
Progress In Electromagnetics Research B, Vol. 28, 351–367, 2011
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Abstract—A matrix technique for the computation of the per-
unit-length internal impedance of radially inhomogeneous cylindrical
structures is presented. The cylindrical structure is conceptually
divided into a number of layers, each layer being characterized by its
constitutive parameters, conductivity, permeability, and permittivity.
Within this general framework, compound conductors, compound
capacitors, compound magnetic cores, or any other compound
structures resulting from a mix of the above, can be analyzed by
using the very same tool. The developed software program, MLCS,
which implements the mentioned matrix technique, also permits
the evaluation of the electric and magnetic fields intensity at the
layers’ interfaces. The MLCS program is validated by using several
application examples.

1. INTRODUCTION

Current advancements in material technology have opened up new
horizons regarding the manufacturing of new devices and structures
whose constitutive characteristics (conductivity, permeability and
permittivity) can be tailored according to targeted specifications. In
the case of circular cylindrical geometries this technological possibility
leads, quite naturally, to multilayered structures, where, each layer
can have predominant conducting properties, insulation properties,
magnetic properties, or a mix of all.

The current interest paid to multilayered structures (in connection
to its fabrication, and applications concerning superconductivity,
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skin effect, eddy currents, and photonic metamaterial structures) is
witnessed in recent publications [1–16]. Nonetheless, the research
topic on multilayered radially inhomogeneous cylindrical structures has
received scarce attention.

In this paper, we present a matrix formalism to deal with multilay-
ered cylindrical structures which permits the frequency-domain eval-
uation of the structure’s per-unit-length internal impedance, Z̄int =
R(ω)+jX(ω) = P̄ /I2

rms, where Irms is the rms value of the current in-
tensity flowing through the cylindrical structure’s cross section, and P̄
is the inward flux of the complex Poynting vector across the boundary
cylindrical surface (of unit length), [17].

Figure 1 shows a longitudinal view of the circular cylindrical
structure, driven by an enforced harmonic current i, which gives rise
to longitudinal A and E vector fields, and azimuthal H and B vector
fields. A cross section of the structure, showing its subdivision into N
layers, is depicted in Fig. 2.

By taking into account the continuity of the tangential
components of E and H vector fields at each interface, a transfer
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Figure 1. Longitudinal view of the multilayered circular cylindrical
structure.
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Figure 2. Cross section of the multilayered circular cylindrical
structure.
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matrix is defined for each layer. The matrix product of all transfer
matrices allows the calculation of E and H at r = rN , from where Z̄int

is determined.
We do not claim that our matrix approach is a novel one.

In fact, similar treatments can be found in the analysis of
stratified earth [18, 19], (in power line problems), and dielectric
waveguides [20, 21], (in optical fiber problems). The added
contribution of this work is that it encompasses radial variations
of all the constitutive parameters of the structure (conductivity,
permeability and permittivity). Within this general framework,
compound conductors, compound capacitors, compound magnetic
cores, or any other compound structures, can be analyzed by using
the very same theoretical tool.

This paper is organized into seven sections, the first of which is
introductory. Section 2 describes the fundamental frequency-domain
equations for homogeneous cylindrical structures. In Sections 3 and 4,
complex field phasors are determined at the layer’s interfaces, including
the inner cylinder. The per-unit-length internal impedance of the
global structure is derived in Section 5. A series of computation
examples, aimed at the validation of the software tool developed to
implement the multilayer technique, are offered in Section 6. At last,
Section 7 is devoted to conclusions.

2. FUNDAMENTAL EQUATIONS

For time harmonic regimes (ejωt), the frequency-domain Maxwell curl
equations read as [17],{ ∇× H̄ = J̄T = J̄ + jωD̄ = (σ + jωε)Ē

∇× Ē = −jωB̄ = −jωµH̄ (1)

where σ, ε and µ respectively denote the conductivity, permittivity and
magnetic permeability of the material medium. Overbar quantities
in (1) represent complex amplitudes of field vectors.

In addition, from ∇· B̄ = 0, it results B̄ = ∇× Ā, where Ā is the
complex amplitude of the magnetic vector potential, with ∇ · Ā = 0
(Coulomb gauge).

By combining the above results yields


∇2Ā + k̄2Ā = 0
Ē = −jωĀ
H̄ = ∇× Ā/µ

(2)

where k̄ is the complex wave number

k̄ =
√

ω2µε− jωµσ (3a)



354 Brandão Faria

When the material medium is a good conductor, displacement
currents are negligibly small for frequencies up to the optical
range, [17]. On the other hand, if the material medium is a lossless
dielectric, then conduction currents are absent, that is

k̄ =
{ √−jωµσ : for a good conductor (JT = J = σE)

ω
√

µε : for a lossless dielectric (JT = jωεE) (3b)

For the case of an isolated system (proximity effects neglected)
with longitudinal currents, where Ā = Ā(r) ~ez, a cylindrical reference
frame (r, θ, z) should be used.

In this case, the Laplacian equation in (2) yields

r2 d2Ā

dr2
+ r

dĀ

dr
+

(
rk̄

)2
Ā = 0 (4)

The general solution of (4) can be written as linear combination
of Bessel, Neumann, or Hankel functions, that is, in compact
notation, [22],

Ā(x) = Ff0(x) + Gg0(x) (5)

where x = k̄r, F and G are complex constants to be determined with
the help of boundary conditions, and

f0(x) = J0(x); g0(x) = N0(x) (6a)

f0(x) = H
(1)
0 (x); g0(x) = H

(2)
0 (x) (6b)

In (6a), J0 is the Bessel function of the first kind of order 0, and N0

is the Neumann function of order 0. In (6b), H
(1)
0 and H

(2)
0 respectively

denote the Hankel functions of first and second kinds of order 0.
From a numerical point of view (6a) should be employed for small

values of |x|, whereas (6b) should be employed for large values of |x|.
The first derivatives of f0 and g0 satisfy, [23]

df0

dx
= −f1 with f1(x) =

{
J1(x) , for small |x|
H

(1)
1 (x), for large |x| (7a)

dg0

dx
= −g1 with g1(x) =

{
N1(x), for small |x|
H

(2)
1 (x), for large |x| (7b)

3. FIELD QUANTITIES AT LAYER INTERFACES

The cylindrical structure is made of N concentric layers (see Fig. 2).
The generic nth layer is characterized by the following parameters:
conductivity σn, permittivity εn, permeability µn, outer radius rn, and
inner radius rn−1 (for n > 1). The innermost region (region 1) is a
cylinder of radius r1.
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For r = rn, the electric field can be obtained from (2) as Ēn =
−jωĀ(xn), where xn = k̄n rn, where k̄n is the wave number in (3) for
the nth layer. The preceding result can be written in matrix form as

Ēn = Ē(rn) = −jω [ f0(xn) g0(xn) ]
[

Fn

Gn

]
(8)

From H̄ = H̄ ~eθ = ∇× Ā/µ, in (2), the magnetic field is obtained

H̄(r) = − 1
µ

d

dr
Ā(r) → H̄(r) = − k̄

µ

d

dx
Ā(x) (9)

For the nth layer, the magnetic field at the outer interface r = rn

is determined using (9) and (7)

H̄n = H̄(rn) =
k̄n

µn
[ f1(xn) g1(xn) ]

[
Fn

Gn

]
(10)

Combining (8) and (10) yields[
Ēn

H̄n

]
=

[ −jω 0
0 k̄n/µn

] [
f0(xn) g0(xn)
f1(xn) g1(xn)

] [
Fn

Gn

]
(11)

The same process allows for the evaluation of the electric and
magnetic field at the inner interface r = rn−1 of layer n, that is[

Ēn−1

H̄n−1

]
=

[ −jω 0
0 k̄n/µn

] [
f0(x′n) g0(x′n)
f1(x′n) g1(x′n)

] [
Fn

Gn

]
(12)

where x′n = k̄n rn−1.
The Fn and Gn constants are determined by inverting (12)[

Fn

Gn

]
=

[
g1(x′n) −g0(x′n)
−f1(x′n) f0(x′n)

] [
j/(ω∆n) 0

0 µn/(k̄n∆n)

] [
Ēn−1

H̄n−1

]

(13)
where ∆n is the determinant of the second matrix on the right hand
side of (12)

∆n = f0(x′n) g1(x′n) − f1(x′n) g0(x′n) (14)
At this stage it is important to remind a useful identity from Bessel

functions theory [23],

∆=f0(x)g1(x)−f1(x)g0(x)=

{ −2
πx ; when f≡J and g≡N
4j
πx ; when f≡H(1) and g≡H(2)

(15)

Finally, by substituting (13) into (11), a relationship is established
between the electric and magnetic fields observed at the two interfaces
of the nth layer[

Ēn

H̄n

]
= Tn

[
Ēn−1

H̄n−1

]
; Tn =

[
an bn

cn dn

]
(16)
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Matrix Tn in (16) is the field transfer matrix for layer n (n > 1).
The entries of matrix Tn are determined, from (11) and (12), through

[
an bn

cn dn

]
=

[ −jω 0
0 k̄n/µn

] [
f0(xn) g0(xn)
f1(xn) g1(xn)

]

×
[

g1(x′n) −g0(x′n)
−f1(x′n) f0(x′n)

] [
j/(ω∆n) 0

0 µn/(k̄n∆n)

]
(17)

yielding

an =
1

∆n

(
f0(xn)g1(x′n)− f1(x′n)g0(xn)

)
(18)

bn =
ωµn

jk̄n∆n

(
f0(x′n)g0(xn)− f0(xn)g0(x′n)

)
(19)

cn =
jk̄n

ωµn∆n

(
f1(xn)g1(x′n)− f1(x′n)g1(xn)

)
(20)

dn =
1

∆n

(
f0(x′n)g1(xn)− f1(xn)g0(x′n)

)
(21)

The determinant of the field transfer matrix is given by

det(Tn) = andn − bncn =
f0(xn)g1(xn)− f1(xn)g0(xn)
f0(x′n)g1(x′n)− f1(x′n)g0(x′n)

(22)

Taking (15) into account, the result in (22) greatly simplifies

det(Tn) =
x′n
xn

=
rn−1

rn
for n > 1 (23)

4. INNER CYLINDER FIELD QUANTITIES

The region 0 < r < r1, (region 1), is a homogeneous cylinder
where field vectors obey the boundary conditions Ē(r−1 ) = Ē(r+

1 ),
H̄(r−1 ) = H̄(r+

1 ), and H̄(0) = 0.
Using (16) yields

[
Ē1

H̄1

]
=

[
a1 b1

c1 d1

] [
Ē(0)

0

]
→

{
Ē1 = a1Ē(0)
H̄1 = c1Ē(0) (24)

The surface impedance of the inner cylinder, measured at the
interface r = r1, is obtained from (24), (18), and (20), through

Z̄1 =
Ē1

H̄1
=

a1

c1
=

ωµ1r1

jx1

f0(x1)
f1(x1)

(25)

where x1 = k̄1r1.
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For a tubular system where region 1 is empty (µ1 = µ0, ε1 = ε0),
the surface impedance Z̄1 is given by

Z̄1 = −j

√
µ0

ε0
× f0(ωr1/v0)

f1(ωr1/v0)
(26)

where v0 is the light speed in a vacuum, v0 = 1/
√

µ0ε0.
For low frequency regimes, that is, ω ¿ v0/r1, (26) leads to

Z̄1 ≈ 2/(jωε0r1) →∞.
For high frequency regimes, that is, ω À v0/r1, (26) leads to

Z̄1 ≈ −j
√

µ0

ε0
cot

(
ωr1
v0
− π

4

)
.

The preceding particular results for Z̄1, concerning a dielectric
cylinder, were obtained by considering, respectively, Bessel function
approximations for low arguments, and asymptotic expansions for large
arguments [23].

5. ANALYSIS OF THE GLOBAL SYSTEM

By taking into account the continuity of the tangential field
components at each interface, that is,

Ē(r−n ) = Ē(r+
n ) ; H̄(r−n ) = H̄(r+

n ) for 1 ≤ n ≤ N

a relationship between the E and H fields at the most external
(r = rN ) and most internal (r = r1) layers of the inhomogeneous
system can be obtained by successive multiplication of the transfer
matrices pertaining to each layer[

ĒN

H̄N

]
= T

[
Ē1

H̄1

]
; T = TN · · ·Tn · · ·T2 =

[
a b
c d

]
(27)

The surface impedance Z̄N , measured at the external interface
r = rN , is determined through

ĒN = Z̄NH̄N ; Z̄N =
aZ̄1 + b

cZ̄1 + d
(28)

where Z̄1 is defined in (25), (or in (26) for a tubular system).
The multilayered system carries an axial (~ez) time-harmonic total

current intensity i(t) =
√

2 Irms cos (ωt + α), which is characterized by
its complex amplitude Ī =

√
2 Irms ejα.

The application of the generalized Ampère law to a clockwise
oriented circulation path s coinciding with the external circumference
of radius rN ∮

s

H̄ · d~s =
∫

ST

J̄T · ~nS dS (29)
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yields
2πrNH̄N = Ī (30)

where ST denotes the transverse cross section of the multilayered
system (of radius rN ) and ~nS = ~ez is the Stokes unit normal.

In order to determine the per-unit-length internal impedance
Z̄int(Ω/m) of the multilayered system, the inward flux of the complex
Poynting vector across the unit length cylindrical surface S of radius
rN is evaluated [17],

P̄ =
∫

S

(
Ē× H̄∗

2

)
· (−~er) dS =

1
2

∫

S

(
ĒNH̄∗

N

)
dS = Z̄int I2

rms (31)

Taking (28), (30), and (31) into account the following final result
is obtained

Z̄int = R + jX =
Z̄N

2πrN
=

1
2πrN

× aZ̄1 + b

cZ̄1 + d
(32)

6. VALIDATION AND APPLICATION EXAMPLES

The set of Equations (3), (14), (18)–(21), (25), (27), (28), and (32)
was translated into MATLAB code. The corresponding software
program (MLCS), implementing the theoretical model of Multi-
Layered Cylindrical Structures, needs validation.

The simplest way to validate our approach resorts to application
examples of homogeneous structures whose per-unit-length internal
impedance results have already been published (based on closed-form
analytical formulas). The homogeneous structure is subdivided into
N layers and then the multilayer treatment is applied. Comparison
established between available direct results and those obtained by using
MLCS will allow a performance evaluation of the latter. However, for
a sound validation of MLCS an application example concerning an
inhomogeneous structure is necessary. Unfortunately, in this respect,
the literature is very scarce. Nonetheless, we will provide useful results
steaming from a very recent development on the so-called Euler-Cauchy
structures.

6.1. Homogeneous Structures

Two examples are analyzed here: a tubular conductor [24], and a disk
capacitor [25].
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6.1.1. Tubular Conductor

Per-unit-length internal impedance results, Z̄int(ω) = R(ω) + jωL(ω),
concerning skin effect analysis for solid and tubular homogeneous
conductors have been published in [24], where graphics of R/Rdc

and L/Ldc against frequency were presented for a copper conductor
of external radius rN = 4.72mm, (note that Rdc and Ldc denote
direct current values of R and L). The frequency range considered
is 0 to 10 MHz. The structures considered are: (a) solid conductor,
(b) tubular conductor with r1 = 0.4rN , (c) tubular conductor with
r1 = 0.9rN .

We run MLCS for cases (a), (b), and (c), and obtained the results
depicted in Fig. 3 and Fig. 4. The number of layers considered in the
multilayer approach is N = 50, for all the cases.

Comparison established between MLCS results and those in
Figs. 3, 4, 7, and 8 of [24] shows no apparent differences.

As mentioned above, Fig. 3 and Fig. 4 were obtained by
subdividing the cylindrical structure into N = 50 layers. The
remaining question is how the value assigned to N may affect the
output of MLCS. From a theoretical point of view, since a homogeneous
structure is being considered, N should have no effect on the final
results. However, there might be a numerical problem. In fact, as
the number of layers is increased the number of matrix operations
(whose entries are combinations of Bessel functions) also increases, and
consequently a degradation of numerical accuracy may occur. To check
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Figure 3. Plot of R/Rdc

against frequency. (a) solid
conductor; (b) tubular conductor
where r1/rN = 0.4; (c) tubular
conductor where r1/rN = 0.9.
Compare with results in [24].
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Figure 4. Plot of L/Ldc

against frequency. (a) Solid
conductor; (b) tubular conductor
where r1/rN = 0.4; (c) tubular
conductor where r1/rN = 0.9.
Compare with results in [24].
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on this problem we analyzed the solid cylinder case (rN = 4.72mm), for
f = 10MHz. The per-unit-length internal impedance was computed
directly, through

Z̄int = Rdc k̄rN
J0(k̄rN )
2J1(k̄rN )

(33)

and computed via MLCS, with N varying from 1 to 100.
Computation errors have been assessed, regarding the resistance

and the reactance of the per-unit-length internal impedance, as follows




RError(N) =
Re{(Z̄int(N))

MLCS
− Z̄int}

|Z̄int|
XError(N) =

Im{(Z̄int(N))
MLCS

− Z̄int}
|Z̄int|

(34)

The relative errors found, shown in Fig. 5, do not exceed 10−10.
Albeit negligibly small, the error functions plotted in Fig. 5, show a
smooth evolution (near to zero) in the intervals N ∈ [1, 25] ∪ N ∈
[40, 60], and a series of spikes of random amplitude in the remaining
range of N . This numerical noise is probably associated to some sort
of instability in the calculation of the Bessel, Neumann, and Hankel
functions, as has been suggested in [24].
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Figure 5. Resistance and reactance relative errors as a function of
the number of layers. Results evaluated according (34), at 10 MHz.
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Figure 6. Disk capacitor structure.

6.1.2. Disk Capacitor

The structure depicted in Fig. 6 has been analyzed in [25]. A
homogeneous lossy dielectric medium (ε = 12ε0, loss angle δ = 0.012)
is sandwiched between two circular metallic discs of radius rN = 5mm.
The thickness of the dielectric material is h = 50µm ¿ rN .

In [25], the capacitor admittance Ȳ (ω) has been determined as
a function of the frequency in the range 0 to 20 GHz. Graphical
results for the conductance G(ω) = Re(Ȳ ) and for the susceptance
S(ω) = Im(Ȳ ) are available in [25].

Using the problem data we run MLCS and obtained the per-unit-
length internal impedance of the disk capacitor,

(
Z̄int(ω)

)
MLCS

, and
from it the corresponding admittance was evaluated
(
Ȳ (ω)

)
MLCS

=(G(ω))MLCS +j (S(ω))MLCS =
(
h×Z̄int(ω)

)−1

MLCS
(35)

The corresponding graphical results are shown in Fig. 7. As before,
the number of layers considered in the multilayer approach is N = 50.

Comparison established between MLCS results and those in Fig. 4
of [25] shows no apparent differences.

It should be noted that although the results in this paper concern
an axially undefined structure, they also apply to the finite length disk
capacitor in Fig. 7. The reason is that the circular metallic disks are
assumed to be perfect conductors, therefore ensuring that the electric
field, perpendicular to the two disks, remains an axial field (for small
h).

6.2. Euler-cauchy Inhomogeneous Structures

Considerer an inhomogeneous tubular conductor (displacement
currents neglected, i.e., k̄ =

√−jωµσ) where both the conductivity
and permeability are functions of the radial coordinate, σ = σ(r),
µ = µ(r), in the range r1 < r < rN .

For this situation the wave equation in (4) is no longer valid. It
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Figure 7. Disk capacitor conductance and susceptance against
frequency. Compare with results in [25].

should be replaced by

r2 d2Ā

dr2
+

(
1− r

µ(r)
dµ(r)

dr

)
r
dĀ

dr
+

(
r k̄(r)

)2
Ā = 0 (36)

where k̄2(r) = −jωσ(r)µ(r).
Equation (36) does not have, in general, a closed-form solution.

However, if the functions σ(r) and µ(r) are chosen such that

µ(r) = µ1

(
r

r1

)p

; σ(r) = σ1

(r1

r

)p+2
(37)

we obtain from (36)

r2 d2Ā

dr2
+ (1− p) r

dĀ

dr
+

(
k̄1r1

)2
Ā = 0 (38)

where p is a real number, σ1 = σ(r1), µ1 = µ(r1), and k̄1 =
√−jωµ1σ1.

The result in (38) describes the so-called homogeneous second
order Euler-Cauchy equi-dimensional equation [26]. Cylindrical
structures, whose constitutive medium is characterized by (37), are
called Euler-Cauchy structures (ECS).

For r1 ≤ r ≤ rN , the solution of (38) can be written in closed
form [26], as

Ā(r) = A1 rm1 + A2 rm2 (39)
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where m1 and m2, given by

m1,2 =
p

2
±

√(p

2

)2
− (

k̄1r1

)2 (40)

are the roots of the characteristic equation: m2 − pm + (k̄1r1)2 = 0.
The complex constants A1 and A2 in (39) are determined from the
boundary conditions: H̄(r1) = 0; H̄(rN ) = Ī/(2πrN ).

It can be proved that for arbitrary values of p, the general result
for the per-unit-length internal impedance of the tubular conductor is
given by

Z̄int =
−jωĀ(rN )

Ī
=

m2(r1/rN )m2 −m1(r1/rN )m1

2πσNr2
N ((r1/rN )m1 − (r1/rN )m2)

(41)

where σN = σ(rN ) = σ1(r1/rN )2+p.
As an application example we analyze here the case p = −2, where,

from (37), σ(r) = σN = σ1, µ(r) = µ1 (r1/r)2. For this case, the
calculation of the per-unit-length internal impedance leads to

Z̄int = R(ω) + jX(ω) =
1

2πσ1r2
N

(
1 + u

(
1 + (r1/rN )2u

1− (r1/rN )2u

))
(42)

where u = u(ω) =
√

1− (k̄1r1)2.
For exemplification purposes consider the following data: rN =

3r1 = 3 mm, σ1 = 5× 106 S/m, and µ1 = 9µ0 — see Fig. 8.

r1

rN

Figure 8. Cross section of an Euler-Cauchy tubular conductor where
σ(r) = 5× 106 S/m, µ(r) = µ0(3r1/r)2, and rN = 3r1 = 3 mm.

The direct computation of the per-unit-length internal impedance
in (42) yields the solid lines R(ω) and X(ω) shown in Fig. 9, for a
frequency sweep from 0 to 0.1 MHz.

Next, the multilayer technique was employed.
The tubular conductor was subdivided into 100 homogeneous

layers of identical thickness, ∆r = (rN − r1)/(N − 1), each layer
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Figure 9. Real and imaginary parts of the per-unit-length internal
impedance against frequency in the range 0 to 0.1MHz. Solid lines are
theoretical curves from (42). Circle marks are obtained from MLCS.

characterized by constant values of σn and µn

σn = σ1; µn =
1

∆r

rn∫

rn−1

µ(r)dr

Using the above parameter data we run MLCS and obtained
the per-unit-length internal impedance of the ECS tubular conductor.
Results obtained (identified by circle marks) are shown in Fig. 9,
superposed to the theoretical curves. The agreement is almost perfect.

7. CONCLUSION

Inhomogeneous structures consisting of multilayered materials find
application in a full range of areas, from microwaves to power systems.
In this work, we paid special attention to radially inhomogeneous
cylindrical structures, where the constitutive medium can be a
conductor, a dielectric, a magnetic material, or a mix of all of them.

The supporting theory for the analysis of multilayered cylinders
was developed by making use of a matrix approach, where each layer
is characterized by its own field transfer matrix; the inhomogeneous
structure being described by a global transfer matrix (i.e., the matrix
product of all the individual layer transfer matrices). The presented
approach permits not only the evaluation of the per-unit-length
internal impedance of the cylindrical structure, but also the evaluation
of the E and H fields at the layers’ interfaces.
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The theoretical results were translated into a software program,
MLCS, whose main output is the frequency-dependent cylinder’s
internal impedance. MLCS was validated with the help of several
application examples taken from the literature, and also by considering
the special case of an Euler-Cauchy structure.
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