gee(k, r′) =

∞∫

−∞
Gee(r, r′)e−ik·rd3r (6a)

Gee(r, r′) =
1

(2π)3

∞∫

−∞
Gee(k, r′)eik·rd3k (6b)

The spectral domain DGF is given as solution to (4) in terms of
the electricwave matrixWE as

Gee(k, r′) = −iωµ0WE

−1
e−ik·r′ (7)

where
WE = kµ

−1
k + k2

0ε

Using the inverse Fourier transform (6b), we obtain the spatial
domain DGF as

Gee(r, r′) =
−iωµ0

(2π)3

∞∫

−∞
WE

−1
eik·(r−r′)d3k

=
−iωµ0

(2π)3

∞∫

−∞

adjWE∣∣∣WE

∣∣∣
eik·(r−r′)d3k (8)

It can be seen that |WE | is a fourth order polynomial of kz, with
4 roots corresponding to |WE | = 0, so it can be written as

∣∣∣WE

∣∣∣ = a4(kz − ku
zI)(kz − kd

zI)(kz − ku
zII)(kz − kd

zII) (9)

The subscripts I, II refer to two types of waves that exist in
anisotropic medium. We will call them type I and type II wave. Out of
the 4 roots, two roots ku

zI and ku
zII correspond to upward wave and the

other two kd
zI and kd

zII correspond to downward wave. Substituting (9)
into (8) and applying the Cauchy residue theorem to (8) along with
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the radiation boundary conditions, the 3D integration in the spectral
domain shown in (8) can reduce to a 2D integration as follows.

For z > z′, Gee(r, r′)

=
ωµ0

(2π)2

∞∫

−∞

∞∫

−∞

(
adjWE(ku

zI)
a4(ku

zI − kd
zI)(k

u
zI − ku

zII)(k
u
zI − kd

zII)
eikI ·(r−r′)

+
adjWE(ku

zII)
a4(ku

zII − kd
zI)(k

u
zII − ku

zI)(k
u
zII − kd

zII)
eikII ·(r−r′)

)
dkxdky (10a)

For z < z′, Gee(r, r′)

=
ωµ0

(2π)2

∞∫

−∞

∞∫

−∞

(
adjWE(kd

zI)
a4(kd

zI − ku
zI)(k

d
zI − ku

zII)(k
d
zI − kd

zII)
eiκI ·(r−r′)

+
adjWE(kd

zII)
a4(kd

zII − kd
zI)(k

d
zII − ku

zI)(k
d
zII − kd

zII)
eiκII ·(r−r′)

)
dkxdky (10b)

where
kI = x̂kx + ŷky + ẑku

zI , kII = x̂kx + ŷky + ẑku
zII ,

κI = x̂kx + ŷky + ẑkd
zI , κII = x̂kx + ŷky + ẑkd

zII

(10c)

The adjoint matrix of electric wave matrix which is obtained
from the second-order differential equation of electric field in the
spectral domain shown above is closely related with the specific type of
characteristic polarizations that can exist in the anisotropic medium.
Applying the eigen-decomposition [17, 19], adjWE can be written as

adjWE(kz) = XΛX−1 (11)

where

X = [ u1 u2 u3 ] , Λ =

[
λ1 0 0
0 λ2 0
0 0 λ3

]
, X−1 =




vT
1

vT
2

vT
3




If kz = kq
zp, (p = I, II, q = u, d), which is the root to |WE | = 0 as

in (9), two eigenvalues of the matrix adjWE(kq
zp) will reduce to zero.

Denoting the non-zero eigenvalue of the matrix adj WE(kq
zp) as λq

p,
we obtain

adjWE(kq
zp) = λq

pê
q
p

(
v̂q
p

)T for p = I, II; q = d, u (12)

where êq
p is the eigen-vector which corresponds to the eigenvalue λq

p.
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It should be noted that adjWE is a symmetric matrix for all values
of k, if the medium is reciprocal. Thus we have

v̂q
p = êq

p and
(
eq
px

)2 +
(
eq
py

)2 +
(
eq
pz

)2 = 1 (13a)

However, for a non-reciprocal medium, if kq
zp is a real number, then

adjWE(kq
zp) is a hermitian matrix. We then have

v̂q
p = êq

p

∗
and

(
êq
p

)∗
êq
p = 1 (13b)

For a non-reciprocal medium with kq
zp being a complex number or

imaginary number, we have

v̂q
p 6= êq

p and
(
v̂q
p

)T
êq
p = 1 (13c)

Using (12) in (10), the final dyadic form of DGF is given as

z > z′

Gee(r, r′) =
i

8π2

∞∫

−∞

∞∫

−∞
dkxdky

1
k0z

(
cu
I (ku

zI
)êu

I v̂u
I eikI ·(r−r′)

+cu
II(k

u
zII

)êu
II v̂

u
IIe

ikII ·(r−r′)
)

(14a)

z < z′

Gee(r, r′) =
i

8π2

∞∫

−∞

∞∫

−∞
dkxdky

1
k0z

(
cd
I(k

d
zI

)êd
I v̂

d
I eiκI ·(r−r′)

+cd
II(k

d
zII

)êd
II v̂

d
IIe

iκII ·(r−r′)
)

(14b)

where

cu
I (ku

zI
) = − 2k0zλ

u
I

a4(ku
zI − ku

zII)(k
u
zI − kd

zI)(k
u
zI − kd

zII)
,

cu
II(k

u
zII

) = − 2k0zλ
u
II

a4(ku
zII − ku

zI)(k
u
zII − kd

zI)(k
u
zII − kd

zII)

cd
I(k

d
zI) =

2k0zλ
d
I

a4(kd
zI − kd

zII)(k
d
zI − ku

zI)(k
d
zI − ku

zII)
,

cd
II(k

d
zII) =

2k0zλ
d
II

a4(kd
zII − kd

zI)(k
d
zII − ku

zI)(k
d
zII − ku

zII)

The vectors (êu
I , êu

II) and (êd
I , êd

II) correspond to the type-I
and type-II waves in a general anisotropic medium, with different
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characteristic polarizations propagating (or decaying) in the upward
and downward directions, respectively. It can be shown that the above
general expression for the wave vectors will reduce to the horizontally
polarized h-wave (êI = ĥ) and the vertically polarized v-wave (êII =
v̂) for an isotropic medium, the ordinary wave (êI = ô) and the
extraordinary wave (êII = ê) [6] for a uniaxial medium, and the a-wave
(êI = â) and b-wave (êII = b̂) [7] for a biaxial medium, respectively.
Thus, the DGF given in (14) can be easily calculated for many different
types of anisotropic medium.

One interesting thing noted here is that the dyadic forms in the
DGF of the unbounded anisotropic medium are not always composed
of two same vectors. Dyad composed of two same vectors holds true
only for the reciprocal medium such as uniaxial or biaxial medium.
For non-reciprocal medium such as gyrotropic medium, the dyad is
composed of two different vectors as shown in (13b) and (13c).

3. DYADIC GREEN’S FUNCTION FOR TWO LAYER
GEOMETRY WITH SOURCE INSIDE THE ISOTROPIC
REGION

In this section, the DGF of two-layer geometry with source located
inside isotropic region is considered. The geometry is shown in Fig. 1.
Region 0 is free space and Region 2 is denoted as isotropic medium
with relative permittivity ε2 and permeability of µ2. Region 1 is an
anisotropic medium of thickness d, with relative permittivity tensor ε1

and permeability tensor Iµ1. The current source is located at z = z′
in Region 0.

Region 0 

Region 1 

(Anisotropic)

Region 2

z

0z=
   z =z’

z=−d

Figure 1. Geometry of the two layer problem.

Applying similar approach in [6, 7], the DGF of the layered
geometry with Region 1 filled with general anisotropic medium

are presented in this section. Denote G
(0,0)

ee (r, r′), G
(1,0)

ee (r, r′) and
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G
(2,0)

ee (r, r′) as dyadic Green’s functions for Region 0, Region 1 and
Region 2, respectively, when the source is located at z = z′ in Region
0 for the two layer geometry problem and their expressions are given
as follows.

for 0 < z < z′

G
(0,0)

ee (r, r′) =
i

8π2

∫ ∞

−∞
dkxdky

1
k0z

{[
ĥ0(−k0z)eiκ̄0·r̄

+Rhhĥ0(k0z)eik̄0·r̄ + Rhvv̂0(koz)eik̄0·r̄
]
ĥ0(−k0z) +

[
v̂0(−k0z)eiκ̄0·r̄

+Rvhĥ0(k0z)eik̄0·r̄ + Rvvv̂0(koz)eik̄0·r̄
]
v̂0(−k0z)

}
e−iκ̄0·r̄′ , (15a)

for − d < z < 0

G
(1,0)

ee (r, r′) =
i

8π2

∞∫

−∞
dkxdky

1
k0z

{[
AheI êI(kd

zI)e
iκI ·r

+BheI êI(ku
zI)e

ikI ·r + AheII êII(kd
zII)e

iκII ·r

+BheII êII(ku
zII)e

ikII ·r
]
ĥ0(−k0z)

+
[
AveI êI(kd

zI)e
iκI ·r + BveI êI(ku

zI)e
ikI ·r + AveII êII(kd

zII)e
iκII ·r

+BveII êII(ku
zII)e

ikII ·r
]
v̂0(−k0z)

}
e−iκ0 ·r′ (15b)

for z < −d

G
(2,0)

ee (r, r′) =
i

8π2

∞∫

−∞
dkxdky

1
k0z

{[
Xhhĥ2(−k2z)eiκ2·r

+Xhvv̂2(−k2z)eiκ2·r
]
ĥ0(−k0z) +

[
Xvhĥ2(−k2z)eiκ2·r

+Xvvv̂2(−k2z)eiκ2·r
]
v̂0(−k0z)

}
e−iκ0·r′ (15c)

In the above expression, kn and κn denote the wave vectors of
upward propagating (or decaying) wave and downward propagating
(or decaying) waves along z-direction, respectively, in Region n (n = 0
or 2).

k0 = x̂kx + ŷky + ẑk0z, κ0 = x̂kx + ŷky − ẑk0z

k2 = x̂kx + ŷky + ẑk2z, κ2 = x̂kx + ŷky − ẑk2z

(16)
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ĥn(±knz) and v̂n(±knz) correspond to the horizontal and vertical
polarizations of the electric field for upward and downward propagating
waves in Region n (n = 0 or 2), respectively.

ĥn(+knz) = ĥn(−knz) =
ẑ × kn

kρ
, kρ =

√
k2

x + k2
y

v̂n(+knz) =
ĥn(+knz)× kn

kn
, v̂n(−knz) =

ĥn(−knz)× κn

kn

(17)

As shown above, horizontal polarization corresponds to the
wave polarized perpendicular to the plane of incidence while vertical
polarization corresponds to the wave polarized parallel to the plane
of incidence. The wave vectors and corresponding polarizations of
characteristic waves of Region 1 (anisotropic region) are defined in
Section 2 as kI , kII , κI , κII and êu

I (ku
zI), êu

II(k
u
zII), êd

I(k
d
zI), êd

II(k
d
zII).

The coefficients of the dyad in the DGF are obtained in terms of
half-space reflection and transmission matrix using the matrix method
of [6] as shown below.

R =
[

Rhh Rvh

Rhv Rvv

]
= R

01
+ X

10
R

12
(I −R

10
R

12
)−1X

01
(18a)

D =
[

AheI AveI

AheII AveII

]
= (I −R

10
R

12
)−1X

01
(18b)

U =
[

BheI BveI

BheII BveII

]
= R

12
(I −R

10
R

12
)−1X

01
(18c)

X =
[

Xhh Xvh

Xhv Xvv

]
= X

12
(I −R

10
R

12
)−1X

01
(18d)

The half-space reflection and transmission matrices R
10

, R
12

and

X
01

, X
12

can be obtained from the boundary conditions at z = 0, and

z = −d [6]. It is noted here that in the above equation R
12

is reflection
coefficient with reference plane at z = 0, the phase shift at z = −d
must be taken into account by the multiplication of the exponential
terms. With the complete expression of the DGF for each region with
source located inside Region 0, symmetrical property can be utilized
to obtain the DGF with source inside the anisotropic region shown in
the next section.
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4. DYADIC GREEN’S FUNCTION FOR TWO LAYER
GEOMETRY WITH SOURCE INSIDE THE ANISO-
TROPIC LAYER

If the source is located in Region 1 (anisotropic region), i.e., −d < z′ <
0 instead of Region 0, the symmetrical property of DGF [16, 20] can

be applied to obtain G
(0,1)

ee from G
(1,0)

ee using

G
(0,1)

ee (r, r′) =
µ1

µ0

[
G

(1,0)

ee (r′, r)
]T

(19)

provided that Region 1 is a reciprocal medium. Here, G
(1,0)

ee is the
DGF for the electric field in Region 1 with source located in Region

0, and G
(0,1)

ee is the DGF for the field in Region 0 with source located
in Region 1. The superscript T stands for the transpose. If Region
1 is non-reciprocal, i.e., the permittivity/permeability tensor is non-
symmetric, and then the above relation (19) needs to be modified [21].
The modified symmetrical property of DGF for the non-reciprocal
medium is given by

G
(0,1)

ee (r, r′)
∣∣∣∣
ε(Region 1)=ε1

=
µ1

µ0

[
G

(1,0)

ee (r′, r)
∣∣∣∣
ε(Region 1)=ε

T
1

]T

(20)

Thus for a non-reciprocal medium, in order to interchange the
source and the field points in different regions, the medium property
of the anisotropic region needs to be transposed. For a gyrotropic
medium it implies that the direction of the biasing magnetic field needs
to be reversed. It can be observed that (19) is a special case of (20) as
ε
T
1 = ε1 for a reciprocal medium. Applying the modified symmetrical

property to (15b) in Section 3, we thus have for a non-magnetic medium

G
(0,1)

ee (r, r′) =
[
G

(1,0)

ee (r′, r)
]T

=
i

8π2

∞∫

−∞
dkxdky

1
k0z

{
ĥ0(−k0z)e−iκ0 ·r

[
AheI êI(kd

zI)e
iκI ·r′ + BheI êI(ku

zI)e
ikI ·r′

+AheII êII(kd
zII)e

iκII ·r′ + BheII êII(ku
zII)e

ikII ·r′
]

+v̂0(−k0z)e−iκ0 ·r
[
AveI êI(kd

zI)e
iκI ·r′ + BveI êI(ku

zI)e
ikI ·r′

+AveII êII(kd
zII)e

iκII ·r′ + BveII êII(ku
zII)e

ikII ·r′
] }

(21)
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It needs to be noted here that G
(1,0)

ee (r′, r) is obtained for the
source inside the isotropic region with medium permittivity matrix of
the anisotropic region as the transpose of the initial medium. Since
the source and the field points are interchanged, the directions of the
fields inside Region 0 need to be upward wave. Hence, the following
transformations are applied:

kx → −kx, ky → −ky

κ0(−kx,−ky,−k0z) = −k0(kx, ky, k0z)

ĥ0(−kx,−ky,−k0z) = −ĥ0(kx, ky, k0z)

v̂0(−kx,−ky,−k0z) = v̂0(kx, ky, k0z)

(22)

Using (22), (21) reduces to:

z > 0 G
(0,1)

ee (r, r′)

=
i

8π2

∞∫

−∞
dkxdky

1
k0z

{
− ĥ0(k0z)eik0 ·r

[
AheI(−kx,−ky)êd

I(−kx,−ky)eiκI(−kx,−ky)·r′

+BheI(−kx,−ky)êu
I (−kx,−ky)eikI(−kx,−ky)·r′

+AheII(−kx,−ky)êd
II(−kx,−ky)eiκII(−kx,−ky)·r′

+BheII(−kx,−ky)êu
II(−kx,−ky)eikII(−kx,−ky)·r′

]

+v̂0(k0z)eik0 ·r
[
AveI(−kx,−ky)êd

I(−kx,−ky)eiκI(−kx,−ky)·r′

+BveI(−kx,−ky)êu
I (−kx,−ky)eikI(−kx,−ky)·r′

+AveII(−kx,−ky)êd
II(−kx,−ky)eiκII(−kx,−ky)·r′

+BveII(−kx,−ky)êu
II(−kx,−ky)eikII(−kx,−ky)·r′

] }
(23)

The above equation is valid for the two-layer problem filled with either
reciprocal or non-reciprocal medium. The wave vectors kp(−kx,−ky)
and κp(−kx,−ky) (p = I, II) are defined as in (10) with k

u
zp and k

d
zp

that are obtained for the tangential wave number of (−kx,−ky).
For a reciprocal medium, (21) can be further simplified using the

relations of the type-I and type-II wave vectors and field vectors in
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Region 1 as shown below.

κI(−kx,−ky, k
d
zI) = −kI(kx, ky, k

u
zI);

κII(−kx,−ky, k
d
zII) = −kII(kx, ky, k

u
zII)

êd
I(−kx,−ky, k

d
zI) = −êu

I (kx, ky, k
u
zI);

êd
II(−kx,−ky, k

d
zII) = êu

II(kx, ky, k
u
zII)

(24)

Such substitution leads to the DGF for the two-layer uniaxial and
biaxial medium shown in [6] and [10]. However, applying the above
symmetrical property cannot provide the DGF for the field in the
anisotropic region where the source is located. A direct construction
method is provided in the following section to obtain the complete set
of DGFs for all the regions of interest.

5. DYADIC GREEN’S FUNCTION FOR TWO LAYER
GEOMETRY WITH SOURCE INSIDE THE
ANISOTROPIC REGION USING DIRECT
CONSTRUCTION METHOD

In the previous section, the DGF G
(0,1)

ee (r, r′) was obtained using the

symmetrical property from G
(1,0)

ee (r, r′) with the source inside Region
0. The direct wave considered there was only the downward incident
wave in the isotropic medium. Different from the problem with the
source located inside the isotropic region, the method considered in
this section consists of the direct upward and downward waves from
the source as shown in Fig. 2.

In Fig. 2, ‘a’ wave and ‘b’ wave stand for the amplitude coefficient
matrix of the unit vectors corresponding to the direct upward and
downward wave generated by the source located inside the anisotropic
region (Region 1) bounded by z = 0 and z = −d. ‘A’ and ‘B’
represent the amplitude coefficient matrix for unit vectors of the total
upward and downward waves existing in Region 1 due to the multiple
reflections of the ‘a’ and the ‘b’ waves at both the boundaries z = 0
and z = −d. ‘C’ and ‘D’ represent the amplitude coefficient matrix
for unit vectors of the transmitted waves in Region 0 and Region
2, respectively. As seen from Fig. 2, all the waves in each region
include two different polarizations. Inside the anisotropic region, the
waves ‘A’ and ‘B’ include type-I and type- II polarizations, while the
transmitted waves ‘C’ and ‘D’ inside the isotropic regions include the
h and v-polarizations as described in Section 3. The above two-layer
problem can be decomposed into two half-space problems with one
corresponding to the reflection and transmission at the boundary z = 0
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ĥ
-

v̂
-

ê
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Figure 2. Representation of the waves and their corresponding
polarizations existing in each region of the two layer problem with
source inside the anisotropic region.

separating Region 0 and Region 1 and the other one corresponding to
the reflection and transmission at the boundary z = −d separating
Region 1 and Region 2. The waves in each region can then be related
through the half-space reflection and transmission coefficient matrices
as follows.

A = R
12

(b + B), B = R
10

(a + A)

C = X
10

(a + A), D = X
12

(b + B)
(25)

where R
ij

and X
ij

are the half-space reflection and transmission
coefficient matrices with wave incident from Region i to Region j.
Rewriting (23) such that A, B, C, and D are expressed in terms of the
direct waves generated by the source, we obtain

A = A
a
a + A

b
b, B = B

a
a + B

b
b

C = X
a
a + X

b
b, D = T

a
a + T

b
b

(26)

where

A
a

=
[

Reu
I eu

I
Reu

IIeu
I

Reu
I eu

II
Reu

IIeu
II

]
= (I −R

12
R

10
)−1R

12
R

10

A
b
=

[
Red

Ieu
I

Red
IIeu

I

Red
Ieu

II
Red

IIeu
II

]
= (I −R

12
R

10
)−1R

12
(27a)
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B
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(27b)

X
a

=
[

Xeu
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IIh
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I v Xeu

IIv

]
= X

10
(I −R
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R

10
)−1

X
b
=

[
Xed

Ih Xed
IIh
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Iv Xed

IIv

]
= X
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(I −R
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R
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(27c)

T
a

=
[

Teu
I h Teu

IIh

Teu
I v Teu

IIv

]
= X

12
(I −R

10
R

12
)−1R
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T
b
=

[
Ted

Ih Ted
IIh

Ted
Iv Ted

IIv

]
= X

12
(I −R

10
R

12
)−1

(27d)

The construction of the DGF in Region 1 is first considered and it
needs special attention. The anisotropic medium is separated into two
regions with one corresponding to the space above the source point (z′)
and the other corresponding to the space below the source point. For
region above the source point, the direct wave includes the upward
wave only, and for the region below source point, the direct wave
includes downward wave only. With the DGF for the unbounded
anisotropic region (Eq. (14)) and coefficients obtained from (27a)
and (27b), we have for z′ < z < 0,

G
(1,1)

ee (r, r′)

=
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dkxdky
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8π2k0z
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IIe
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IIe

−ikII ·r′
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, (28a)

Similarly, for the region below the source point, we have for −d < z <
z′,
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(28b)

It is seen from (28a) and (28b), that the first two terms inside
the integral represent the direct wave due to the sources, which are
obtained from the DGF of the unbounded anisotropic region as shown
in Section 2. All the other terms represent the upward (‘A’) and
downward (‘B’) propagating waves reflected at the two boundaries.

Since the tangential electric field and magnetic field have to satisfy
boundary condition at z = 0, the Green’s function for Region 0 (z > 0)
when source is located in the anisotropic region can be expressed in
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terms of coefficients from (27c) which are obtained for the transmitted
wave ‘C’ as

G
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ee (r, r′)=
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(28c)

Similarly, the DGF for the Region 2 (isotropic region) below
the anisotropic slab can be derived from the coefficients (27d)
corresponding to the transmitted wave ‘D’. Thus we have for z < −d,
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Note that v̂I , v̂II , the latter part of the dyad in (28a)–(28d)
is taken from the result (Eq. (14)) of the DGF for the unbounded
anisotropic medium in Section 2.

6. DISCUSSION

For a reciprocal medium, the coefficients of the dyad in the DGF
for Region 0, with source located inside the anisotropic region,
computed via the symmetrical property as in (23) and using the direct
construction method as in (28c), agree with each other. The coefficients
of the dyad in (23) are obtained from (18) with the substituted
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tangential wave vector (−kx,−ky), while the coefficients of the dyad
in (28) are obtained directly from (27) with the tangential wave vector
of (kx, ky). Their expressions are repeated here for convenience.

D =
[

AheI AveI

AheII AveII

]
= (I −R

10
R

12
)−1X

01

U =
[
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]
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12
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01
(29a)
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IIh
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Iv Xed

IIv

]
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12
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10
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It is verified numerically that the following relationship holds for (29a)
and (29b),[

AheI(−kx,−ky) AheII(−kx,−ky)
AveI(−kx,−ky) AveII(−kx,−ky)

]

=
[

cu
I (kx, ky)Xeu

I h(kx, ky) −cu
II(kx, ky)Xeu

IIh(kx, ky)
−cu

I (kx, ky)Xeu
I v(kx, ky) cu

II(kx, ky)Xeu
IIv(kx, ky)

]
(30a)

[
BheI(−kx,−ky) BheII(−kx,−ky)
BveI(−kx,−ky) BveII(−kx,−ky)

]

=

[
cd
I(kx, ky)Xed

Ih(kx, ky) −cd
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The coefficients of the DGF obtained using the symmetrical
property as in (29a) are composed of the half-space transmission matrix

X
01

for the waves incident from Region 0 to Region 1. However, it does
not represent the actual physical scenario of the problem of interest
since the source is located inside Region 1.

On the other hand, the complete coefficients of the dyad obtained
via the direct construction method, given by the RHS of (30a)
and (30b), provide more physical insight to the problem. Each term
in (30a) and (30b) is a product of the coefficients ‘c’ and ‘X’. The
coefficients ‘c’ (cu

I , cu
II and cd

I , cd
II) represent the amplitudes for the

direct type I and type II, upward and downward waves due to the source
in the unbounded anisotropic medium. The coefficients ‘X’ of (30a)
and (30b) correspond to the two-layer transmission coefficients in (29b)
for waves incident from Region 1 (where the source is) to Region 0.
Each term of (29b) has its own physical interpretation. Since the
source is embedded inside the bounded anisotropic slab, the direct
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wave generated by the source will experience multiple reflections at
both boundaries. The total upward wave from the accumulation of all

the reflections is indicated by (I−R
12

R
10

)−1. The transmission of the
total upward wave from Region 1 to Region 0 is characterized by the

half-space transmission matrix X
10

.

7. CONCLUSIONS

Dyadic Green’s functions are derived using eigen-decomposition and
matrix method for the unbounded general anisotropic medium and
layered anisotropic medium in this paper. It is shown that for
unbounded reciprocal medium, the dyad in the DGF is composed of
two same vectors which are the eigen-vectors of the adjoint of the wave
matrix, corresponding to the characteristic polarizations of the waves
in reciprocal medium. However, this relation does not hold for non-
reciprocal medium and the different second vector has been derived.

Applying the concept of the eigen-decomposition for the general
unbounded anisotropic medium and the matrix method to obtain
the coefficients for the layered geometry, the DGFs for the layered
problem with general anisotropic medium when the source is located
inside the isotropic region are obtained. If the source is located
inside the anisotropic region and the anisotropic region is a reciprocal
medium, DGF of Region 0 above the source point can be obtained
by applying the symmetrical property of DGF. If Region 1 is non-
reciprocal medium, then the conventional symmetrical property needs
to be modified. It is found that for a non-reciprocal medium such as a
gyrotropic medium, an interchange of the source and the observation
points in the two regions necessitates a reversal of the dc biasing
magnetic field to calculate the corresponding DGF.

Modified symmetrical property of DGF simplifies the process to
obtain the DGF. However, applying the symmetrical property can
not provide the complete set of DGFs for all the regions when the
source is located inside the anisotropic slab. Also, the available
symmetrical property doesn’t apply to the medium with magnetic
anisotropy. A new method to construct the DGFs of layered medium
with electric anisotropy directly from the characteristic waves in each
region using the eigen-decomposition and matrix method is presented
in this paper. This method can easily be extended to calculate
the DGFs for a multilayered geometry filled with general anisotropic
(electric or magnetic) medium with source located in any region.

Furthermore, the DGF obtained via direct construction method is
compared with the DGF obtained using symmetrical property for the
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reciprocal medium case. Interesting relationship for the coefficients
of the dyad in the DGFs obtained through two different methods is
observed and discussed. Thus a straightforward physical insight to the
DGFs is revealed when the source is located inside the anisotropic
region as compared to the results obtained using the symmetrical
property. The DGFs obtained in this paper have wide applications in
the scattering and radiation from arbitrarily shaped 3D objects located
inside the anisotropic slab.
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