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Abstract—The asymptotics of induced current of forward and
backward waves on a strongly elongated spheroid is constructed by
matching the asymptotic representations to the exact solution valid in
the vicinity of the rear tip of the spheroid. These asymptotic results
are compared with numerical computations.

1. INTRODUCTION

Diffraction of high-frequency electromagnetic waves by smooth convex
bodies generates creeping rays in the shadow zone of the body. These
creeping rays contributions to the field diffracted by the body can be
computed in UTD format [1], but provide a valid description of the field
only in the shadow. A way of including both shadow and light shadow
transition zone is given by Fock asymptotics [2]. This asymptotics is
written as decomposition in inverse powers of the parameter

m =
(

kρ

2

)1/3

,

where k is the wave number of the incident electromagnetic wave,
ρ is the radius of curvature of the geodesics on the surface taken
at the light-shadow boundary. Fock asymptotics gives an accurate
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approximation for high frequencies. Moreover, the error remains small
for diffraction by a cylinder down to kρ ≈ 3 (see [3], Figure 111d).
For diffraction by a sphere, this low bound increases to kρ ≈ 10 [4].
For elongated objects it grows further and may reach several hundreds.
Several approaches to diffraction by these objects has been proposed,
some supposing that the body is slender [5, 6], others studying specific
effects, such as diffraction of creeping waves by an edge [7]. To deal
with strongly elongated objects, an asymptotic approach, in the spirit
of the work of Engineer and al [8], was developed in [9, 10]. This
asymptotics is derived under the supposition that the parameter

χ = kρ
3/2
t ρ−1/2,

where ρt is the transverse radius of curvature of the surface, is of order
one, namely that large wavelength is compensated by small ratio ρt/ρ
of the surface curvatures. It is based on the solution of the problem of
diffraction of a plane wave by a spheroid [11, 12], that can be written
in closed form, for the specific case of elongated spheroid.

Though the agreement with extensive numerical computations of
the solution of [10] is satisfactory close to the light shadow separatrix,
this solution only includes the forward going wave, propagating from
the separatrix towards the rear tip of the spheroid, and does not
address the problem of reflection of creeping waves at the rear tip of
the object. This reflection generates a backward wave that interferes
with the forward going wave.

It is known that in a problem of diffraction by a cylindrical surface
the field in a vicinity of light shadow separatrix contains contributions
of creeping wave that envelop the shadowed side of the cylindrical
surface. Though theses waves exponentially attenuate, at not so high
frequencies their contribution may be significant (see, e.g., [13]). On
a strongly elongated object, the attenuation of the creeping waves is
smaller than on a cylinder and the contribution of backward wave
is more noticeable. As the result of forward and backward waves
interference, oscillations, which are larger in the vicinity of the rear
tip, appear in the amplitude of the current.

In this paper, we present a complete solution of the problem by
adding to the solution of [10] the asymptotics of backward going wave.

In Section 2 we present the solution derived in [10] and suggest
a general form of the backward wave asymptotics in the form of
an integral of Whittaker functions with unknown amplitude. The
determination of this amplitude requires the solution of the canonical
problem of the paraboloid, and we use the results of Fock [14]. We
show in part 3, that waves on this object appear as combination of a
wave propagating towards the tip and a wave reflected by a tip, and
compute the reflection coefficient. We match in part 4 this solution
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to the forward and backward wave on the spheroid, and, as a result,
obtain a complete and explicit solution. In Section 5, we use this
solution to compute the current on the surface. We check the validity
of our approach by comparing the results with numerical computations
in Section 6.

The relations between Whittaker functions useful to the
derivations are provided in appendices.

2. FORWARD AND BACKWARD WAVES

2.1. Previous Results

The asymptotics of [10] is derived under the assumptions that the
body is strongly elongated, that is the parameter χ introduced in the
introduction is of order one, that the body has rotational symmetry
and the incident wave runs along the axis of the body. The surface is
approximated by the surface of an appropriately chosen spheroid (See
geometry of the problem on Figure 1). Namely the semi-axes are

b =
√

ρρt, a = ρt,

where the radii ρ and ρt are taken at the light-shadow boundary. The
solution uses angular spheroidal [15] coordinate η, while the radial
spheroidal coordinate ξ is replaced with a stretched coordinate ν
according to the formula

ξ = 1− ν

4m2
.

The derivations of [10] result in the following asymptotics representa-
tions of electric and magnetic fields:

Eϕ = eikbη e−iπ/4

π

cosϕ√
αν

√
1− η2

+i∞∫

−i∞
Γ

(
1
2
− µ

)
Γ

(
1
2

+ µ

)

×
(

1− η

1 + η

)µ (
Mµ,0(−iαν) + ω0(µ)Wµ,0(−iαν)

+ω1(µ)Wµ,1(−iαν)
)
dµ, (1)

Hϕ = eikbη e−iπ/4

π

sinϕ√
αν

√
1− η2

+i∞∫

−i∞
Γ

(
1
2
− µ

)
Γ

(
1
2

+ µ

)

×
(

1− η

1 + η

)µ (
Mµ,0(−iαν) + ω0(µ)Wµ,0(−iαν)

−ω1(µ)Wµ,1(−iαν)
)
dµ. (2)
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Here α = (χ/2)1/3 is a parameter, Mµ,0, Wµ,0 and Wµ,1 are Whittaker
functions [16] and the amplitudes ω0 and ω1 should be chosen such
that the boundary conditions on a perfect conductor

Eϕ|ν=2α2 = 0, Eη|ν=2α2 = 0

are satisfied. The latter condition reduces to

4α2 ∂Hϕ

∂ν

∣∣∣∣
ν=2α2

+ Hϕ|ν=2α2 = 0

and we get the following system of equations for the amplitudes ω0 and
ω1 {

ω0Wµ,0(−iχ) + ω1Wµ,1(−iχ) = −Mµ,0(−iχ),
ω0Ẇµ,0(−iχ)− ω1Ẇµ,1(−iχ) = −Ṁµ,0(−iχ). (3)

Here and below dot denotes derivative of a function. The solution is
given by the formulae

ω0 = −Mµ,0(−iχ)Ẇµ,1(−iχ) + Ṁµ,0(−iχ)Wµ,1(−iχ)
Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)

, (4)

ω1 =
1

Γ(1/2− µ)
1

Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)
. (5)

The terms containing Whittaker function Mµ,0 in formulae (1)
and (2) represent the incident plane wave of unit amplitude.

The results obtained in [10] and presented in this section provide
a good approximation of the mean current on the spheroid. However,
as can be seen on Figures 2–5 below, oscillations in the amplitude of
the current appear on the numerical solution. These oscillations are
generated by the interference of the forward going wave, with a wave,
that we shall call backward, generated by the partial reflection of this
forward going wave by the tip of the spheroid. These oscillations are,
as expected, stronger close to the tip, where the amplitude of this
backward wave is maximal, and nearly disappear close to the light-
shadow boundary, because of the attenuation of the wave. In the next
section, we derive the asymptotic for the backward wave.

2.2. Asymptotic Formula for Backward Wave

The asymptotics of backward going wave can be constructed by the
same method as the asymptotics of forward going wave. However, we
can guess it by simple manipulations with formulae (1) and (2). Firstly,
we remove the incident wave, that is exclude Whittaker function Mµ,0.
Secondly, we change the direction of wave propagation, that is replace
η by −η and change sign of Hϕ component. Finally we replace the
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amplitudes ω0 and ω1 by some other amplitudes ωb
0 and ωb

1. This
results in the following formulae for the backward wave

Eb
ϕ = e−ikbη e−iπ/4

π

cosϕ√
αν

√
1− η2

+i∞∫

−i∞
Γ

(
1
2
− µ

)
Γ

(
1
2

+ µ

)

×
(

1 + η

1− η

)µ {
ωb

0(µ)Wµ,0(−iαν) + ωb
1(µ)Wµ,1(−iαν)

}
dµ, (6)

Hb
ϕ = e−ikbη e−iπ/4

π

sinϕ√
αν

√
1− η2

+i∞∫

−i∞
Γ

(
1
2
− µ

)
Γ

(
1
2

+ µ

)

×
(

1+η

1−η

)µ {
−ωb

0(µ)Wµ,0(−iαν) + ωb
1(µ)Wµ,1(−iαν)

}
dµ (7)

The amplitudes ωb
0 and ωb

1 should be chosen such that the boundary
conditions on the surface are satisfied. These boundary conditions
yield the system with the left-hand side as in (3), but homogeneous
due to lack of incident wave{

ωb
0(µ)Wµ,0(−iχ) + ωb

1(µ)Wµ,1(−iχ) = 0,
ωb

0(µ)Ẇµ,0(−iχ)− ωb
1(µ)Ẇµ,1(−iχ) = 0.

In order that homogeneous system has a nonzero solution, the
determinant of its matrix should be equal to zero. This defines values
of the parameter µ = µj , j = 1, 2, . . .. As a result, the integrals in (6),
(7) reduce to sums of terms by all that solutions µj . Each of these
terms is a creeping wave on a strongly elongated spheroid. Instead of
having the representation of the field as the sum of creeping waves, we
continue to use the integral form and introduce there the determinant
of the system in the denominator in such a way that if the integral is
computed by residue theorem, it gives back the sum of creeping waves.
Finally, (6) and (7) can be rewritten as

Eb
ϕ = e−ikbη e−iπ/4 cosϕ

π
√

αν
√

1− η2

+i∞∫

−i∞
Γ
(

1
2
−µ

)
Γ
(

1
2
+µ

)
ωb(µ)

×
(

1+η

1−η

)µ −Wµ,0(−iαν)
Wµ,0(−iχ) + Wµ,1(−iαν)

Wµ,1(−iχ)

Wµ,0(−iχ)Ẇµ,1(−iχ)+Ẇµ,0(−iχ)Wµ,1(−iχ)
dµ, (8)
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Hb
ϕ = e−ikbη e−iπ/4 sinϕ

π
√

αν
√

1− η2

+i∞∫

−i∞
Γ
(

1
2
−µ

)
Γ
(

1
2
+µ

)
ωb(µ)

×
(

1+η

1−η

)µ Wµ,0(−iαν)
Wµ,0(−iχ) + Wµ,1(−iαν)

Wµ,1(−iχ)

Wµ,0(−iχ)Ẇµ,1(−iχ)+Ẇµ,0(−iχ)Wµ,1(−iχ)
dµ. (9)

Here ωb is the amplitude of the back-going wave which should be
determined by matching to the solution valid in a vicinity of the
shadowed ending of the spheroid.

3. SOLUTION NEAR THE SHADOWED END OF
SPHEROID

We approximate the surface of the spheroid in a vicinity of shadowed
end with a surface of paraboloid and use exact solution derived by
Fock [14].

3.1. Paraboloidal Coordinates and Debye Potentials

According to [14], covariant components of an electromagnetic field in
the paroboloidal coordinate system (u, v, ϕ) where

z =
1
2k

(u− v), r =
1
k

√
uv,

can be represented via Debye potentials U, V by the formulae

Eu =
1
4
(u + v)U +

∂(MU)
∂u

− u + v

4u

∂V

∂ϕ
,

Ev =
1
4
(u + v)U +

∂(MU)
∂v

+
u + v

4v

∂V

∂ϕ
,

Eϕ =
∂(MU)

∂ϕ
+ uv

(
∂V

∂u
− ∂V

∂v

)
,

(10)

where
MU = u

∂U

∂u
+ v

∂U

∂v
+ U.

The components iHu, iHv and iHϕ of magnetic field are expressed by
the above formulae with U and V interchanged.

The field of an electromagnetic wave that runs to the extremity
of the spheroid depends on the angular coordinate by means of sinϕ
or cos ϕ. It produces the field which has Eu, Ev and Hϕ components
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proportional to cosϕ and Eϕ, Hu and Hv components proportional to
sinϕ. Thus we set

U(u, v, ϕ) = U(u, v) cos ϕ, V (u, v, ϕ) = V (u, v) sin ϕ.

Functions U and V satisfy Helmholtz equation, so(
Lu − 1

4u
+ Lv − 1

4v

)
U, V = 0,

where

Lx = x
∂2

∂x2
+

∂

∂x
+

1
4
.

Further, following [14], we introduce P and Q such that

U =
√

uv

u + v

(
∂P

∂u
+

∂P

∂v

)
, V =

√
uv

u + v

(
∂Q

∂u
+

∂Q

∂v

)
.

Then P and Q satisfy the equations
(Lu + Lv)P, Q = 0

This equation allows variables separation

P =
p√
uv

Miµ,0(iu)Wiµ,0(−iv),

Q =
q√
uv

Miλ,0(iu)Wiλ,0(−iv),

where M and W are Whittaker functions chosen in such a way that P
and Q are finite at u = 0 and satisfy radiation condition at v → +∞, µ
and λ are parameters of variables separation and p and q are arbitrary
amplitudes.

Using (10) and noting that
LuP = −µP, LuQ = −λQ

the components of electric field can be written via functions P and Q
in the following way

Eu =
√

uv

4u

{
−4µ

∂P

∂v
− 2

∂2P

∂u∂v
− 1

2
P − ∂Q

∂u
− ∂Q

∂v

}
,

Ev =
√

uv

4v

{
4µ

∂P

∂u
− 2

∂2P

∂u∂v
− 1

2
P +

∂Q

∂u
+

∂Q

∂v

}
,

Eϕ =
√

uv

{
− ∂2P

∂u∂v
+

1
4
P − λQ− 1

2
∂Q

∂u
+

1
2

∂Q

∂v

}
.

(11)

The components of magnetic field can be obtained by the given above
rule of interchanging P and Q and division by i. In particular for Hϕ

we get

Hϕ = −i
√

uv

{
− ∂2Q

∂u∂v
+

1
4
Q− λP − 1

2
∂P

∂u
+

1
2

∂P

∂v

}
. (12)
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3.2. Boundary Conditions

Consider the boundary conditions. We define the surface of paraboloid
by the formula

v = v0 = kρe,

where ρe is the curvature of the spheroid surface at the tip. The
boundary conditions Eu = 0, Eϕ = 0 on the surface of perfect
conductor will be satisfied if λ = µ and

{
2∂P (u,v0)

∂v + Q(u, v0) = 0,

P (u, v0) + 2∂Q(u,v0)
∂v − 4iµQ(u, v0) = 0

This gives a homogeneous system of equations for the coefficients p
and q. In order it has a nontrivial solution, such that p is arbitrary
and

q =

[
2i

Ẇµ,0(−iv0)
Wµ,0(−iv0)

+
1
v0

]
p, (13)

its determinant should be equal to zero, which defines µ as a solution
of the equation

−4Ẇ 2
µ,0(−iv0) + 4i

[
1
v0

+ 2iµ

]
Ẇµ,0(−iv0)Wµ,0(−iv0)

+
[

1
v2
0

+
4iµ

v0
− 1

]
W 2

µ,0(−iv0) = 0. (14)

4. MATCHING

We shall match the asymptotic formulae (1), (2) expressing the forward
going wave with the solution (11), (12). By this we can define the
amplitude p which remained arbitrary in the solution valid near the tip.
Then we match this solution with the asymptotic representations (6),
(7) of the reflected wave and define the amplitude ωb in the formulae
for backward wave.

4.1. Relations between Coordinates

We shall use Cartesian coordinate z for matching the amplitudes of
waves. Actually, there are two different z coordinates. When dealing
with spheroidal coordinates, we direct z coordinate along the wave
vector of the incident wave and place its origin in the center of the
spheroid. When working with parabolic coordinates, we direct z
in the opposite direction and shift the origin to the focal point of
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the paraboloid. To distinguish these coordinates we shall refer to
z coordinate associated with spheroidal coordinate system as zs and
refer to z coordinate of parabolic system as zp. The following relation
between these coordinates is evident

zs + zp = const .
To find this constant, we consider coordinates of the shadowed far end
point of the body. We have

zp = − v0

2k
= −ρe

2
=

a2

2b
and zs = b, which gives

zs + zp = b− a2

2b
.

The domain of matching is such that the argument η of the
asymptotic representations of forward and backward waves is close
to one and that the argument u in the solution of Section 3 is
asymptotically large. As the spheroid is strongly elongated we can
accept, in this intermediate domain

η =
zs

b
= 1− a2

2b2
− zp

b
, u = 2kzp.

4.2. Dispersion Equations

The electric and magnetic components in all three solutions depend
on the normal coordinate in the form of a combination of Whittaker
functions. The arguments of these functions can be found to be
asymptotically coincident. In this section we show that the parameters
µ also coincide. For that we consider the dispersion Equation (14) and
using relation (see Appendix A)(

µ− 1
2

)
Wµ,1(x) = Ẇµ,0(x) +

(
µ− 1

2x

)
Wµ,0(x) (15)

rewrite it as
Ẇµ,0(−iv0)Wµ,1(−iv0) + Wµ,0(−iv0)Ẇµ,1(−iv0) = 0, (16)

which coincides with the form of the denominators in (1), (2), (8)
and (9). Thus, both dispersion equations has the same form. To check
that they coincide completely requires to see that χ = kv0 which is
evident as ρe = a2/b.

Thus, we see that µ parameters in the asymptotics and in the
solution of Section 3 are the same and for matching it is sufficient
to match the amplitudes at Whittaker functions Wµ,0(−iχ) and
Wµ,1(−iχ) of the solutions.
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4.3. Components of Electromagnetic Field

First, we rewrite the amplitude factor in the asymptotics (1) and (2)

eikpη

√
1− η2

(
1− η

1 + η

)
∼ 1

2
exp

(
ikb− ikzp − i

ka2

2b

) (zp

2b

)µ−1/2
. (17)

The amplitude factor in the asymptotics (8), (9) can be written as

e−ikpzs
√

1−η2

(
1 + η

1− η

)µ

∼ 1
2

exp
(
ikzp−ikb+i

ka2

2b

)(
2b

zp

)µ+1/2

. (18)

In the solution, valid near the tip, covariant components of the
field can be represented in the following form (we use (11) and (12)
and represent derivatives of Whittaker functions W by v with the help
of relation (15))

Eϕ = C0(u)Wµ,0(−iv) + C1(u)Wµ,1(−iv), (19)
Hϕ = −iD0(u)Wµ,0(−iv)− iD1(u)Wµ,1(−iv), (20)

where

C0 = −2µ + 1
4u

{
(2iµp + q) (Mµ+1,0(iu)−Mµ,0(iu))

+(iq − p)uMµ,0(iu)
}

,

C1 =
2µ− 1

4u

{
(2µ + 1)ip (Mµ+1,0(iu)−Mµ,0(iu))

−(iq + p)uMµ,0(iu)
}

,

D0 = −2µ + 1
4u

{
(−2iµq + p) (Mµ+1,0(iu)−Mµ,0(iu))

+(ip + q)uMµ,0(iu)
}

,

D1 = −2µ− 1
4u

{
(2µ + 1)iq (Mµ+1,0(iu)−Mµ,0(iu))

+(ip− q)uMµ,0(iu)
}

.

Here amplitudes p and q are related to each other by the formula (13)
which in view of (15) transforms to

q = ip

(
(2µ− 1)

Wµ,1(−iv0)
Wµ,0(−iv0)

− 2µ

)
. (21)

The components of physical vectors are

Eϕ =
k

2
√

uv
Eϕ, Hϕ =

k

2
√

uv
Hϕ. (22)
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Now, using the asymptotics [16] of Whittaker function

Mµ,`(x) ∼ e−x/2xµeiπ(`−µ+1/2) Γ(1 + 2`)
Γ(` + µ + 1/2)

+ex/2x−µ Γ(1 + 2`)
Γ(`− µ + 1/2)

, (23)

we find (see Appendix C)

C0 ∼ −2µ− 1
4

e−ikzp(2kzp)µ−1/2 e−iπµ/2

Γ(µ + 1/2)
(ip− q)

−2µ + 1
4

eikzp(2kzp)−µ−1/2 e−iπµ/2

Γ(1/2− µ)
(iq − p). (24)

We represent this asymptotics in the form

C0 ∼ c0

(
e−ikzpzµ−1/2

p + R1e
ikzpz−µ−1/2

p

)
, (25)

with

c0 = −2µ− 1
4

(2k)µ−1/2 e−iπµ/2

Γ(µ + 1/2)
(ip− q) (26)

and
R1 =

2µ + 1
2µ− 1

(2k)−2µ Γ(1/2 + µ)
Γ(1/2− µ)

iq − p

ip− q
.

It can be shown (see Appendix B) that for µ satisfying the dispersion
Equation (16) Whittaker functions Wµ,1(−iv0) and Wµ,0(−iv0) satisfy
a simple relation

Wµ,1(−iv0) =
√

2µ + 1
2µ− 1

Wµ,0(−iv0). (27)

This allows to simplify the expression for the reflection coefficient R1.
Substituting relation (21) and using relation (27) we get

R1 = i

√
2µ + 1
2µ− 1

Γ(1/2 + µ)
Γ(1/2− µ)

.

In a similar manner we can represent the asymptotics of C1, D0

and D1. however we shall define the reflection coefficient by matching
the amplitude factor at Wµ,0(−iχ) and show in Appendix C that
matching of other amplitudes gives the same result.
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4.4. Amplitude of Backward Going Wave

We see that the first exponent in (25) matches to the incoming
wave (17), while the second exponent matches to outgoing wave (18).
Using the relation between zp and zs coordinates it is a simple matter
to find the amplitude of backward wave. We compare the asymptotic
expansions (17), (18) and the amplitude coefficient c0 and find

ωb = − exp
(

2ikb− i
ka2

b

)
(2b)−2µω̃0Wµ,0(−iχ)R1, (28)

where ω̃0 is the numerator of ω0 which for µ satisfying dispersion
equation can be simplified. For that from dispersion equation we
express

Ẇµ,1(−iv0) =
Wµ,1(−iv0)
Wµ,0(−iv0)

Ẇµ,0(−iv0)

and substituting it to the expression
ω̃0 = −Ṁµ,0(−iv0)Wµ,1(−iv0)−Mµ,0(−iv0)Ẇµ,1(−iv0)

get

ω̃0 =
Wµ,1(−iv0)
Wµ,0(−iv0)

{
Mµ,0(−iv0)Ẇµ,0(−iv0)− Ṁµ,0(−iv0)Wµ,0(−iv0)

}
.

With the use of relation (27) and expression for the Wronskian we can
simplify the formula for the numerator to

ω̃0 = −
√

2µ + 1
2µ− 1

1
Γ(1/2− µ)

.

Substituting it into (28) and using once again relation (27) we finally
get for the amplitude of back going wave the following expression

ωb = i exp
(
2ikb− ika2

b

)
(4kb)−2µ Γ(1/2+µ)

Γ2(1/2−µ)
2µ+1
2µ−1

Wµ,0(−iχ). (29)

5. CURRENT ON THE SURFACE

5.1. Special Functions

Substituting expressions (4) and (5) into representation (2) and setting
ν = κ, we can find the current on the surface. We represent it by
introducing a special function

A(η;χ) =
2e−iπ/4

π

e−iχη/2

√
χ
√

1− η2

+i∞∫

−i∞

(
1− η

1 + η

)µ

× Γ(1/2 + µ)Wµ,1(−iχ)
Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)

dµ (30)
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of two variables η and χ. The current of forward going wave is given
in the leading order approximation by the formula

J = eikz sin(ϕ)A
(

z√
ρρt

; kρt

√
ρt

ρ

)
. (31)

Substituting expression (29) into (9) and letting ν = κ yields

Jb = e−ikpη 2eiπ/4

π

sinϕ
√

χ
√

1− η2
exp

(
2ikb− i

ka2

b

)

×
+i∞∫

−i∞
Γ2

(
µ +

1
2

)
Γ−1

(
1
2
− µ

)
2µ + 1
2µ− 1

(4kb)−2µ

(
1 + η

1− η

)µ

× Wµ,1(−iχ)
Wµ,1(−iχ)Ẇµ,0(−iχ) + Ẇµ,1(−iχ)Wµ,0(−iχ)

dµ. (32)

We can represent (32) in the way similar to (31)

Jb = e2ikb−iχ−ikz sinϕB

(
z√
ρρt

; kρt

√
ρt

ρ
; R(µ)

)
, (33)

where

B(η; χ; kb) =
2
π

e−iπ/4 eiχη/2

√
χ
√

1− η2

+i∞∫

−i∞

(
1 + η

1− η

)µ

R(µ)

× Γ(1/2 + µ)Wµ,1(−iχ)
Wµ,1(−iχ)Ẇµ,0(−iχ) + Ẇµ,1(−iχ)Wµ,0(−iχ)

dµ,

R = i
Γ(1/2 + µ)
Γ(1/2− µ)

√
2µ + 1
2µ− 1

(4kb)−2µ.

Note that the expression (34) defining special function B(η; χ; kb)
differs from the definition (30) of special function A(η; χ) by the
replacement of η by −η, which simply means that backward wave
propagates in the opposite direction, and by an additional multiplier
R(µ) under the sign of the integral.

The exponential term e2ikb−iχ in the formula for the current of
backward wave describes the phase which appears because backward
wave is the result of forward wave which runs up to the shadowed tip
of the spheroid and returns back.
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5.2. Whittaker and Coulomb Wave Functions

To compute Whittaker function involved in the definition of the special
functions A and B we can use the program developed in [18]. For that
we introduce new variable of integration t = iµ and use the relation [18]

W−it, λ+ 1
2
(−iχ) = exp

(
i
π

2
λ− π

2
t
)√

Γ(1 + λ− it)
Γ(1 + λ + it)

H+
λ

(
t,

χ

2

)

which expresses Whittaker function via Coulomb wave function H+
λ .

After applying the symmetry formula for Gamma function we get

A(η, χ) =
4√
π

e−iχη/2

√
χ
√

1− η2

+∞∫

−∞

(
1 + η

1− η

)it

Ω(t)dt, (34)

B(η, χ,R) =
4√
π

eiχη/2−iχ

√
χ
√

1− η2

+∞∫

−∞

(
1− η

1 + η

)it

Ω(t)R(t)dt, (35)

where

Ω(t) =
H+

1/2(t, χ/2)

H+
1/2(t, χ/2)Ḣ+

−1/2(t, χ/2) + Ḣ+
1/2(t, χ/2)H+

−1/2(t, χ/2)

× eπt/2

√
cosh(πt)

R(t) =
Γ(1/2− it)
Γ(1/2 + it)

√
1− 2it

1 + 2it
(4kb)2it.

6. NUMERICAL RESULTS

We consider four spheroids at two frequencies. Geometry of the
problem is presented on Figure 1. Numerical results by finite elements
method are provided by M. Duruflé (Institute of Mathematics,
Bordeaux, France). The parameters are presented in Table 1. The
problems for spheroid No. 1 at frequency of 1 GHz is equivalent to the
problem for spheroid No. 2 at frequency of 2GHz.

The backward going wave is, as was already mentioned, a
contribution of residues, and the main contribution is due to the residue
in the pole with minimal imaginary part of t. Nevertheless we compute
the integrals along the real axis of t to avoid finding zeros of the
dispersion equation in complex plane.
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0 z

b
a

Figure 1. Geometry of the problem.

Table 1. Test problems parameters.

No. f (GHz) a (m) b (m) χ kb

1 1 1.0 2.5 8.38338 52.39613
1 2 1.0 2.5 16.76676 104.79225
2 1 0.5 1.25 4.19169 26.19806
2 2 0.5 1.25 8.38338 52.39613
3 1 0.5 1.76776695 2.96397 37.04966
3 2 0.5 1.76776695 5.92795 74.09931
4 1 0.3125 1.39754249 1.46452 29.29032
4 2 0.3125 1.39754249 2.92903 58.58065

|J| |J|

2

1

0

2

1

0
-1 -0.5 0 0.5 -1 -0.5 0 0.5η η

Figure 2. Absolute values of test current and current computed
asymptotically on spheroid No. 1.

The integrals in the definitions of special functions A and B
rapidly converge at ±∞. We use numerical integration and restrict
the domain to the segment [−5, 10 + χ/2].

The fields of backward waves increase with η because waves
propagate with some attenuation in the opposite direction. This
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Figure 3. Absolute values of test current and current computed
asymptotically on spheroid No. 2.

|J| |J|

2

1

0

2

1

0
-1 -0.5 0 0.5 -1 -0.5 0 0.5η η

Figure 4. Absolute values of test current and current computed
asymptotically on spheroid No. 3.

attenuation is significant for large values of kb when waves travel a long
distance around the shadowed end of the spheroid and the attenuation
is smaller for small kb.

We present result of comparison for the total current J + Jb

at Figures 2–5. Results computed by finite elements method are
given by solid lines and asymptotic results are given by dotted lines.
We see that adding backward going wave allows to reproduce the
oscillating character of the current amplitude. The agreement is good.
The amplitude of backward wave is correct, indeed we see that the
oscillations are of approximately the same amplitude as computed
numerically. However, some phase shift can be noticed. This phase
shift can be found small compared to the total wave distance kb.
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Figure 5. Absolute values of test current and current computed
asymptotically on spheroid No. 4.

We can also note some peculiarities. The agreement is better for
more elongated spheroids. This was expected, because, when deriving
our asymptotic formulae, the fact that spheroid is strongly elongated
was used in all our derivations and terms that are small for elongated
spheroids were neglected.

7. CONCLUSION

In this paper we derived complete asymptotic approximation for
diffraction of a plane wave by an elongated spheroid. The current on
the spheroid is composed of two travelling waves. The first propagates
forward; the second is generated by reflection of the first one at the
end of the body and propagates backward. The currents of these
travelling waves are given by special functions, that can be considered
as generalizations of Fock function, taking into account the effect
of transverse curvature of the surface. Large transverse curvature
decreases the attenuation in the shadow zone. The comparison with
numerical results shows good accuracy of the approach.
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APPENDIX A. SOME RELATIONS FOR WHITTAKER
FUNCTIONS

We start with relations [17]

Wµ+1/2,`+1/2(z)−√zWµ,`(z)+
(
µ−`− 1

2

)
Wµ−1/2,µ+1/2=0, (A1)

Wµ+1/2,`−1/2(z)−√zWµ,`(z)+
(
µ+`− 1

2

)
Wµ−1/2,µ−1/2=0, (A2)

(
µ + `− 1

2

)√
zWµ−1/2,`−1/2(z)− (z + 2`)Wµ,`(z)

+
√

zWµ+1/2,`+1/2 = 0, (A3)(
µ− `− 1

2

)√
zWµ−1/2,`+1/2(z)− (z − 2`)Wµ,`(z)

+
√

zWµ+1/2,`−1/2 = 0. (A4)

We combine (A1) and (A2) excluding Whittaker function Wµ,`(z) and
get

Wµ+1/2,`+1/2(z) +
(

µ− `− 1
2

)
Wµ−1/2,`+1/2(z)

−Wµ+1/2,`−1/2(z)−
(

µ + `− 1
2

)
Wµ−1/2,`−1/2(z) = 0. (A5)

Similarly from (A3) and (A4) we get

Wµ+1/2,`+1/2(z)− z + 2`

z − 2`
Wµ+1/2,`−1/2(z)

−z + 2`

z − 2`

(
µ + `− 1

2

)
Wµ−1/2,`+1/2(z)

+
(

µ + `− 1
2

)
Wµ−1/2,`−1/2(z) = 0. (A6)

Excluding Wµ+1/2,`+1/2(z) from (A5) and (A6) we get

z

z − 2`

(
µ− `− 1

2

)
Wµ−1/2,`+1/2(z) +

2`

z − 2`
Wµ+1/2,`−1/2(z)

−
(

µ + `− 1
2

)
Wµ−1/2,`−1/2(z) = 0.
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Now we change µ into µ+1/2 and ` into `+1/2 and express Wµ,`+1(z)
via Whittaker functions with other indices

Wµ,`+1(z) =
2µ + 2` + 1
2µ− 2`− 1

(
1− 2` + 1

z

)
Wµ,`(z)

− 4` + 2
2µ− 2`− 1

1
z
Wµ+1,`(z) (A7)

Finally with the help of the formula [16]

Ẇµ,`(z) =
(

1
2
− µ

z

)
Wµ,`(z)− 1

z
Wµ+1,`(z) (A8)

we exclude Wµ+1,`(z) from (A7) and get
(
µ−`− 1

2

)
Wµ, +̀1(z)=(2`+1)Ẇµ,`(z)+

(
µ− 2`+1)2

2z

)
Wµ,`(z). (A9)

For ` = 0 formula (A9) simplifies to
(

µ− 1
2

)
Wµ,1(z) = Ẇµ,0(z) +

(
µ− 1

2z

)
Wµ,0(z). (A10)

APPENDIX B. DIFFERENT FORM OF DISPERSION
RELATION

Here we rewrite the dispersion relation

∆ =
d

dz
(Wµ,1(z)Wµ,0(z)) = Wµ,1(z)Ẇµ,0(z) + Ẇµ,1(z)Wµ,0(z)

in another form. For that we use formula (A10) to express the
derivative

Ẇµ,0(z) =
(

µ− 1
2

)
Wµ,1(z)−

(
µ− 1

2z

)
Wµ,0(z). (B1)

A similar formula expressing Ẇµ,1(z) via functions Wµ,1(z) and Wµ,0(z)
can be obtained from (A8) in which we need to exclude Whittaker
function Wµ+1,1(z). We do that by using formula

Wµ+1,`+1(z)+
(
µ−`− 1

2

)
Wµ,`+1(z)−Wµ+1,`(z)−

(
µ+`+

1
2

)
Wµ,`(z)=0

which is formula (A5) with the indices shifted by 1/2. This gives
expression

Ẇµ,1(z) = −1
z
Wµ+1,0(z)−

(
µ− 1

2

)
1
z
Wµ,0(z).
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Further with the use of (A7) which gives expression

Wµ+1,0(z) = −z

(
µ− 1

2

)
Wµ,1(z) + (z − 1)

(
µ +

1
2

)
Wµ,0(z)

we get

Ẇµ,1(z) =
(

µ− 1
2z

)
Wµ,1(z)−

(
µ +

1
2

)
Wµ,0(z). (B2)

Substituting (B1) and (B2) into dispersion relation we get

∆ =
(

µ− 1
2

)
W 2

µ,1(z)−
(

µ +
1
2

)
W 2

µ,0(z).

APPENDIX C. DIFFERENT FORMS OF REFLECTION
COEFFICIENTS

Using (23) one can get the following asymptotics

Mµ+1,0(iu)
u3/2

∼ e−ikzp(2kzp)µ−1/2 e−iπµ/2

Γ(µ + 3/2)

+eikzp(2kzp)−µ−5/3 e−iπ(µ+1)/2

Γ(−µ− 1/2)
,

Mµ,0(iu)
u3/2

∼ e−ikzp(2kzp)µ−3/2 eiπ(1−µ)/2

Γ(µ + 1/2)

+eikzp(2kzp)−µ−3/2 e−iπµ/2

Γ(1/2− µ)
,

Mµ,0(iu)
u1/2

∼ e−ikzp(2kzp)µ−1/2 eiπ(1−µ)/2

Γ(µ + 1/2)

+eikzp(2kzp)−µ−1/2 e−iπµ/2

Γ(1/2− µ)
.

With the help of these formulae we get

C0 ∼ −2µ + 1
4

e−ikzp(2kzp)µ−1/2

×
{

(2iµα + β)
e−iπµ/2

Γ(µ + 3/2)
+ (iβ − α)

eiπ(1−µ)/2

Γ(µ + 1/2)

}

−2µ + 1
4

eikzp(2kzp)−µ−1/2(iq − p)
e−iπµ/2

Γ(1/2− µ)
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which with the use of Gamma function properties can be reduced
to (24).

Analogously we find

C1 ∼ c1

(
e−ikzpzµ−1/2

p + R2e
ikzpz−µ−1/2

p

)

where

c1 =
2µ− 1

4
(2k)µ−1/2 e−iπµ/2

Γ(µ + 1/2)
(ip + q),

R2 = −(2k)−2µ Γ(1/2 + µ)
Γ(1/2− µ)

iq + p

ip + q
.

For the coefficients of iHϕ we get

D0 ∼ d0

(
e−ikzpzµ−1/2

p + R3e
ikzpz−µ−1/2

p

)
,

D1 ∼ d1

(
e−ikzpzµ−1/2

p + R4e
ikzpz−µ−1/2

p

)
,

with

d0 =
2µ− 1

4
(2k)µ−1/2 e−iπµ/2

Γ(µ + 1/2)
(p + iq),

d1 =
2µ− 1

4
(2k)µ−1/2 e−iπµ/2

Γ(µ + 1/2)
(p− iq),

R3 = −2µ + 1
2µ− 1

(2k)−2µ Γ(1/2 + µ)
Γ(1/2− µ)

ip + q

p + iq

and
R4 = −(2k)−2µ Γ(1/2 + µ)

Γ(1/2− µ)
ip− q

p− iq
.

We are mainly interested in the formulae for the reflection
coefficients R1, R2, R3 and R4 which all should either coincide or
differ only in sign. It is a simple matter to see that

R3 = −R1, R4 = R2,

which is consistent with the representations for forward and backward
going waves on an elongated spheroid.

To check that R1 = R2 we use the formula (21) and take
into account that µ parameter satisfies the dispersion equation.
Substituting expression (21) we get

R1 = i(2µ + 1)
Γ(1/2 + µ)
Γ(1/2− µ)

Wµ,1(−iv0)−Wµ,0(−iv0)
(2µ + 1)Wµ,0(−iv0)− (2µ− 1)Wµ,1(−iv0)
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and

R2 =
−i

2µ− 1
(2k)−2µ

×Γ(1/2 + µ)
Γ(1/2− µ)

(2µ− 1)Wµ,1(−iv0)− (2µ + 1)Wµ,0(−iv0)
Wµ,1(−iv0)−Wµ,0(−iv0)

.

Now we consider the ratio of these two coefficients
R2

R1
=

[(2µ− 1)Wµ,1(−iv0)− (2µ + 1)Wµ,0(−iv0)]
2

(2µ− 1)(2µ + 1) [Wµ,1(−iv0)−Wµ,0(−iv0)]
2 .

Exploiting relation (27) we get

R2

R1
=

1
(2µ− 1)(2µ + 1)

[√
2µ− 1

√
2µ + 1− (2µ + 1)

]2

[√
2µ+1
2µ−1 − 1

]2 = 1.
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