
Progress In Electromagnetics Research C, Vol. 21, 143–153, 2011

EXPERIMENTAL CHARACTERIZATION OF NONLIN-
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Abstract—We experimentally investigate the properties of nonlinear
pulses in coupled transmission lines with regularly spaced Schottky
varactors. The c and π modes are different propagation modes that
can be developed on a coupled line. Time-domain measurements show
that both modes support soliton-like pulses due to the presence of the
Schottky varactors; small c-mode pulses are generated by colliding two
π-mode pulses traveling in opposite directions. Moreover, we discuss
the relationship of the amplitude of the newly generated c-mode pulses
with different bias voltages and π-mode-pulse amplitudes.

1. INTRODUCTION

A transmission line periodically loaded with Schottky varactors is
called a nonlinear transmission line (NLTL) [1]. NLTLs are used
to generate an electrical shock [2], a soliton-like short pulse [3–5]
and harmonics waves [6, 7]. For the electrical engineering, a high-
power solitons were successfully developed in ceramics [8]. We recently
considered the weakly dispersive coupled NLTLs to develop baseband
pulses governed by the Korteweg de Vries equation, and proposed a
method of doubling the repetition rate of the pulse stream input to the
line [9, 10]. The c and π modes are two well-known propagation modes
on a linear coupled line [11]. Introducing Schottky varactors preserves
the original shape of a pulse traveling along a coupled NLTL because
of the balance between dispersion and nonlinearity, irrespective of
the propagation mode [9]. We numerically determined that the
collision of two π-mode nonlinear pulses leads to the development
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of a pair of c-mode pulses (one traveling forward and the other
backward) [10]. By utilizing the collision-generated pulses, we can
develop a high-repetition-rate pulse train. For that, one end of
each line is connected with the transmission lines having the π-mode
characteristic impedances, while the other end is connected with the
c-mode impedances. Each transmission line is terminated with the
corresponding matched resistance. By this arrangement, the multiple
reflections of the waves carried by both the c and π modes are
suppressed; therefore, the outputs are free from the distortions caused
by the reflections. When a π-mode pulse stream is input to the π-
impedance end, each pulse collides with the pulses consisting of the
pulse stream reflected at the other end. By this collisions and the
successive in-phase superposition contribute to the increase in the
repetition rate of the pulse stream at the output. When the c-mode
pulse travels N times faster than the π-mode one, the repetition rate
increases 2N times.

To examine the properties of nonlinear pulses in a coupled NLTL,
we carried out time-domain measurements of a test circuit. As a result,
we successfully observed that nonlinearity compensates for dispersive
waveform distortions for both the c- and π-mode pulses, and the
collision of two π-mode nonlinear pulses generates the c-mode pulses.
Numerical calculations solving the transmission equations of a coupled
NLTL accurately simulate the measured results. With the aid of
numerical calculations, we examined the dependence of the amplitude
of the c-mode pulses on the bias voltage and the amplitude of the
π-mode nonlinear pulses.

First, we briefly review the fundamental aspects of a coupled
NLTL including the circuit configuration and the single-soliton
waveform that characterizes nonlinear c- and π-mode pulses.
Definitions are also given for variables that characterize the measured
results. To reinforce our previous discussion in [9], we introduce
the mutual inductance that becomes influential for monolithically
integrated lines. Next, we discuss the measurements with several
numerically simulated results.

2. FUNDAMENTAL PROPERTIES OF COUPLED NLTLS

Figure 1 shows the diagram of a unit cell of a coupled NLTL. Two
NLTLs, denoted by lines 1 and 2, are coupled via Cm and Lm. For line
i (i = 1, 2), Li, Ri, and Ci represent the series inductor, series resistor,
and shunt Schottky varactor of the unit cell, respectively. Lines 1
and 2 are biased at V0 and W0, respectively. The c and π modes are
propagation modes on a linear coupled line [11]. These are the same for
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Figure 1. Unit cell of a coupled NLTL.

a coupled NLTL when the voltage amplitude is sufficiently small. Each
mode has its own velocity and voltage fraction between the lines (line
2 voltage/line 1 voltage). The quantities uc, uπ, Rc, and Rπ designate,
respectively, the velocity of the c mode, the velocity of the π mode, the
voltage fraction of the c mode and the voltage fraction of the π mode
at long wavelengths. These are explicitly written as

uc,π =

√
x1 + x2 ±

√
(x1 + x2)2 − 2x3

x3
, (1)

Rc,π =
x1 − x2 ±

√
(x1 + x2)2 − 2x3

2cml1
, (2)

where the upper (lower) signs are for c (π) mode. For concise notations,
we define x1,2,3 as

x1 = (C1(V0) + Cm)L1 − CmLm, (3)
x2 = (C2(W0) + Cm)L2 − CmLm, (4)
x3 = 2 [C1(V0)C2(W0) + (C1(V0) + C2(W0))Cm] (L1L2 − L2

m). (5)

In a linear line, the short-wavelength waves travel slower than the long-
wavelength waves due to dispersion. This distorts the baseband pulses
of short durations. In a coupled NLTL, nonlinearity introduced by
Schottky varactors can compensate for this distortion, irrespective of
the propagation mode. We model the capacitance voltage relationship
of a Schottky varactor as

C(x) =
C0(

1− x
VJ

)m , (6)

where x is the voltage between the terminals, and C0, VJ , and
m are the zero-bias junction capacitance, junction potential, and
grading coefficient, respectively. Note that x < 0 for reverse bias.
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By applying the reductive perturbation method to the transmission
equations of coupled NLTLs, we obtained the Korteweg-de Vries
equation that describes the nonlinear pulses on the lines [9]. The
dispersion coefficient pc(π) and the nonlinearity coefficient qc(π) are
calculated to be

pc,π = ∓
√

2cm√
(x1 + x2)2 − 2x3

[
x1 + x2 ∓

√
(x1 + x2)2 − 2x3

]−3/2

×
[

c1(V0)l21m1

V0 − VJ1

x1 − x2 ∓
√

(x1 + x2)2 − 2x3

x1 − x2 ±
√

(x1 + x2)2 − 2x3

+
c2(W0)l22m2

W0 − VJ2

x1 − x2 ±
√

(x1 + x2)2 − 2x3

x1 − x2 ∓
√

(x1 + x2)2 − 2x3

]
, (7)

qc,π =
1
24

√
x1 + x2 ±

√
(x1 + x2)2 − 2x3

x3
, (8)

where the upper (lower) signs are for the c (π) mode, and mi and VJi

are the varactor model parameters for the line i (i = 1, 2). Then, a
single-soliton solution with an amplitude of A0 is given by

V (x, t) = V0 −A0 sech2

[√
pA0

12q

[
x−

(
u +

pA0

3

)
t

]]
, (9)

W (x, t) = W0 −RA0 sech2

[√
pA0

12q

[
x−

(
u +

pA0

3

)
t

]]
, (10)

where (p, q, u, R) is set to (pc(π), qc(π), uc(π), Rc(π)) for the c (π)-mode
soliton. Note that A0 is set positive (negative) for p > (<)0.

3. EXPERIMENTS

We used the 112-section coupled NLTL, whose unit section is shown in
Fig. 1, with Lm = 0. The circuit was built on a standard breadboard
by using TOSHIBA 1SV101 diodes as the Schottky varactors. TDK
SP0508 inductors of 10.0 and 4.7µH provided inductances for lines 1
and 2, respectively, and 47 pF TDK FK24C0G1 capacitors provided
mutual capacitance. For the model parameters we employed, uc, uπ,
Rc, and Rπ are calculated using Eqs. (1) and (2) to be 7.36×107 cell/s,
3.25× 107 cell/s, 1.25, and −0.38, respectively. An Agilent 1134 active
probe detected signals along the test line and an Agilent DSO90254A
oscilloscope monitored them in the time domain.



Progress In Electromagnetics Research C, Vol. 21, 2011 147

(a) (b)

(c) (d)

Figure 2. Linear and nonlinear pulses in test coupled NLTL. (a) The
c-mode linear pulse, (b) the c-mode nonlinear pulse, (c) the π-mode
linear pulse, and (d) the π-mode nonlinear pulse. The thick and thin
waveforms correspond to the waveform monitored at the 50th cell on
lines 1 and 2, respectively.

For characterization of the c-mode pulses, a two-channel arbitrary
waveform generator (NF WF1974) generated two pulses having
identical amplitude and parity and fed them to the first cells of lines
1 and 2, whereas the 121st cells of both the lines were terminated
with DC sources. Both bias voltages, V0 and W0, were set to −3.0V.
Figs. 2(a) and (b) show the c-mode pulses monitored at the 50th cells
on lines 1 and 2 with small and large amplitudes, respectively. The
thick and thin curves correspond to the waveforms on lines 1 and 2,
respectively. In Fig. 2(a), the linear pulse was weakly distorted by
dispersion. Rc well characterizes the amplitude fraction between lines
1 and 2, which is estimated to be 1.23. On the other hand, the pulse
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exhibits several peaks developed by the evolving multiple soliton-like
pulses. Note that the voltage fraction between lines 1 and 2 is the same
as that of the linear counterpart. Figs. 2(c) and (d) show the π-mode
pulses monitored at the 50th cells on lines 1 and 2 with small and large
amplitudes, respectively. The pulse input to line 2 had the opposite
parity and was half as large as that input to line 1. Fig. 2(c) shows
that dispersion delayed the high frequency waves more than the low-
frequency waves owing to dispersion. Nonlinearity well compensated
for this distortion in Fig. 2(d). The voltage fraction between the lines,
which is estimated to be −0.40, is well characterized by Rπ for both
linear and nonlinear cases. Furthermore, the waveform in Fig. 2(d) is
well fitted by Eqs. (9) and (10) for A0 = 1.0 V.

Figure 3 shows the spatio-temporal waveforms on line 2 that
describe the collision of two π-mode nonlinear pulses. Two phase-
synchronized NF WF1974 generators provide signals, with the first
cells of lines 1 and 2 connected to one generator, the other generator
feeds pulses to the 121st cells of lines 1 and 2. The temporal delay
between the pulse incidence at the first cells and that at the 121st
cells was set to cause a collision at the 70th cells. Fig. 3 shows that
small and fast pulses, one traveling forward and the other backward,

Figure 3. Generation of c-mode pulses by colliding π-mode nonlinear
pulses. Trajectories A and B correspond to the two π-mode nonlinear
pulses, which collided at point P . Trajectories C and D correspond to
the generated c-mode pulses.
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originated at the collision point P . The velocity and the voltage
fraction of the generated pulses were close to uc and Rc, respectively;
thus, establishing that the collision of two π-mode nonlinear pulses
generates the c-mode pulses.

4. DISCUSSION

To investigate the properties of interacting nonlinear pulses, we
numerically solve the transmission equations by using a standard
finite-difference time-domain method for a coupled NLTL with the
Schottky varactors having C0 = 64.77 pF, VJ = 3.561V, and m =

(a) (b)

(c) (d)

Figure 4. Calculated linear and nonlinear pulses in test coupled
NLTL. (a) The c-mode linear pulse, (b) the c-mode nonlinear pulse,
(c) the π-mode linear pulse, and (d) the π-mode nonlinear pulse. The
thick and thin waveforms correspond to the waveform monitored at
the 50th cell on lines 1 and 2, respectively.
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1.259 in Eq. (6). First, we examine how the numerical calculations
simulate the measured results. Figs. 4(a), (b), (c), and (d) show
the calculated waveforms corresponding to the measured ones shown
in Figs. 2(a), (b), (c), and (d), respectively. For linear pulses, the
similarity between the measured and calculated waveforms is perfect.
Even for the nonlinear pulses, the soliton-like properties, such as the
development of multiple peaks in Fig. 4(b) and the compensation
of dispersive distortion in Fig. 4(d), are correctly simulated. Thus,
we concluded that the calculation method accurately predicts the
phenomenon in a coupled NLTL.

At present, the amplitude of the c-mode pulses generated by
colliding nonlinear π-mode pulses is considerably small. Broadening
the range of applications for coupled NLTLs requires design criteria
that obtain larger c-mode amplitudes. As a first step, we investigate
the dependence of c-mode pulse amplitude on manageable parameters.
Figs. 5(a) and (b) show the dependence of c-mode pulse amplitude
on the bias voltages applied to lines 1 and 2 and the amplitude of
colliding π-mode pulses, respectively. To obtain Fig. 5(a), we varied
the bias voltages from −4.0 to −1.0V in 0.5-V increments, keeping
a common bias voltage on lines 1 and 2. Qualitatively, c-mode pulses
should increase in amplitude as the bias increases, because the Schottky
varactors exhibit stronger nonlinearity for higher bias voltages, and

(a) (b)

Figure 5. Calculated amplitude of c-mode pulses generated by
colliding π-mode nonlinear pulses. The dependence of the c-pulse
amplitude on (a) the bias voltages applied to lines 1 and 2 and (b)
the amplitude of colliding π-mode nonlinear pulses.
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this was verified. Moreover, the c-mode amplitude in Fig. 5(a) is well
fitted by 31.3 + 108.3 ∗ e0.46∗V0 mV. A similar exponential dependence
is observed in Fig. 5(b), which is fitted by −253.7 + 215.6e0.22∗Vπ mV.
These exponential increases are useful for obtaining large c-mode
pulses.

Figure 6 shows the measured dependence of the c-mode pulse
amplitude on the bias voltages. Fig. 6(a) shows the waveforms
monitored at the 22nd cell, where the c-mode pulses are well separated
from the π-mode nonlinear pulses. The thick, thin, and dotted
waveforms correspond to the bias voltages of −2.0, −3.0, and −4.0V,
respectively. The pulses designated by F and B show the forward and
backward π-mode pulses, respectively. A dashed circle encloses the
target c-mode pulses, and the refined waveforms are shown in Fig. 6(b).
The amplitude of the c-mode pulse increases as the bias voltage
increases. Fig. 6(c) shows the dependence. The c-mode amplitude
increases from −4.0 to −2.0V. These measured results qualitatively
validate the possibility of increasing the amplitude of c-mode pulses.
Unfortunately, the collision-generated c-mode pulses cannot be fully
simulated by our numerical model. The discrepancy between the
measured and calculated amplitude dependences are mainly due to
the insufficient modeling of the Schottky varactors. For smaller VJ

(a)

(b)

(c)

Figure 6. Measured amplitude of c-mode pulses generated by colliding
π-mode nonlinear pulses. (a) The waveforms on line 2 monitored at the
22nd cell, (b) the waveforms of c-mode pulses, and (c) the dependence
of c-pulse amplitude on the bias voltages applied to lines 1 and 2.
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and larger m, the varactor exhibits stronger nonlinearity. As a result,
the amplitude of collision-generated pulses increases for such parameter
values. The yield of the varactor also influences the amplitude. It is
found that the c-mode amplitude decreases as the yield rate increases
through numerical calculations. Moreover, the loss elements such as
the parasitic resistances in inductors are another factors that determine
the c-mode amplitudes. The attenuation of incident π-mode pulses
reduces the amplitudes of the collision-generated c-mode pulses, which
too become attenuated. In general, the loss elements attenuate the
waves carried by the π mode more than the c-mode waves. Moreover,
the rate of attenuation depends on the bias voltage. Numerical
evaluation suggests that the amplitude reduction of collision-generated
pulses becomes more eminent for larger bias voltages.

5. CONCLUSION

Every mode can support soliton-like pulses in coupled NLTLs, and
the collision of π-mode nonlinear pulses generates c-mode pulses. For
higher bias voltages and larger π-mode amplitudes, the c-mode pulse
amplitude increases. These unique properties give coupled NLTLs
great potential for managing short electrical pulses.
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