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Abstract—Non-Cooperative Target Identification (NCTI) of aircraft
from radar measurements is a formidable problem that has drawn
the attention of engineers and scientists over the last years. NCTI
techniques typically involve a database with a huge amount of
information from different known targets and a reliable identification
algorithm able to highlight the likeness between measured and stored
data. This paper uses High Resolution Range Profiles produced with
a high-frequency software tool to train Artificial Neural Networks for
distinguishing between different classes of aircraft. Actual data from
the ORFEO measurement campaign are used to assess the performance
of the trained networks.

1. INTRODUCTION

One of the main concerns in the Air Forces during the last years has
been the development of a reliable identification system that minimizes
fratricide between allied forces. The different techniques that have
been researched to solve this problem may roughly be divided into two
classes [1]: cooperative and non-cooperative techniques. Cooperative
techniques (often referred to as Identification Friend or Foe-IFF-
techniques) are already operational. In fact, most fighter aircraft
are equipped with transponder systems answering to authorized
interrogations by transmitting a predetermined coded signal. By this,
friendly aircraft can be identified (if the IFF is working properly) but
positive identification of hostile or neutral aircraft is not possible.

In principle, this task could be achieved by the so-called Non-
Cooperative Target Identification/Recognition (NCTI/R) techniques
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based on radar, which rely on a comparison between the measured
target signature and a reference database [2]. The main task of NCTI
is the development of an identification (ID) system capable of making
a reliable classification of aircraft into different groups (friendly, hostile
or neutral), classes (aircraft that have been designed for a similar use,
e.g., civilian airliner, fighters or unmanned aerial vehicles) or even types
(aircraft that belong to a same class, e.g., Boeing 747, Boeing 767,
Airbus 310, etc.).

NCTI by means of radar can be mainly accomplished by Jet
Engine Modulation (JEM), High Resolution Range Profiles (HRRPs)
or Two-Dimensional Inverse Synthetic Aperture Radar (2D-ISAR)
images [3]. For any of these alternatives, however, one of the main
concerns is the generation of the database with known information of
different targets.

Among the different possibilities to fulfill this task, such as
measurement campaigns of flying aircraft, scale model measurements
or predictions obtained by electromagnetic software tools, the latter
seems to be the most feasible option, as it requires lower cost and
permits an easier way to obtain information of all the possible targets,
aspect angles and configurations. In this context, this paper presents
part of the Detectability and Electronic Warfare Laboratory (INTA)
research activities regarding the classification of different targets based
on their actual in-flight measurements, using a database populated
only with predicted HRRPs obtained with FASCRO, a high frequency
Radar Cross Section (RCS) prediction code [4].

Range profiles can be seen as a 1D image of an aircraft, where
the parts of the aircraft that mainly reflect the radar radiation,
called scatterers, project their reflection onto the Line Of Sight
(LOS). A HRRP for a determined aspect angle can be obtained after
transforming to the time-domain (by means of a Fourier transform)
the RCS response of the target at different controlled frequencies [5].
Usually, windowing functions are applied before Fourier transforming
to reduce spectral leakage, although they cause a reduction in
resolution.

HRRPs are different for each type of aircraft, so they are suitable
data for aircraft classification [6–11]. However, profiles depend strongly
on target aspect angle and a large data set is needed. Consequently,
the design of an identification system capable to manage this huge
quantity of changeable information is a challenging task. Artificial
Neural Networks (ANNs) have demonstrated their applicability on
different complex fields, even NTCI [12, 13].

This manuscript introduces a class ID proposal based on ANNs
whose inputs are actual data but previously trained only with
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simulated range profiles. Apart from class identification, a main
candidates list for type ID is also achieved. The system is tested with
actual HRRPs obtained from the ORFEO measurement campaign.
The two following sections provide information about measurement
and simulation parameters and data processing, whereas Section 4
describes the networks employed and Section 5 the results obtained.

2. DATA SOURCE

2.1. Actual Data

The North Atlantic Treaty Organization (NATO) performs different
research activities under its Research and Technology Organisation
(RTO). Over the years, part of this research has been focused on
high resolution radars and some measurement campaigns of actual
flying aircraft have been conducted. This is the case of the data used
in this communication, which comes from the ORFEO measurement
campaign of civilian airliners, held in 1995 and obtained with the
FELSTAR radar (stepped-frequency S-band radar owned by TNO-
FEL and located in The Hague, The Netherlands) [14]. This
measurement campaign was carried out as part of the RTO-SET-
040 Task Group activity and up to 17 different civilian airliners of
opportunity were measured.

For this work, the targets under study are a Fokker 100 (266
profiles), a Boeing 747–400 (959 profiles) and a Boeing 767 (269
profiles), which follow different paths (Figure 1(a)). The orientation
criteria and coordinate system are shown in Figure 1(b) and, according
to this and Figure 1(a), these aircraft were illuminated a bit below
the plane through nose and wingtips, and between side-on and tail-on
aspect angles.

The main measurement parameters used in this campaign are
shown in Table 1. These parameters were considered in order to
guarantee two main goals: to allow any civilian target to be within the
unambiguous range and to improve the robustness for target radial
motions. In this sense, the maximum unambiguous range (Ru) and
range resolution (∆R) for a stepped-frequency radar are given by
Equations (1) and (2),

Ru =
c

2∆f
(1)

∆R =
c

2N∆f
=

c

2β
(2)

where c is the speed of light.
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Figure 1. (a) Paths followed by the targets under study regarding
ORFEO campaign. Boeing 747 (solid line), Boeing 767 (dashed line)
and Fokker 100 (dotted line). (b) Coordinate system and orientation
criteria.

Table 1. Orfeo campaign waveform parameters.

Frequency S-Band

Waveform Stepped frequency

Polarization Vertical

Bandwidth β 453.6MHz

N. of pulses N 324

Frequency step ∆f 1.4MHz

Unambiguous range Ru 107.5m

Range resolution ∆R 0.33m

2.2. Synthetic Data

FASCRO is the code employed to predict the RCS of the targets
used to generate the HRRPs for this paper. It is a software tool
based on high frequency techniques (Physical Optics, PO, and Physical
Theory of Diffraction, PTD) that calculates the monostatic RCS of
electrically large complex targets. It works directly with Computer-
Aided Design (CAD) geometries modelled by Non-Uniform Rational B-
Splines (NURBS) surfaces [15], which allows good fitting to the actual
geometry of the target with less entities, and avoids the generation of
artificial edges, typical in faceted models. Figure 2 shows the civilian
CADs modelled by NURBS used in this work.
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Figure 2. NURBS CAD models (same scale ratio for the three
models).

Due to the asymptotic nature of the code, significant responses
from small or resonant size parts of the targets are not well treated
by FASCRO [16]. Therefore, antennas, inlets, exhaust pipes, cavities,
small protuberances, . . . are not included in the models used here.
Besides, although each surface of the model can be assigned a different
material in FASCRO, the simulations are run considering all surfaces
as Perfect Electric Conductor (PEC). It may sound strange, but the
aim is not to obtain excellent predictions that could perfectly match
the measurements. To do so, rigorous techniques such as the Method
of Moments — MoM — or Finite Element Method — FEM — could be
tried, although it would take a huge amount of time [17]. Indeed, the
objective is to generate a database in a reasonable time with HRRPs
good enough to being able to distinguish different targets.

In this work, the synthetic database was populated with five
different targets (see Table 2), belonging to two different classes: 3
civilian airliners (Fokker 100, Boeing 747–400 and Boeing 767) and
2 UAVs developed at the Institute and coded here as UAV1, with
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Table 2. Brief description of the targets that populate the synthetic
database.

Type Class Height (m) Length (m) Wingspan (m)

Boeing 747 Civilian 19.41 70.66 64.44

Boeing 767 Civilian 15.85 54.94 59.64

Fokker 100 Civilian 8.50 35.53 47.57

UAV1 UAV 1.44 8.20 12.50

UAV2 UAV 1.09 4.00 5.81

12.5m wingspan and UAV2, with 5.81m wingspan. These aircraft were
simulated for the paths shown in Figure 3: three paths with constant
elevation angle (92, 96 and 100 degrees) and each one with 45 degrees
azimuth variation. Each path consists of 1894 points (one point is a
profile) meaning that the azimuth step is 0.0243 degrees. The choice
of this azimuth step is due to the fact that these data will be used
to perform ISAR images in a future work and such azimuth variation
is the most suitable for that objective. Moreover, the more profiles
the better for training the ANN. Therefore, the simulated database is
finally populated by 28410 profiles (3 paths × 1894 point each path ×
5 aircraft).

It can also be seen in Figure 3 that the simulated paths do
not mimic the actual paths from the measurement campaign, but,
instead, try to cover an angular area which almost contain all of
them. This is because a hypothetical future complete database of
simulated data could not contain all the possible aspect angles of a
sphere and, therefore, an approach with selected cuts makes more
sense. Finally, all the targets under study were simulated for the above-
mentioned synthetic paths considering the same parameters used in the
measurement campaign (Table 1).

3. DATA PROCESSING

As said, some parts and effects are not taken into account in the
simulations and, therefore, differences between synthetic and actual
data are expected. However, the aim is to be able to discriminate
among classes, and, for that purpose, discrepancies between an actual
and a synthetic profile of the same aircraft should be less than
differences between an actual profile of an aircraft and synthetic ones
of other targets.

To accomplish this, proper pre-processing is necessary to enhance
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Figure 3. Simulated paths (thick
lines) cover an angular area which
almost contain all actual paths
(thin lines).
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Figure 4. Measured B747 profile
as a result of a typical processing
to generate HRRPs.

the likeness between actual and synthetic data. First, a threshold level
must be estimated for both measured and predicted profiles in order
to minimize the effect of clutter and noise. Then, the prominent peaks
as well as the relative distance among them and their intensity are
extracted. All these features will be used to produce more suitable
profiles just with these information.

This discrimination between useful and useless information to
generate appropriate input data is very important, since ANNs must
be trained just with information that can characterize a single output
during the training process, which is a feature of supervised learning.
If the ANN is fed with complete profiles with no pre-processing during
its training, it will not learn properly because both clutter and noise
data will be considered as useful information for training stage, and
consequently, incorrect outputs would appear.

3.1. Actual data

This subsection presents how measurements from ORFEO campaign
have been processed with an example for a B747 profile. Figure 4 shows
the profile as a result of a typical processing to generate HRRPs: a
Hamming window is applied before a 256-point Fourier transform, the
maximum is set to 0 dB and a dynamic range of 40 dB is assumed.
Figure 5 is a normalization from 0 to 1 of the same profile, a typical
requirement for ANNs inputs.

For this example, the target signal is located between 30m and
80m, approximately. However, the profile also contains clutter and
noise information. To eliminate it, a threshold level must be estimated.
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Figure 5. Measured B747 profile
with its intensity normalized from
0 to 1. Thick line corresponds to
the threshold level.
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Figure 6. Useful information
from a measured B747 profile
suitable for the ANN.

This threshold will depend on both radar and measurement parameters
and it can be set during the radar characterization process when
it is designed to adapt the received signal to the ID system. In
this work, the threshold level is estimated a posteriori (thick line in
Figure 5), taking into account the ID system requirements described
above: significant peaks, relative distance and intensity. Finally, only
the peaks above this last threshold, keeping their original intensity
level, are considered as inputs of the ANN (Figure 6).

3.2. Synthetic Data

The synthetic profiles are also processed following the above steps, but
now, because simulations have no noise, the threshold level is clearly
lower than the level used for measurements as can be seen in Figures 7
and 8.

4. ANN DESCRIPTION

The aim of this work is to test different ANN architectures where these
suitable profiles are used as inputs. In the first one, the ANN has as
many outputs as classes (two in this work: civilian airliners and UAVs).
In the second one, the ANN has as many outputs as targets, 5 aircraft
in this communication. There are up to 28410 simulated profiles, and
they have been generated with Fourier transforms of 256, 324, or 512
points. Each ANN tried in this work is a multilayer perceptron with
feedback propagation and 2 hidden layers, the first one with 16 neurons
and the latter with 4 neurons (Figure 9).
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Figure 7. Simulated B747 profile
with its intensity normalized from
0 to 1. Thick line corresponds to
the threshold level.
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Figure 8. Useful information
from a synthetic B747 profile
suitable to feed the ANN.

Figure 9. Network scheme with five outputs (one for each target).
Another architecture, only with two outputs (one for each class), has
been also checked.
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Figure 10 shows the processed simulated profiles used for training,
validating and testing the networks, and the differences among classes
can be appreciated. This process is done offline and should not be taken
into account for the total ID time. After that, the ANN is ready to be
fed with an actual measured profile (Figure 11) and, almost instantly,
it will select an output with the chosen class or nominated target,
depending on the architecture considered. Actual data are exclusively
used for evaluating the capability of the ANNs for identification.

5. RESULTS

The results obtained with the proposed ID method are summarized on
different confusion matrix shown in Table 3 to Table 6.

It can be appreciated that ANNs with 2 outputs, civilian airliners
or UAVs, are able to distinguish between each class with high level
of confidence, no matter the number of inputs, but no information on
type ID is provided (Table 3).

Similarly, ANNs with 5 outputs, one for each target, are capable
to perform class ID too, although class ID success drop slightly in
some cases. Also, in this second configuration, additional type ID
information is provided about the type of target (see Tables 4, 5
and 6). However, this information is not reliable to achieve type
ID with enough level of confidence, but a list of likely candidates is
obtained (this list consist of two target and they appear in bold face
in each table). It can be seen that the actual aircraft is always part of

Table 3. Confusion matrix of ANNs with 2 outputs (columns) and
different number of inputs.

256P CIV UAV % CLASS ID

CIV 1494 0 100

324P CIV UAV % CLASS ID

CIV 1494 0 100

512P CIV UAV % CLASS ID

CIV 1494 0 100

Table 4. Confusion matrix of ANN with 256 inputs and 5 outputs.

256P B747 B767 FK100 UAV1 UAV2 %TYPE ID %CLASS ID

B747 594 261 56 29 19 61.94 94.99

B767 18 159 83 8 1 59.11 96.65

FK100 14 96 123 27 6 46.24 87.59
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Table 5. Confusion matrix of ANN with 324 inputs and 5 outputs.

324P B747 B767 FK100 UAV1 UAV2 %TYPE ID %CLASS ID

B747 83 876 0 0 0 8.65 100.00

B767 51 142 76 0 0 52.79 100.00

FK100 27 128 111 0 0 41.73 100.00

Table 6. Confusion matrix of ANN with 512 inputs and 5 outputs.

512P B747 B767 FK100 UAV1 UAV2 %TYPE ID %CLASS ID

B747 301 618 37 2 1 31.39 99.69

B767 26 168 49 26 0 62.45 90.33

FK100 7 120 122 17 0 45.86 93.61

this list, proving that this method provides a reliable list of candidates.
It is worth noting that the classification ratio depends slightly on the
number of inputs, obtaining the best results when the number of inputs
equals the number of resolution cells of the FELSTAR radar (324).

Then, taking into account these results, ANNs properly trained
can be considered as an ID system capable of making a reliable aircraft
classification into classes, and even to nominate a list of candidates for
target type ID. However, a reliable type ID by means of synthetic
HRRPs and ANNs has not worked in this case.

6. CONCLUSION

A class ID system for NCTI based on ANNs exclusively trained with
simulated HRRPs has been introduced. For this particular study, the
synthetic profiles belonged to five different aircrfats, grouped into 2
classes, civilian airliners and UAVs.

Then, the system has been tested with actual HRRPs from three
different aircraft: Boeing 747, Boeing 767 and Fokker 100, which were
obtained with an operative radar.

Although the ANNs behaviour strongly depends on several factors
(training set, ANN architecture, number of inputs, hidden layers and
outputs, number of neurons on each layer, training function, etc.), it
can be appreciated that all the studied ANNs are able to distinguish
the class with a high level of confidence. Therefore, ANN properly
trained can be considered as an ID system capable of making a reliable
aircraft classification into classes. Moreover, if ANNs are properly
trained to distinguish among targets, they will be also capable to
provide additional information about the type of target, so a list of
main candidates for type ID can be obtained as well.
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7. FURTHER WORK

The authors are working on different aspects of the ID method in order
to improve the present work, i.e.,

• Research on different topologies: the number of neurons on each
hidden layer, different networks parameters and even other types
of ANN are being investigated more deeply to determine the
optimum architecture for class ID purposes.

• Improvements on the database: additional electromagnetic
simulations are been considered in order to increase the size of
the synthetic database.

• Research on type ID: a complementary algorithm based on ISAR
images is being developed in order to achieve a complete ID
system, which will be able to obtain the type of target with a
high level of confidence.

• Test the ANNs with other input targets: additional measurements
of UAVs and small civilian jets are been acquired to fulfill this task.
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