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Abstract—The paper presents an analytical investigation of a tapered
core optical fiber of which the outermost section is loaded with radially
anisotropic liquid crystal. The analyses are dealt with transverse
modes supported in the fiber structure followed by the relative
distribution of power in the different fiber sections. Preliminary
dispersion characteristics of the guide are also illustrated. The results
demonstrate that the TE modes transport very large amount of power
in the outermost liquid crystal region — the criteria much useful for
fiber optic sensing and field coupling devices.

1. INTRODUCTION

Among the complex forms of waveguides, studies related to several
varieties of them in respect of either the structure or the materials used
have appeared in the literature describing their certain technological
applications [1–13]. Liquid crystal fibers exhibit polarization
anisotropy, which makes them of much technological interest and useful
for many optical applications [14–16]. Investigators have reported such
fibers with liquid crystals filled in the core/clad regions with varieties
of material distributions. It is interesting to note that the macroscopic
optical properties of liquid crystals can be manipulated by suitably
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applying the external electrical fields [17, 18], because liquid crystals
present very large electro-optic effect. This feature essentially remains
of promising use in optical sensing.

The anisotropy in liquid crystal fibers may be of two types — i.e.,
radial and azimuthal; many investigations on the former one have not
appeared in the literature. The present report aims to emphasize the
radially anisotropic behaviour of liquid crystal, which may generally
be obtained after inserting the liquid crystal into a capillary tube
coated with N, N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl
chloride (DMOAP) [19]. In this connection, it would be of worth to
state that the technique to prepare a fiber with liquid crystal clad is
just based on deriving the same from the usually available fiber. The
section of fiber length, where the liquid crystal clad is needed, can
be etched to remove the original clad, and the same section can be
coated with DMOAP to achieve homotropical alignment of the liquid
crystal directors on the boundary. The radial configuration of the
liquid crystal can be obtained by capillary action after inserting the
treated fiber section into a DMOAP coated capillary tube with an inner
diameter larger than the fiber core.

Following this, an investigation is carried out that deals with a
liquid crystal fiber with the outermost clad section made of radially
anisotropic liquid crystal. Further, the fiber geometry is taken to be
tapered in the longitudinal direction as tapered fibers are proved to be
of immense use in optical sensing and other all optical applications.

Thus, the present communication takes into account an
amalgamation of features in respect of fiber geometry and the material
— the former one relates to the tapered structure [20–23] and the
latter one to the radially anisotropic outermost liquid crystal clad.
This is done in order to observe the effect on the propagation of power
in the liquid crystal section. Maxwell’s equations are implemented
for a rigorous analysis of the low order TE and TM modes, and the
illustrations are made of the power sustained in the three regions
of the fiber along the tapered length. Though the liquid crystal
fibers with radial anisotropies have also been reported before by
Choudhury and Yoshino [24, 25], a blend of liquid crystal material
and tapered structure is observed to yield a substantial amount of
power belonging to the outermost liquid crystal region — a much
desirable aspect required for optical sensing applications. Preliminary
investigations in respect of the transverse electric properties of tapered
liquid crystal fibers were presented earlier by the authors; the present
paper incorporates the transverse magnetic properties as well [26], and
the comparative analysis of the two cases.
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2. ANALYTICAL TREATMENT

We consider a liquid crystal tapered fiber, wherein the (infinitely
extended) outermost clad is filled with radially anisotropic liquid
crystal having the ordinary and the extraordinary refractive index
(RI) values as no and ne, respectively. The fiber core and the inner
clad sections are homogeneous, isotropic and non-magnetic dielectrics
with their respective RI values as n1 and n2 (with n1 > n2). In this
connection, we have to state that, although the technique to prepare a
liquid crystal clad fiber is described as above, for the sake of simplicity
of the analytical treatment, the outermost liquid crystal section is
considered as extended infinitely. The longitudinal view of the fiber
under consideration is shown in Fig. 1, where the tapered nature of
the structure is explicitly shown, as governed by

R(z) = Ro − z

L
(Ro −Ri) (1)

with Ri and Ro as the radius of the input and the output ends of the
tapered section, respectively, of length L. As such, the principal axis
of the fiber coincides with the z-axis, and the extraordinary principal
axis has a radial orientation. The liquid crystal clad region possesses
the RI distribution as

nR = ne and nφ = nz with ne > n1 > n2 > no.

This is illustrated in Figs. 2(a) and 2(b). Further, The region with
z < zi (= 0, as considered in our analysis) corresponds to the fiber
pigtail whereas those with z > zo (= L) to the expanded cylindrical
section.

x ∆z

Liquid crystal

section
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z
z = zi

z = zo = L

L

Figure 1. Tapered section of the liquid crystal fiber with split steps.
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Figure 2. Spatial RI distribution pattern of the fiber.

For the electromagnetic (EM) propagation in the fiber of Fig. 1,
the propagation constant (say β) will not be a constant. Instead, it
remains a z-dependent quantity, which stimulates one to consider β in
the form of a Taylor series expansion [27]

β ≈ β0 +
(

∂β

∂z

)
z (2)

under the assumption of a small variation of the fiber core radius with
z. In Eq. (2), β0 is the axial component of the propagation vector at
the origin z = 0.

Under the assumption of cylindrical polar coordinates (R, φ,
z), we consider the time t-harmonic and the axis z-harmonic
electric/magnetic fields, and the coupled wave equations for the
transverse EM field components [28]. We take into account the low
order modes, and it can then be stated that there will be only one
non-zero transverse E-field component eφ for the transverse electric
TE01 mode, and only one non-zero component eR for the transverse
magnetic TM01 mode; both these components will be independent of
the coordinate φ. Thus, for the TE01 mode, we have eR = 0 and
∂eφ/∂φ = 0, and for the TM01 mode, eφ = 0 and ∂eR/∂φ = 0. Under
the circumstances, the wave equations for the TE and the TM modes
may be presented as

∂2eφ

∂R2
+

1
R

∂eφ

∂R
+

(
k2

0n
2
φ − β2 − 1

R2

)
eφ = 0 (3)

and

∂2eR

∂R2
+

1
R

∂eR

∂R
+

{
(
k2

0n
2
R − β2

) (
nz

nR

)2

− 1
R2

}
eR = 0, (4)

respectively. Using Eqs. (3) and (4), it can be shown that the non-zero
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field components in the case of TE01 mode will be

HR = − β

ωµ0
eφ exp {j(ωt−βz)} with HR = hR exp {j(ωt− βz)} (5a)

and

Hz =
j

ωµ0

(
∂eφ

∂R
+

eφ

R

)
exp {j(ωt−βz)} with Hz =hz exp {j(ωt−βz)} ,

(5b)
and those in the case of TM01 mode will assume the form

Ez = −j
n2

e

βn2
o

(
∂eR

∂R
+

eR

R

)
exp {j(ωt− βz)} (6a)

and
Hφ = n2

ReR
ωε0

β
exp {j(ωt− βz)} . (6b)

In Eqs. (5) and (6), ω is the angular frequency in the non-magnetic
unbounded medium, µ0 is the free-space permeability and β is the
propagation constant along the optical axis. Further, R and β are
governed throughout by Eqs. (1) and (2), respectively.

Now, considering Eqs. (3) and (5), the electric/magnetic field
components in the different fiber sections may be deduced [19, 20],
based on which the dispersion relation for the guide may be obtained
by implementing the boundary conditions, which will ultimately yield
the frequency behavior of the tapered fiber with liquid crystal clad.
The matrix obtained after matching the fields in different regions may
be written in abbreviated form as ∆TE = 0. The explicit form of
the matrix is not shown here owing to its length. Further, based
on the electric/magnetic field components, expressions for the power
transmitted by the TE01 modes in the different fiber sections may be
finally obtained as

Pc = Ψ
(

π

ωµ0

)



R1∫

0

(J1(uR))2 dR + u

R1∫

0

RJ1(uR)J ′1(uR)dR



 (7)

Pic = Ψ
(

π

ωµ0

)






R2∫

R1

(I1(vR))2 dR + v

R2∫

R1

RI1(vR)I ′1(γ2R)dR





×




vK ′
1(vR1)J1(uR1)+K1(vR1)

(
1

R1
(J1(uR1)−J1(uR1))−uJ ′1(uR1)

)

vK ′
1(vR1)I1(vR1)+K1(vR1)

(
1

R1
(I1(vR1)−K1(vR1))−vI ′1(vR1)

)




2
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+





J1(uR1)
(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−uJ ′1(uR1)I1(vR1)

K1(vR1)
(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−vK ′

1(vR1)I1(vR1)





2

×




R2∫

R1

(K1(vR))2 dR+v

R2∫

R1

RK1(vR)K ′
1(vR)dR





+





vK ′
1(vR1)J1(uR1)+K1(vR1)

(
1

R1
(J1(uR1)−J1(uR1))−uJ ′1(uR1)

)

vK ′
1(vR1)I1(vR1)+K1(vR1)

(
1

R1
(I1(vR1)−K1(vR1))−vI ′1(vR1)

)




×




J1(uR1)
(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−uJ ′1(uR1)I1(vR1)

K1(vR1)
(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−vK ′

1(vR1)I1(vR1)





×


2

R2∫

R1

K1(vR)I1(vR)dR+v

R2∫

R1

RK1(vR)I ′1(vR)dR

+ v

R2∫

R1

RI1(vR)K ′
1(vR)dR






 (8)

Poc = Ψ
(

π

ωµ0

)[
1

K1(wR2)
{I1(vR1)


vK ′

1(vR1)J1(uR1)+K1(vR1)
(

1
R1

(J1(uR1)−J1(uR1))−uJ ′1(uR1)
)

vK ′
1(vR1)I1(vR1)+K1(vR1)

(
1

R1
(I1(vR1)−K1(vR1))− vI ′1(vR1)

)



+K1(νR2)
J1(uR1)

(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−uJ ′1(uR1)I1(vR1)

K1(vR1)
(
vI ′1(vR1)+ 1

R1
(K1(vR1)−I1(vR1))

)
−vK ′

1(vR1)I1(vR1)










2



∞∫

R2

{K1(wR)}2 dR + w

∞∫

R2

RK1(wR)K ′
1(wR)dR


 (9)

Eqs. (7), (8) and (9), respectively, represent the power transported
by the TE modes through the liquid crystal tapered fiber core, its
inner dielectric clad and the outermost liquid crystal clad sections.
Here, Ψ is a constant which can be determined by normalization
condition considering the input power. Also, J(•), K(•) and I(•) are
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Bessel and the modified Bessel functions, and the prime represents the
differentiation with respect to the argument of the function. Further,
the quantities u, v and w are, respectively, defined as

u =
√

n2
1k

2
0 − β2, (10a)

v =
√

β2 − n2
2k

2
0, (10b)

and w =
√

β2 − n2
ok

2
0 (10c)

with k0 = 2π/λ0; λ0 being the free-space wavelength. The total power
Pt transmitted by the TE01 mode through the fiber will then be the sum
of the power carried individually through the different fiber sections.

At this point, it is to be pointed out that the quantities R1 and
R2 in Eqs. (7)–(9) represent the localized values of the core and the
inner clad radii of the fiber under consideration. This is because
we implemented the split-step method [21–23] to treat the tapered
extension of the fiber along the longitudinal direction. Moreover, as
stated before, the values of β are throughout governed by Eq. (2).

Again considering Eqs. (4) and (6), the electric/magnetic field
components in the different fiber sections may also be found out [19],
which will ultimately yield the dispersion equation for this case, and
may by written in abbreviated form as ∆TM = 0 to illustrate the
frequency behavior of the tapered section. The explicit form of the
dispersion equation is not presented in the text owing to its formidable
size. The expressions of power transported by the TM01 modes
in the different fiber sections may also be deduced on the basis of
the electric/magnetic field components. Finally, the expressions will
assume the forms as follows:

pc = Ξ (1 + Θ)2
(

πωε0n
2
1

β

)(
I1(vR1)
J1(uR1)

)


R1∫

0

{
R {J1(uR)}2

}
dR


 (11)

pic = Ξ
(

πωε0n
2
2

β

)


R2∫

R1

R

{
Θ

(
I1(vR1)
K1(vR1)

)
K1(vR)+I1(vR)

}2

dR


 (12)

poc = Ξ
(

πωε0n
2
e

β

)[(
1

K1(qR2)

){
I1(vR2)+Θ

(
K1(vR2)I1(vR1)

K1(vR1)

)}]2



∞∫

R2

R {K1(qR)}2 dR


 (13)

with Θ =
(

1−(n1/n2)2

(n1/n2)2−1

)
.
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In Eqs. (11)–(13), Ξ is a constant which may again be determined
by the normalization condition considering the input power, and the
new quantity q is defined as

q =
no

ne

√
n2

ek
2
0 − β2. (14)

Again the total power pt transmitted by the TM01 modes through the
liquid crystal fiber will be the sum of the power transported through the
individual fiber sections, as given by Eqs. (11)–(13). Again, following
the split-step method, the quantities R1 and R2 are, respectively, the
localized values of the core and the inner clad radii of the fiber, and
the values of β are throughout governed by Eq. (2).

3. RESULTS AND DISCUSSION

We now analyze the propagation characteristics of the liquid crystal
tapered fiber under consideration in respected of the power transported
by the transverse (TE and TM) modes through the different fiber
sections. In our computation, we take the operating wavelength as
1.55µm, and the RI values of core (i.e., n1) and the inner clad (i.e., n2)
sections as 1.462 and 1.458, respectively. Further, the outermost clad
with radially anisotropic nematic liquid crystal is taken to be a BDH
mixture 14616 having the ordinary (i.e., no) and the extraordinary (i.e.,
ne) RI values as 1.457 and 1.5037, respectively. As to the geometrical
measurements of the tapered section, we take the taper length L as 5
cm with two different values of the inner core radius (10µm and 30µm)
at the input end (i.e., z = zi; Fig. 1), and a fixed value (100µm) of the
same at z = zo.

Though this communication is basically aimed to highlight the
propagation of power through different sections of the guide, it would
be of worth to present a brief mention about the features of the
dispersion behaviour. Figs. 3 and 4, respectively, illustrate the plots
of the dispersion characteristics of the guide under the TE and TM
mode excitations. The intersections of the curve with the horizontal
axis will yield the allowed values of the modal propagation constants.
We observe that the TE modes present more oscillatory behaviour
than the TM modes. Further, the allowed values of the propagation
constants correspond more to the case of TE mode excitation. The
further details of the dispersion behaviour will be presented in a future
communication.

Figures 5 and 6, respectively, correspond to the illustrations of
the power carried by the transverse modes wherein the logarithmic
plots of the power confinement factor are presented. At this point,
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Figure 3. The dispersion behaviour of the guide under the TE mode
excitation.
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Figure 4. The dispersion behaviour of the guide under the TM mode
excitation.

this is to be noted that, in the case of isotropic guides, the RI values
remain independent of the direction of propagation giving thereby the
identical values of the modal propagation constants and field cutoffs.
As such, the transverse modes are very difficult to separate in the
case of isotropic guides. In contrast, due to the direction-dependent
RIs values for anisotropic guides (e.g., liquid crystal waveguides), the
transverse modes in such guides will face different values of propagation
constants, field cutoffs and dissimilar states of polarizations. However,
the present communication is pivoted to the power transmitted by
the tapered fiber having the outermost section as radially anisotropic
nematic liquid crystal. Finally, an analytical investigation of the
effect of using the amalgamation of tapered fiber loaded with radially
anisotropic liquid crystal is touched upon.
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Figure 5. (a) TE mode power distribution in the tapered fiber core.
(b) TE mode power distribution in the tapered fiber inner clad. (c)
TE mode power distribution in the tapered fiber outer clad.

Figures 5(a), 5(b) and 5(c) illustrate the logarithmic plots of the
relative power distributions in the tapered fiber core, the inner clad
and the outermost liquid crystal clad, respectively, along the taper
length, which is the direction of propagation too. As stated above, we
consider two different values of the core radius of the input end, i.e.,
10µm and 30µm, and the radius of the core output is taken as 100µm.
We observe that, in the fiber core (Fig. 5(a)), with the increase in
taper length, the logarithmic power confinement also shows a gradual
increase; the variation remains more pronounced corresponding to the
lower input end dimension (i.e., 10µm core radius). The phenomenon
of gradual increase in power distribution is attributed to the fact that,
as the wave propagates across the tapered region, there is a continuous
increase in the waveguide dimension. A substantial increase in power
is initially observed for the case of higher input end core radius, which
is obviously due to the enhanced accumulation of power in this case.
Further, for both the values of input core radius, the modes with higher
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Figure 6. (a) TM mode power distribution in the tapered fiber core.
(b) TM mode power distribution in the tapered fiber inner clad. (c)
TM mode power distribution in the tapered fiber outer clad.

azimuthal index (ν = 2) transport a little higher amount of power as
compared to that by the lower azimuthal index value (ν = 1).

In Fig. 5(b), we notice an almost similar behaviour (as in Fig. 5(a))
in the relative power distribution in the inner clad section with the
only difference that the rise in power with taper length reaches a kind
of saturation near the taper output region. However, a substantial
increase in the transported power is found in this fiber section, and
the attainment of saturation becomes quick corresponding to the fiber
with larger dimension. Thus, it can be stated that the inner clad
section sustains more amount of power than the fiber core.

A further pronounced enhancement in the transported power is
seen in the outermost liquid crystal section wherein the relative power
shows a very small decrease with the increase in taper length, and
the decrease becomes more in the case of lower azimuthal index value,
i.e., ν = 1. Thus, the variation in the power confinement remains
larger corresponding to the lesser value of the input core dimension;
with the increase in input dimension, the confinement becomes almost
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uniform without showing much change along the longitudinal taper
length. This is attributed to the fact that the taper section undergoes
larger variation in dimension along its length with smaller value of
input end radius. The characteristic of attaining saturation is reversed
in this fiber section.

Looking at the power confinements in all the three sections, the
remarkable point to be observed is that, with the decrease of power
in the fiber core or the inner clad, it simultaneously increases in the
outermost liquid crystal clad, indicating thereby as if the power is
leaking off the fiber core, and propagating through the clad sections.
As such, the power is confined maximum in the radially anisotropic
liquid crystal section, and this makes such fiber structures as promising
candidates for sensing applications.

The aforesaid discussions correspond to the situation when the TE
modes are excited in the tapered fiber. Now, considering the excitation
of the TM modes, Figs. 6(a), 6(b) and 6(c) demonstrate the logarithmic
variations of the power transmitted by the TM modes in the above
discussed three regions of the fiber. The operating parameters are
kept as the same we used in the case of TE mode power confinements.

We observe that, in all the fiber sections, the trend of power
pattern with the taper length in the longitudinal direction (which is
the direction of propagation too) remains almost the same as that
previously noticed in the case of TE modes. However, the power
carried by the modes of higher and the lower azimuthal index values
are almost the same. Further, in the fiber core, the amount of overall
transported power is slightly increased as compared to the case of TE
modes (Fig. 5(a)). The same is observed in the inner clad as well — a
substantial increase in the transmitted power is seen in this section as
compared to the TE mode counterpart (Fig. 5(b)). However, compared
to the case of TE modes (Fig. 5(c)), in the TM field excitation, not
much increase in power is demonstrated in the outermost liquid crystal
clad. Apart from all these, we find the highest amount of power being
propagated in the inner clad, which is in contrast to the situation
observed in the case of TE modes wherein the maximum amount of
power is observed to be sustained in the outermost clad. In the present
case, we observe the power confinement in the outermost liquid crystal
region (Fig. 6(c)) to be is slightly less than that in the inner clad. As
such, corresponding to the TM mode excitation, the maximum amount
of power is sustained in the inner clad region of the fiber, whereas the
outermost clad confines slightly less amount of power than the inner
clad; the fiber core region certainly sustains the minimum amount of
power.
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4. CONCLUSION

From the foregoing discussions, it can be inferred that, in tapered
fibers with radially anisotropic liquid crystal outer clad, the TE modes
transport the maximum amount of power in the outermost region. This
feature is not that strong corresponding to the TM mode excitation as
the confinement remains mostly in the inner clad region in this case.
It is noticeable that the higher amount of power distribution in clad
sections can be interpreted as if the power is leaking off the fiber core,
and transferred to the fiber clad – the feature strongly observed in the
case of TE mode excitation. Further, this phenomenon is attributed to
the presence of radially anisotropic liquid crystal in the outermost clad.
Apart from this, the taper geometry also plays its role to transfer power
to the outer clad. As such, an amalgamation of the taper structure
and the clad anisotropy brings in an enhanced power in the outer clad
region — a much desirable characteristics for optical sensing and field
coupling devices.

Further work in this direction is in progress and will be taken up
in a future communication.
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