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CHARACTERISTIC BASIS FUNCTIONS OF THE
ENERGY RADIATION PATTERN OF A SPARSE
TRUE TIME DELAY ARRAY

A. Shlivinski
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Abstract—A set of characteristic basis functions of the energy
radiation pattern for a true-time-delay array of equi-spaced elements
radiating a pulsed/transient wave-field was derived. This set is
determined by the array layout and by the set of excitation waveforms
that can be used to expand the actual excitation pulse. It is established
that the characteristic basis function set spans the mapping of the
square amplitudes of the discrete Fourier transform of the excitation
coefficients to the energy radiation pattern. This mapping is further
used to analyze array performance and re-examine the term array
sparsity. Additional use of this set can be found in synthesizing an
array radiation pattern to meet prescribed requirements.

1. INTRODUCTION

The far-field time-dependent radiation pattern of a true time delay
(TTD) array antenna (or antennas for non-sinusoidal excitation
signals, see, e.g., [1]) depends on a set of two coordinates: angular (r̂ –
2D vector in an angular domain) and temporal (t). In applications
concerning the net energy radiated by the array, one is interested
in the energy radiation pattern (ERP) of the array rather than
the time-dependent pattern. As such, the ERP provides a simpler
representation by only one coordinate, i.e., the angular, of the radiation
pattern. Nevertheless, in terms of the observability of certain kinematic
characteristics of the TD array, it was already shown, see, e.g., [2, 3]
that they also have an impact on the ERP. Therefore, the ERP is a
valid tool for TTD array kinematic analysis.
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In a previous publication [2, 3] a kinematic analysis of the TTD
array was performed with the radiated field (in the time domain) and
via its ERP. This analysis yielded a representation of the radiation
pattern by the array’s set of radiated beams that are structured on
an angular predetermined lattice. Once the TTD array parameters
are given, this beam lattice and the corresponding beams can be
easily determined. The direct dependence of the set of radiated
beams on both the layout (geometry) of the array and on the actual
element’s excitation pulse somewhat limits its use in (i) analysis of
general ERP characteristics and (ii) synthesis of the ERP. To this
end, an alternative approach to the representation of the ERP is
taken in the present manuscript that entails the decomposition of
the ERP into a weighted summation of characteristic basis functions
(CBF). These CBFs describe the transformation (mapping) between
the set of array exciting sources and the corresponding far-field ERP.
This transform, in turn, gives rise to a general set of functions that
can be used to analyze/synthesize and optimize the array’s ERP
properties. For an equi-spaced linear array, the decomposition of
the ERP into its corresponding CBFs is carried out using an eigen-
decomposition of Toelplitz and circulant matrixes [4–6]. The resulting
set of CBFs encapsulates the possible kinematic characteristics of
the array and therefore is complementary to [2, 3]. In particular it
provides a new, and refined, point of view on the TTD array’s sparsity
and gives additional analysis tools for obtaining some bounds and
characteristics of the array’s performance upon synthesizing a TTD
array. Furthermore, the CBF formulation is uniformly applicable
for signals ranging from that of a short-pulsed type to that of a time
harmonic (TH) type.

The manuscript is organized as follows. Problem formulation in a
step–by–step manner is treated in Section 2 where the array’s layout
and excitation parameters, in addition to its observable parameters
that are further used to construct the CBFs, are reviewed. The CBF
set for the general case is derived and analyzed in Section 3 followed
by an example for the basic single pulsed waveform radiation case in
Section 4. Section 4 provides also a discussion on the properties of ERP
expansion by the CBF set, their bounds and on different conditions
of array sparsity. Additionally, Section 4 provides an example of
several array realizations, their corresponding CBF sets and ERPs in
order to clarify the discussion and show the applicability in antenna
theory analysis/design. Section 5 comprises a summary and concluding
remarks.



Progress In Electromagnetics Research, Vol. 115, 2011 261

2. PROBLEM FORMULATION AND PRELIMINARIES

In the following section, problem formulation is put forward by
considering the radiating array layout, the array’s elements model,
and the observation setup.

2.1. Layout

2.1.1. Physical Layout

Let us consider a one-dimensional (1D) linear array of N radiating
elements aligned along the z-axis with inter-element spacing d.
Without loss of generality, all array elements have the same source to
far-field transfer function (termed effective height) ht(r̂, t) = H(r̂)D(t)
in transmission, where t is a temporal coordinate, r̂ = (vρ̂, u) with
ρ̂ = x̂ cosφ + ŷ sinφ, u = cos θ, and v = sin θ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.
Here, H(r̂) is an angular radiation pattern in the r̂ direction and D(t)
is a time dependent operator †. Such decomposition of ht is useful
in treating many types of small radiating elements (transducers) that
have a multipolar type of radiation pattern with D(t) as a differential
operator (see, e.g., in antenna theory [7–10]. For the extended type
of transducer, ht(r̂, t) can be decomposed to a summation of products
of the angular and temporal functions (see, e.g., the discussion in[10]).
Additionally, without loss of generality the array’s main radiation beam
is set here in the x direction.

2.1.2. Excitation Signal Set

The incident excitation signal at the terminal of the nth radiating
element, n = 0, 1, . . . , N − 1 is given by:

sn(t) =
P∑

p=0

[
s(r)
np ϕ(t− tp)− s(i)

npϕ̌(t− tp)
]
, tp = pt̄ (1)

where s
(r)
np , s

(i)
np ∈ R, n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , P ,

are two sequences of excitation coefficients. The window ϕ(t) is
an essentially time-limited and frequency-band-limited real pulse-
shaped waveform with a prescribed central frequency (see the
discussion below). The window ϕ̌(t) = P.V. 1

πt ~ ϕ(t) is the
Hilbert transform of ϕ̌(t), where ~ represents the convolution integral
† The derivation, here, is performed within scalar antenna theory, i.e., for acoustical
sources or transducers radiating in a 2 dimensional space (x, z) or as projection of an
electromagnetic field on the corresponding aperture E-plane or H-plane. An extension to
the full vectorial case can easily be carried out following similar lines of derivation.
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(
[a(·) ~ b(·)] (t) =

∫
dt′a(t′)b(t− t′)

)
, and P.V. is the principal value of

the integration. The delay term t̄ is the temporal duration between
successive contributions.

The excitation signal given in Eq. (1) can be used to (i) represent a
sequence of distinct pulses (pulse-train) of the form s

(r)
np ϕ(t)− s

(i)
npϕ̌(t),

whenever t̄ is greater than the single pulse duration (pulsed-width),
see, e.g., [3]. In such a case t̄ is the pulse repetition duration (with
PRF = t̄−1). Moreover, the signal representation in (1) corresponds,
then, to a broad class of the quadrature modulated type of signal. (ii)
Alternatively, by maintaining a proper balance between the excitation
coefficients s

(r)
np and s

(i)
np, Eq. (1) can generally be used to represent

a signal-waveform by its temporal samples, in which case ϕ(t) is an
interpolation window and t̄ is the sampling interval that satisfies the
Nyquist sampling criterion.

One should note that a compact representation of the signal in
the brackets in Eq. (1) could be obtained by resorting to the analytic
signals notation

+
sn(t), where

+
sn(t) =

P∑
p=0

snp
+
ϕ(t− tp),

snp = s(r)
np + is(i)

np,
+
ϕ(t) = ϕ(t) + iϕ̌(t),

(2)

i =
√−1 and sn(t) = Re{+

sn(t)}.

2.2. Radiated Field

Combining the excitation model in (1) with the radiating elements
model ht(r̂, t), the nth element analytic transient radiation field is
given by en(r̂, t) = Re{+

en(r̂, t)}, with:

+
en(r̂, t) =

1
4πr

H(r̂)
+

fn(r̂, τ),
+

fn(r̂, τ) =
P∑

p=0

snp

+

ψ(τ − tp), (3)

the radiated pulse analytic waveform is given by
+

ψ(τ) =[
D(·) ~ +

ϕ(·)
]
(τ), r = (x, y, z), with r = |r|, and the retarded time

τ = t− r/c, with c as the wave propagation speed.
Similar to (3), the array’s time dependent far-field is given by

+

E(r, t) = 1
4πr

+

F (r̂, τ), where
+

F (r̂, τ) is the corresponding analytic
counterpart of the transient radiation pattern that is obtained by
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an aggregation the properly delayed far-fields of the individual array
elements to give

+

F (r̂, τ)=H(r̂)
+

F a(r̂, τ),
+

F a(r̂, τ)=
+

F a(u, τ) =
N−1∑
n=0

+

fn(τ +ndc−1u). (4)

In Eq. (4),
+

F a(u, τ) denotes the analytic counterpart of the radiation
pattern of the array itself without the angular “filtering” effect of the
elements’ angular pattern. Since the discussion focuses mainly on the
analysis of the array’s kinematic properties, inter-element coupling
(the interaction between the array elements) is therefore neglected (for
details regarding the effect of coupling in TD arrays see [9]).

2.2.1. Signal Characteristics and Bandwidth Regimes

In view of (3), the element’s far-field
+
en(τ) is also a pulsed-waveform,

however, due to the D(t) operator, some of its characteristics may differ
from those of its source

+
sn(t). Since D(t) may contain derivations and

+
ϕ(t) has a pulsed shape, it follows that

+

ψ(t) (and ψ(t) = Re{
+

ψ(t)})
in (3) can be modeled as a modulated pulsed-waveform ψ(t) ≈
r0(t) cos(ω0t+φ), where r0(t) is a base-band pulsed shaped window with
an effective pulse-width (say T ), ω0 = 2π/T0, and φ is a delay phase.
The choice of r0(t), ω0, and φ depends on the temporal characteristics
of ψ(t). This modeling of ψ(t) does not limit the discussion to a certain
type of pulsed excitations, as will be shown below; rather, it allows
some of the unique properties attributed to NB, QM and UWB/SP
excitation regimes to be quantified (for additional discussion, see, [3]).

Next, it should be noted that based on the ratio T/T0, “pulsed
excitation” can be classified as one of three types (see, e.g., [2, 3])
(i) NB for T/T0 & O(1), where the signal’s characterization is
dominated by the carrier frequency (thus, TH considerations may
be used, with the periodicity T0 identified as a carrier frequency);
(ii) UWB/SP for T/T0 . 0.2, where the signal is dominated by
the short pulsed envelope r0(t); or (iii) the intermediate range of
0.2 . T/T0 . 1, termed the quasi-monochromatic (QM) regime, where
the signal’s attributes are characterized by an interplay between the NB
(carrier) and the UWB/SP (modulation) properties, see the discussion
below.

2.3. Energy Radiation Pattern

Following the introduction of the array’s far-field in Eq. (4), the ERP
is presented as the primary observable used to derive the CBF set. To
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this end, let an energy radiation pattern be defined as the L2 norm of
the far-field, on an infinite temporal observation window , via:

E(r̂) = (4πr)2 ‖E(r, t)‖2

2
=

∫

∞
dτ |F (r̂, τ)|2 =

1
2

+

RF (τ ; r̂)
∣∣
τ=0

. (5a)

where
+

RF (τ ; r̂) is the autocorrelation function of
+

F (r̂, τ) and is given
by

+

RF (τ ; r̂) =
[

+

F (r̂,−τ)
]∗

~
+

F (r̂, τ)

=
∫

∞
dt

[
+

F (r̂, t− τ/2)
]∗

+

F (r̂, t + τ/2)
(5b)

with the asterisk denoting complex conjugation.
Inserting Eq. (3) with (4) into Eq. (5) yields the expression

for the energy radiation pattern in terms of the distinct elements
contribution [3]:

E(r̂) = |H(r̂)|2Ea(r̂),

Ea(r̂) = Ea(u) =
1
2

N−1∑
n=0

N−1∑
m=0

+

Rnm ((n−m)c−1du) ,
(6a)

where
+

Rnm[τ ] = [
+

fn(r̂,−τ)]∗ ~
+

fm(r̂, τ) is the temporal cross
correlation between

+
en and

+
em, given explicitly by the double

summation
+

Rnm(τ) =
P∑

p=0

P∑
q=0

s∗npsmq

+

Rψ (τ + (p− q)t̄) ,

+

Rψ(τ) =
[

+

ψ(τ)
]∗

~
+

ψ(−τ).

(6b)

Noting that due to rotational symmetry around the array (ẑ axis,
in φ), Ea(r̂) is effectively a parameter of, only, u = cos θ therefore
Ea(r̂) = Ea(u) in Eq. (6a).

The decomposition of E(r̂) in Eq. (6a) by using Ea(r̂) which is a
function of the array’s physical layout, the excitation pulses (sn(t)),
and the elements’ temporal transfer function D(t) implies that Ea(r̂)
preserves the core characteristics of the array and as such can be
identified as an energy array factor. Thus, continued use of Ea(r̂)
instead of E(r̂) also preserves the array’s kinematic characteristics (see
Figs. 3, 5 and 7 below for some typical examples and in [3]). To
this end, Eqs. (6a) and (6b) can be rearranged in a matrix format
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as Ea(u) = 1
21

T
N R1N , where R is an N × N matrix whose nmth

element is given by [R]nm =
+

Rnm [(n−m)µ], µ = dc−1u, and 1N is
an N dimensional column vector whose elements equal 1. Similarly,
+

Rnm(τ) = s†nRψ(τ)sm, where Rψ(τ) is a (P + 1) × (P + 1) matrix

whose pqth element is [Rψ]pq (τ) =
+

Rψ [τ + (p− q)t̄], sn,m, are two
(P + 1) dimensional column vectors with [sn]p = snp and [sm]q = smp,
respectively, and † denotes the Hermitian transpose. Noting that the
matrix Rψ is a Toeplitz matrix will play a key role in the derivation
of the CBF set below. Concatenating sn, n = 0, . . . , N − 1, into an

N(P + 1) column vector s =
[
s†0 s†1 . . . s†N−1

]†
shows that Eq. (6a) can,

conveniently, be given by,

Ea(u) =
1
2
s†RE(u) s, (7a)

where RE is a block Toeplitz matrix with N × N blocks each of size
(P + 1)× (P + 1). Therefore,

RE(u) =




Rψ(0) Rψ(−µ) . . . Rψ(−(N − 1)µ)

Rψ(µ) Rψ(0) . . .
...

...
...

. . .
...

Rψ((N − 1)µ) Rψ((N − 2)µ) . . . Rψ(0)


 .

(7b)
Regarding Eq. (5b) it should be noted that the properties
of the autocorrelation function of analytic signals implies that[

+

RF (−τ ; r̂)
]∗

=
+

RF (τ ; r̂). Therefore, it renders the matrixes Rψ and,

consequently, block-matrix RE , Hermitian matrixes. Furthermore,
a key property of the ERP is its positiveness, i.e., both E(u) and
Ea(u) ≥ 0 for all r̂ (synonymously u), which further implies, via Eq. (7),
that the matrix RE(u) is also a positive defined matrix.

2.4. Problem Statement

The derivation in Section 2.3 giving Eq. (7a) concludes the problem
setup by formulating a convenient mathematical representation for
the ERP. Furthermore, it demonstrates that all ERP characteristics
are governed by a concise set of attributes of RE(u). Therefore,
to characterize the array performance by, for example a CBF set,
the characteristic functions of the matrix RE(u) should be further
analyzed.
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3. EIGEN DECOMPOSITION AND CBF DERIVATION

Following the problem statement in Section 2.4 and in view of Eq. (7a),
array performance can be investigated by analyzing the matrix RE(u)
characteristics to obtain the CBF set. A convenient set of u-dependent
(or r̂-dependent) characteristics of RE is obtained by applying its
eigen-decomposition. Recalling that RE has a canonical structure of
a block Toeplitz matrix with Toeplitz blocks, obtaining an explicit
expression of its u-dependent eigen-decomposition is impractical.
However, embedding the RE blocks into a larger circulant matrix‡ with
circulant blocks yields closed form expressions [up to a discrete Fourier
transform, (DFT), operation] to the associated eigen-system (vectors
and values) [4–6]. This course of action will be pursued next with
demonstrations in Section 4.

3.1. Embedding RE into a Circulant Matrix

To derive an eigen-decomposition of RE , Ea in Eq. (7) is reformulated as
a vector-matrix-vector product with a circulant matrix with circulant
blocks. This reformulation involves the embedding of the Toeplitz
blocks Rψ(τ) of RE into a larger circulant matrix Cψ(τ). To this end,
let Cψ(τ) and s̃n comprise a (2P + 1)× (2P + 1) circulant matrix and
a 2P + 1 zero-padded vector, respectively, that are defined by

Cψ(τ) = circ {v(τ)} , s̃n =
[
s†n O

†
P

]†
, (8a)

where circ is a shorthand notation for circulant matrix, whose first row
is the vector,

v(τ) =
[

+

Rψ(τ),
+

Rψ(τ − t̄), . . . ,
+

Rψ(τ − t̄P ),

+

Rψ(τ + t̄P ),
+

Rψ(τ + t̄(P − 1)) . . .
+

Rψ(τ + t̄)
] (8b)

and OP is a zero column vector of dimension P , giving

Cψ(τ) =

[
Rψ(τ) C(12)

ψ (τ)
C(21)

ψ (τ) C(22)

ψ (τ)

]
, (8c)

where C(12)

ψ and C(21)

ψ are two rectangular Toeplitz matrixes of size
(P + 1) × P and P × (P + 1), respectively, and C(22)

ψ is a Toeplitz
matrix of dimension P × P . Note that this embedding suggests that
+

Rnm(τ) = s̃†nCψ(τ)s̃m [see Eq. (6b)].
‡ For the definition of a circulant matrix see [4].
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To achieve similar embedding for the block Toeplitz matrix in
Eq. (7b), let s̃ be a zero padded vector of dimension (2N − 1)(2P + 1)
defined by

s̃ =
[
s̃†0 s̃†1 . . . s̃†N−1 O

†
]†

, (9a)

where O is a column vector of zeroes of dimension (N−1)(2P +1) and
CE be the (2N − 1)(2P +1)× (2N − 1)(2P +1) block circulant matrix
with circulant blocks that is defined as

CE = bcirc {Cψ(0), Cψ(−µ), . . . ,Cψ(−(N − 1)µ),
Cψ((N − 1)µ),Cψ((N − 2)µ) . . .Cψ(µ)} ,

(9b)

where bicirc is a shorthand notation for a block circulant matrix
formed by the circular shifts of the blocks within the curly brackets
in Eq. (9b) [4, 6]. Using the newly derived s̃ and CE , the ERP of
Eq. (7a) is reformulated as

Ea(u) =
1
2
s̃†CE(u) s̃. (9c)

It should be noted that the Hermitian property of RE is inherited by
CE .

Although the reformulation of Ea in Eq. (7a) into a large system
to give Eq. (9c) seems to complicate the discussion. However, since
CE(u) is a block circulant with circulant blocks matrix its eigen-
decomposition is readily available in closed form for any u [4–6], as
will be discussed next.

3.2. Eigen-decomposition of CE(u)

A favorable property of the eigen-decomposition of a circulant
and block circulant with circulant block matrixes is their analytic
simplicity [4–6]. Moreover, the eigenvectors of these circulant matrixes
depend exclusively on the circular structure of the matrix and not
on the matrix entries. Consequently, all circulant/block-circulant
with circulant block matrixes of the same structure (i.e., block size
and number of blocks) have the same eigenvectors, which are known
analytically, while the values of the matrixes’ entries determine the
associated eigenvalues. This property of the eigenvectors is a key point
in the present CBF derivation, because as the parameter u changes,
it sets different entries for the matrix CE(u). Since CE(u) maintains
it structure (block size and number of blocks) independent of u, it
has u-independent eigenvectors while the functional dependence on
the spectral (angular) parameter u is shifted into the eigenvalues.
Recall that given a matrix and its eigenvectors, the corresponding
eigenvalues are obtained by matrix-vector multiplications. Hence, the
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u dependence of Ea is governed by the set of u-dependent eigenvalues
of CE(u), which are further identified as the CBF’s of the array (as
will be discussed below).

To formulate the above discussion, let an eigen-decomposition of
CE(u) be given by a summation of products of rank-1 matrixes, which
may concisely be written as,

CE(u) =
∑

j∈J

∑

n∈N
λn,j(u)cn,jc

†
n,j , (10a)

where N = 0, 1, . . . , 2N − 2, J = 0, 1, . . . , 2P , {cn,j} is the set of
eigenvectors, and {λn,j(u)} is the corresponding set of eigenvalues.
Due to the block-circulant with circulant blocks structure of CE(u),
the set of eigenvectors {cn,j} is determined as follows [4, 6]: let

ρj = exp
(

i
2π

2P + 1
j

)
, rn = exp

(
i

2π

2N − 1
n

)
, (10b)

be two sets of 2P + 1 and 2N − 1 roots of 1 (uniformly distributed on
the unit circle in the complex plain) and define the sets of two column
vectors with unit euclidian norm:

ρj =
1√

2P + 1




1
ρj

ρ2
j
...

ρ2P




, rn =
1√

2N − 1




1
rn

r2
n
...

r2N−2




. (10c)

For a given index {n, j}, an eigenvector cn,j is obtained by the
Kronecker product §

cn,j = rn ⊗ ρj . (10d)
Once the eigenvectors have been acquired, given a spectral parameter
u, the corresponding eigenvalues {λn,j(u)} can be obtained as follows.
Since CE(u) is Hermitian, its eigenvectors are orthogonal, which further
yield, following Eq. (10a), the u-dependent eigenvalue:

λn,j(u) = c†n,jCE(u)cn,j , n ∈ N , j ∈ J . (11)

Next, inserting the eigen-decomposition of CE(u) given in Eq. (10a)
into the array’s ERP of Eq. (9c) yields the expression for the energy
radiation pattern decomposition in terms of the weighted summation
of the elements of an eigen-set of spectral (angular) characteristic
functions λn,j(u):

Ea(u) =
1
2

∑

j∈J

∑

n∈N
λn,j(u)

∣∣∣ˆ̃sn,j

∣∣∣
2

, ˆ̃sn,j = c†n,j s̃. (12)

§ For the definition of the Kronecker product, see [11].



Progress In Electromagnetics Research, Vol. 115, 2011 269

where |ˆ̃sn,j |2 are the summation weights. Examples of the use of
Eq. (12) are given in Section 4.

3.2.1. DFT Formulation

Noting that the two sets of vectors ρj and rn, {(n, j)|n ∈ N , j ∈ J },
are basis elements for the 1D DFT of a sequences of lengths 2P +1 and
2N − 1, respectively, a concise generalization of Eq. (11) and of the
summation weights in Eq. (12) for all {(n, j) pairs can be obtained in
terms of a two-dimensional (2D) DFT. To that end, let the eigenvalues
be arranged in a matrix [Λ(u)]n,j = λn,j(u), and define the matrix

V(u) = [v†(0) v†(−µ) . . .

v†(−(N − 1)µ) v†(N − 1)µ) v†((N − 2)µ) . . .v†(µ) ]† ,

for which v(τ) was set in Eq. (8b). Note that both Λ and V matrixes
are of dimension (2N − 1) × (2P + 1). The eigenvalues matrix Λ(u)
is obtained as a normalized 2D DFT of V, of lengths 2P + 1 along
the rows and 2N − 1 along the columns, such that λn,j = rT

nVρj ,
where the superscript T denotes matrix transpose. Similarly, the
set of coefficient ˆ̃sn,j is obtained up to a redundant phase by a
normalized two-dimensional DFT of the matrix S = [s0 s1 . . . sN−1]
of size (P +1)×N by embedding it as an upper-left block into a larger
(2P + 1) × (2N − 1) matrix S̃ whose other elements are zero. Note
that this embedding is the equivalent of zero padding for achieving an
increased resolution in DFT (see, e.g., [12]).

3.3. The Eigenvalues Set and the CBFs

Following the discussion in the previous sections, given (i) a physical
array layout and (ii) a set of possible excitation waveforms. The
set of u dependent eigenvalues {λn,j(u)}, {(n, j)|n ∈ N , j ∈ J }, of
CE(u) is obtained by a 2D DFT (Section 3.2.1), such that Ea(u) ∈
span{λn,j(u)}, Eq. (12).

An interpretation of the role of the set of {λn,j(u)} is obtained
by viewing Eq. (12) as a mapping operation between a set of positive
excitation coefficients |ˆ̃sn,j |2 and the radiation pattern Ea. As such,
the elements of {λn,j(u)}, {(n, j) | n ∈ N , j ∈ J } spectrally map
(“distribute”) the energy in the excitation into the far-field. Due to
their role as building blocks of the ERP, the elements of the eigenvalues
set {λn,j(u)} are identified as the set of CBFs with respect to the
spectral (angular) parameter.
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3.3.1. The CBF Set and the Attainable ERPs

Once the CBF set has been defined, the resulting properties of the
spectral (angular) domain spanned by the CBF set {λn,j(u)} and its
relation to the set of all attainable, physically valid, radiation patterns
Ea(u) is discussed next:

(i) A key point is whether a single element of the CBF set, say
λn′,j′(u) with {(n′, j′) | n′ ∈ N , j′ ∈ J }, is a valid and realizable
ERP?
In general, the elements of the set {λn,j(u)}, {(n, j) | n ∈ N , j ∈
J } do not satisfy any orthogonality with respect to u as part
of their reconstruction. Therefore, one possibility of realizing a
single CBF ERP realization, Ea(u) = λn′,j′(u), is for the set of
expansion coefficients in Eq. (12) to satisfy ˆ̃sn,j = σn′,j′δ(n′,j′)(n,j)
where σn′,j′ is an amplitude and δ(n′,j′)(n,j) is the Kronecker
delta. Because the spectral coefficients ˆ̃sn,j and spatial coefficients
(i.e., the elements of S̃) are related via a 2D DFT, satisfying
ˆ̃sn,j = σn′,j′δ(n′,j′)(n,j), therefore, requires that the elements of
S̃ have the same absolute magnitude (different than zero) with
some progressive phase, which defy the construction of S̃ by “zero
padding” S. Consequently, a single CBF (λn′,j′(u)) by itself is not
a realizable ERP.
Furthermore, generally, the CBF elements λn,j(u) are not non-
negative in the observation range |u| < 1 [see, e.g., the example
in Eq. (13)]. Since Ea(u) is an energy radiation pattern, it is
defined as being non-negative, and therefore, a single CBF-ERP
realization is unattainable.

(ii) Attaining a non-negative u-dependent function that belongs to the
span of the CBF set is not sufficient by itself to suggests that it can
be a valid radiation pattern. This argument follows from Eq. (12)

which requires that, in addition, the expansion coefficients
∣∣∣ˆ̃sn,j

∣∣∣
2

will be nonnegative (since they are the square of the absolute value
of a generally complex coefficient).

(iii) Let L be the space spanned by the CBF set. An element `(u) ∈ L
is generally given by `(u) = 1

2

∑
j∈J

∑
n∈N

ln,jλn,j(u) where ln,j ∈ C
[see Eq. (12)]. Let P be the set of all u-dependent non-negative
functions, `n,j(u) > 0. Additionally, let P+ be the set of all
`n,j(u) ⊂ P with ln,j ≥ 0. Finally, let PE be the set for which ln,j =∣∣∣ˆ̃sn,j

∣∣∣
2

[compare to Eq. (12)] where ˆ̃sn,j are DFT coefficients of
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some zero-padded excitation sequence. Following the construction
of L and the cascading sets P, P+ and PE , a physically realizable
radiation pattern satisfies Ea(u) ∈ PE ⊂ P+ ⊂ P ⊂ L. Therefore,
the set of attainable ERPs is only a partition of the possible span of
the CBF set. In an analysis problem where the set of excitations,
{snp} in Eq. (1), is known, it always Ea(u) ∈ PE ⊂ P+ ⊂ P ⊂ L.
However, in a synthesis problem of the radiation pattern to meet
some prescribed characteristics or in an inverse source problem, it
is important to address this cascading sets. These issues will be
explored further elsewhere.
A demonstration of the CBF set for the simplest case of P = 0

follows.

4. DETAILED DEMONSTRATION: THE P = 0 CASE

The presentation in the previous sections is applicable to a general
N -elements array and an excitation waveform that comprise a set
of P + 1 basis waveforms. In this section, on the other hand, a
detailed demonstration and discussion of the simple, basic, case of an
N -elements array with a single waveform type of excitation (P = 0)
is performed. This case is explored in order to gain some insight
on the physical as well as the mathematical properties of the CBFs
in connection to known transient antenna characteristics. The
discussion is followed by demonstrations of some array realizations.

Given an N -elements array with an inter-element spacing d, let
the eventual element’s radiated waveform (see in Section 2.2) be
ψ(t) = r0(t) cos(ω0t), where ω0 = 2π/T0, r0(t) is a real valued base-
band pulsed-shaped window of an effective width T and ω0T > 1 (QM
and NB regimes, see, e.g., [3]). Let the given range of parameters be
set such that the associated analytic radiated waveform can be well

approximated by
+

ψ(t) ' r0(t) exp(−iω0t).
Following the discussion in Section 2.3, the autocorrelation

+

Rψ(τ) = [
+

ψ(−τ)]∗ ~
+

ψ(τ) = Rr0
(τ) exp(−iω0τ), where Rr0

(τ) =
r0(−τ) ~ r0(τ), is the autocorrelation function of r0(t). Correspond-

ingly, in view of Eqs. (6)-(8), Rψ(τ) = Cψ(τ) = v(τ) =
+

Rψ(τ). Using
v(τ) to calculate the CBF set as is suggested in Section 3.2.1, it fol-

lows that V =
[

+

Rψ(0)
+

Rψ(−µ) . . .
+

Rψ(−(N − 1)µ)
+

Rψ((N − 1)µ)

+

Rψ((N − 2)µ) . . .
+

Rψ(µ)
]
, and consequently, the set of CBFs is given

by a 1D DFT vector Λ(u) = DFT 1D{V(u)}, giving [Λ(u)]n = λn(u),
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where:

λn(u) =
1√

2N − 1

N−1∑

k=1−N

+

Rψ(−kµ) exp
(

i
2πk

2N − 1
n

)
(13a)

=
1√

2N − 1

N−1∑

k=1−N

Rr0
(kµ) exp (iξnk) , (13b)

with µ = dc−1u, ξn = ω0µ + 2πn
2N−1 and n ∈ N . Equation (13) gives the

formal expression for the individual CBFs to be used to construct the

ERP, which following Eq. (12) is given by Ea(u) = 1
2

2N−2∑
n=0

λn(u)
∣∣∣ˆ̃sn

∣∣∣
2

.

Examples of the use of Eq. (13) for different array realizations is given
in Figs. 1, 2, 4 and 6.

Since the excitation conditions range from the QM regime to the
NB regime (and possibly to the extreme NB, i.e., TH), the CBFs
of Eq. (13) and the array performance (ERP) can be discussed in
view of two characteristics: (i) Kinematic (in Section 4.1), which is
governed by physical parameterization (layout) and the signal carrier;
(ii) Waveform-dynamic (in Section 4.2),which is governed by the
pulsed characteristics (pulse waveform and duration). It should be
emphasized that the resulting kinematic characteristics of the CBFs
are insensitive to the change in the pulse-shaped window and therefore,
are the same for the QM, NB, and TH regimes. The combined view
of these two issues provides a general characteristic of the TTD array
(and of the CBFs) in a complementary and somewhat generic manner
than that in [2, 3] (see, e.g., the discussion on sparsity in Section 4.2.1).

4.1. Kinematic Considerations

Recalling that r0(t) is a real base-band pulse (bell) shaped window,
it follows that Rr0

(τ) is also a real bell shape function that is
monotonically decaying for τ > 0. It therefore follows via Eq. (13)
that since Rr0

(τ) is real, in general, λn(u) peaks positively whenever
the 2N − 1 contributions are phase-matched. This phase matching
occurs for ξn = 2`π, with ` ∈ Z, thus giving a set of local peaks for the
nth CBF at the spectral parameter:

un,` =
cT0

d

(
`− n

2N − 1

)
, n ∈ N , ` ∈ Z. (14)

The set {un,`|n ∈ N , ` ∈ Z} defines the nodes of a lattice of spectral
(angular) directions, denoted as the CBF-lattice, where the CBFs
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obtain their peak (of a “main-lobe” type), which is independent of
the actual pulsed waveform r0(t).

Once the CBF-lattice has been defined, the array’s kinematic
properties can be discussed based on the set of the nodes analyzed.
Let Ln ⊂ Z, n ∈ N denote a partition of all the integers such that
for a given CBF index n, ` ∈ Ln if |un,`| ≤ 1. Next define #n as the
support (number of elements) of Ln. It follows that the inter element
spacing (d) and carrier frequency (ω0 = 2π/T0) determine the set of
partitions Ln, where three cases can be discussed and demonstrate for
their effect on the kinematic properties of the ERP:

• Empty partition (#n = 0): For an inter-element spacing d/cT0

that is small enough it is possible to obtain an empty partition
Ln = ∅ (#n = 0) which implies that the peak of the “main
(dominant) lobe” of the nth CBF resides outside the observation
domain with |un,l| > 1. Alternatively, within the observation
domain, the nth CBF makes a degenerate (small or negligible)
contribution. This case suggests that due to an apparent spatial
oversampling of the aperture, the effective number of degrees of
freedom needed for the representation of the ERP is less than
2N−1. Nevertheless, truncation of the weighted CBF summation
in Eq. (12) to account for non-degenerate CBFs, introduces some
error into the observation domain due to the “long tail” of the
degenerate CBFs.
For a demonstration of the CBF set for the “empty partition” case,
let assume an array composed of 41 omni-directional radiating
elements with d/cT0 = 0.25, giving an array of size D = 10cT0.
Recall that cT0 is the wavelength at the carrier frequency [3].
Additionally, the radiated signal by each of the elements, ψ(t),
is taken as a type of modulated Lorenzian pulse of duration T
(i.e., r0(t) ∼ (t2 +(T/2)2)−1), however other pulsed waveforms can
also be used with minor changes in the results. Fig. 1 depicts
a gray-scaled color-map layout of the CBF set, as calculated
via Eq. (13a), as a function of u within the observation domain
|u| ≤ 1 for two excitation regimes: T/T0 À 1 (NB excitation
regime) in Fig. 1(a), and T/T0 = 0.75 (QM excitation regime)
in Fig. 1(b). The color scaling in the figures is linear with an
amplitude normalization with respect to λ0(0). Note that the
dark diagonal lines corresponds to the “main lobe” of the CBFs
which for the T/T0 À 1 (Fig. 1(a)) corresponds to the CBF
set as expressed in Eq. (18) below. It is readily observed that
CBFs with index between 20 and 60 have no “main lobe” within
the observation domain which implies that these CBFs constitute
an empty partition. This comes due to the dense packing of



274 Shlivinski

CBF index

u
=

c
o
s
θ

0 20 40 60 80

-1

-0.5

0

0.5

1  0.2

0

0.2

0.4

0.6

0.8

1

(a) T

T 0
>> 1

CBF index
u

=
c
o
s
θ

0 20 40 60 80

-1

-0.5

0

0.5

1 -0.2

0

0.2

0.4

0.6

0.8

1

(b) T

T 0
= 0 .75

Figure 1. A layout of the CBF set as a function of u for the “empty
partition case” for a 41 elements array with d/cT0 = 0.25 that is excited
with a modulated Lorenzian pulsed waveform and for two cases: (a)
T/T0 À 1, i.e., NB excitation regime; (b) T/T0 = 0.75, i.e., QM
excitation regime.

the array d/cT0 < 0.5 (see the discussion in Section 4.1.1).
Comparing Figs. 1(a) and 1(b) demonstrates that the property
of “empty partition” is invariant with the excitation regime while
the magnitude and angular spreading of the CBFs depend on the
excitation regime (see the additional discussion in Section 4.2).

• More than one element partition (#n > 1): For an inter-
element spacing d/cT0 that is large enough, it is possible to obtain
a CBF with more than one “dominant lobe” within the observation
domain (#n > 1). In view of Eq. (12), the corresponding
CBF contributes dominantly in more than one direction, thereby
introducing ambiguity (on the main radiation direction, this
ambiguity is somewhat resolved by using the waveform dynamic
considerations of Section 4.2). This phenomenon is unwelcome,
since it can lead to ERP with some grating-lobes (GL), see in
Fig. 3 and [2, 3, 13].
A demonstration of the “more than one element partition” case is
given in Fig. 2 which depicts a color-map layout of the CBF set
as calculated via Eq. (13a), as a function of u for a 6 elements
array, array size D = 10cT0 as in the previous case (but, here,
d/cT0 = 2 > 1) and the same excitation signal and scaling as
in Fig. 1. The appearance of more than one “dominant lobe”
(dark diagonal lines) within for |u| ≤ 1 implies that this is indeed
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the case for “more than one element partition”. A comparison
between the two excitation regimes (Fig. 2(a) for the NB regime
and Fig. 2(b) for the QM regime) demonstrates, again, that the
property of “more than one element partition” is invariant to
the excitation regime while the magnitude and angular spreading
of the CBFs strongly depends on the excitation regime (see the
additional discussion in Section 4.2).
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Figure 2. As in Fig. 1 but for the “more than one element partition”
case for a 6 elements array with d/cT0 = 2, the total length of the
array is 10cT0 (as used in Fig. 1).
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Figure 3. The ERP for a uniformly excited array (equal snp for all
elements, see in (2)) with the same physical and waveform parameters
that were used for the CBF layout in Fig. 2 for two cases: (a) T/T0 À 1,
i.e., NB excitation regime; (b) T/T0 = 0.75, i.e., QM excitation regime.
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Additionally, Fig. 3 depicts the ERP for a uniformly excited array
(equal snp, p = 0, with the same pulsed waveforms for all elements,
see in (2)) and for the same physical and waveform parameters
used for the calculation of the CBF layout in Fig. 2. The ERP
was calculated by Eq. (12) for the two cases discussed in Fig. 2, i.e.,
NB excitation in Fig. 3(a) and the QM excitation in Fig. 3(b). One
can clearly observe the appearance of GLs within the observation
domain (more than one dominant lobe), as expected, since the
inter-element spacing is grater than one wavelength at the carrier
frequency (d/cT0 = 2) and as a consequence of the identification of
the CBFs in Fig. 2 as having “more than one element partition”.
The difference in the GLs’ magnitude between the two cases
depicted in Figs. 3(a) and 3(b) follows from the different excitation
bandwidth (see the additional discussion in Section 4.2 and the
detailed analysis in [3]).

• One element partition (#n = 1): For the nth CBF that
constitutes a partition Ln with support #n = 1 and one index
term l ∈ Z, the range of the inter-element spacing should be in
the intersection of the following system of inequalities [that are
derived from Eq. (14)]:

|unm,l| ≤ 1, |unm,l±1| > 1, (15)
where nm = 0, 1, . . . , N − 1 is the “warped” index defined by

nm =

{
n, n = 0, 1, . . . , N − 1;

2N − 1− n, n = N, N + 1, . . . 2N − 2 .
(16)

The first inequality in Eq. (15) rule out the non-degeneracy case
while the second prohibits the ambiguity case of the nmth CBF.
Note that the warped index nm(n) accounts for the symmetry
with respect to the index n of the CBFs. The solution of these
inequalities yields a segment Dnm ∈ R corresponding to the range
of values for which the inter-element spacings of the nth CBF
(denoted by d/cT0|nm) form a partition with #n = 1:

d

cT0

∣∣∣∣
nm

∈ Dnm = (Dl
nm

, Dh
nm

),

Dl
nm

=
nm

2N − 1
, Dh

nm
= 1− nm

2N − 1

(17)

where the lower bound Dl
nm

comes from the non-degenerate
condition and the upper bound Dh

nm
comes from the unambiguity

condition.
Following Eq. (17), the set of segments Dnm satisfies the nesting
condition Dnm ⊂ Dnm−1. This nesting condition suggests that if
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d/cT0 ∈ Dm but d/cT0 ∈/ Dm+1, then the partitions Lnm for the
nm ≤ m CBFs will constitute #nm = 1 while those for nm > m
can either constitute # = 0 if d/cT0 ∈ (0, Dl

m+1) or # > 1 if
d/cT0 ∈ (Dh

m+1,∞).
A demonstration of the “one element partition” is shown in Fig. 4
which depicts the CBF layout (as in Figs. 1 and 2) for an array
with 21 elements, array of size D = 10cT0, as in the previous
two cases (but d/cT0 = 0.5) with the same excitation and scaling
as in Fig. 1. The appearance of only one “dominant lobe” for
|u| ≤ 1 implies that the case of “one element partition” was
achieved for all CBFs. A comparison between the two excitation
regimes (Fig. 4(a) for the NB regime and Fig. 4(b) for the QM
regime), again, demonstrates that the partitioning property is
invariant to the excitation regime while the magnitude and angular
spreading of the CBFs strongly depends on the excitation regime
(see the additional discussion in Section 4.2). Note, also, that the
array physical and excitation parameters that were used in Fig. 1,
above, renders the CBFs of index less than 20 and greater than 60
to belong to the “one element partition” (while the other CBFs
belong to the “empty partition” as was discussed above).
Finally, Fig. 5 depicts the ERP for the uniformly excited array
and for the same physical and waveform parameters that are
used for the two CBF layouts in Fig. 4. It is noted that
since the inter-element spacing is d/cT0 = 0.5 (i.e., exactly half
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Figure 4. As in Fig. 1 but for the “one element partition” case for
a 21 elements array with d/cT0 = 0.5, the total length of the array is
10cT0 (as in Figs. 1 and 2).
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wavelength at the carrier frequency) there are no GLs within the
observation domain. Note that the ERP in Fig. 5(b), for the QM
case, is angularly smooth without notable “side-lobes” since only
the CBFs corresponding to dominant radiation in the broadside
direction (u ∼ 0) are strongly excited while all other CBFs
(further away from the broadside direction) are weakly excited
and additionally they have weak magnitude with wide angular
spreading (see in Fig. 4(b)). Note though that the “shoulder”-like
response on the slops of the ERP in Fig. 5(b) are a trace of the
side-lobes of the NB case (compare Fig. 5(a)) that are blurred
due to the increased frequency bandwidth of the excitation (see,
also, in [3]). Finally, note that the ERP of the NB excitation in
Fig. 5(a) is the same as the array factor in the TH case for an
array with 21 elements with an inter-element separation of half
wavelength [13].

Both of the cases (#n = 0 and #n > 1) are undesired since,
from the kinematic point of view, they pose difficulties for ERP
synthesis due to directional ambiguity (#n > 1, giving GLs within
the observation domain in Fig. 3) or degenerate CBFs (#n = 0 and
possible element’s close proximity effects). Consequently, the case of
a CBF having only one “main lobe” within the observation domain,
#n = 1, is the most desirable, since: (i) the corresponding contribution
is not degenerate, and therefore, may be effectively exploited; and (ii)
no possible directional ambiguity is introduced into the ERP (i.e., no
GLs as is obtained in Fig. 5).
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Figure 5. The ERP for a uniformly excited array (equal snp, see in
(2), for all elements) with the same physical and waveform parameters
that were used for the CBF layout in Fig. 4 for two cases: (a) T/T0 À 1,
i.e., NB excitation regime; (b) T/T0 = 0.75, i.e., QM excitation regime.
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4.1.1. CBF Kinematic-sparsity

Recall that a broadside radiating antenna array is considered as being
sparse whenever the inter-element spacing d/cT0 > 1 [2, 3]. This
condition comes from the fact that for d/cT0 > 1, the peak of the first
ERP’s grating lobe appears within the observation domain (see, e.g.,
the examples in Fig. 3). Following the discussion in the last paragraph,
various states of sparsity (termed m-sparsity) can be defined so as to
generalize the term “array sparsity/sparse array”, where sparsity is
defined with respect to a measure of the inter element spacing‖. To
this end, we define an m-sparse condition when d/cT0 ∈ (Dh

m, Dh
m−1),

for 0 < m ≤ N − 1, and 0-sparse condition for d/cT0 ∈ (Dh
0 ,∞). This

definition indicates that for an m-sparse array, all CBFs with index
m′ ≥ m have #m′ > 1, i.e., have more than one dominant beam within
the observation domain. In contrast, all CBFs with m′ < m have
#m′ = 1. This case is demonstrated in Figs. 6–7 which depict the CBF
layout and corresponding ERP, respectively, for a 13 elements array of
size D = 10cT0 as in the previous examples but with d/cT0 = 0.833̇ and
a modulated Lorenzian pulsed waveform that is radiated by each of the
elements. The CBF layouts in Fig. 6 demonstrates that for CBFs with
index grater than 3 and lower than 22 there is more than one dominant
beam within the observation domain whereas all other CBFs have a
single dominant beam within the observation domain. This case is
therefore identified as “4-sparsity” array. The corresponding ERPs are
depicted in Fig. 7. It may clearly observed by comparing Fig. 7 with
Fig. 5 (“one element partition” case) that having some CBFs with
more than one dominant beam within the observation domain results
in somewhat higher side-lobes away from the main beam (see, e.g.,
Fig. 6(a)). Furthermore, for |u| ∼ 1 the first GL starts its rise into
the observation domain that will become more pronounced for larger
inter-element distances (lower m-sparsity index) and eventually for
d/cT0 > 1 the first GL will fully appear (compare Fig. 3). Note that the
emergence of the first GL within the observation domain corresponds
to “0-sparse” conditions (see in Figs. 2–3).

To conclude, this discussion on sparsity provides a detailed
demonstration of the formation of ERP artifacts that are associated
with sparse array realizations (GLs and to lesser extent some side-lobes
away from the main beam). This discussion is general in the sense that
it is uniformly applicable to QM and NB regimes as well as the TH case
where such classical antenna array concepts are well understood [13].
Note that the case of UWB excitation was treated in an alternative
‖ The issue of sparse realization and array sparsity in transient arrays was discussed
in [2, 3, 14].
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Figure 6. The CBF layout as in Fig. 1 but for the “m-sparsity’ case for
a 13 elements array with d/cT0 = 0.833̇ (the total length of the array
is 10cT0 (as in Figs. 1 and 2)) and for the three excitation regimes:
(a) NB (or TH): T/T0 À 1; (b) QM: T/T0 = 0.75; and (c) UWB/SP:
T/T0 = 0.01.

manner in [3].
Finally and for comparison, Figs. 6(c) and 7(c), respectively,

depict the CBF layout and the corresponding ERP for the UWB/SP
type of excitation with T/T0 = 0.01 and for the same array parameters
as in Figs. 6(a) and 7(a). The CBFs were calculated using the exact
expression (Eq. (11)). It can be noted that since, in the UWB/SP
regime, the dominant effect is of the narrow short-pulsed envelope
(and not of the carrier), the CBFs are decaying fast as a both |u|
and the CBF index grows, see in Fig. 6(c). Therefore the ERP is
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Figure 7. The ERP of a uniformly excited array (equal snp, see in (2),
for all elements) with the same physical and waveform parameters used
in Fig. 6 for the three excitation regimes: (a) NB (or TH): T/T0 À 1;
(b) QM: T/T0 = 0.75; and (c) UWB/SP: T/T0 = 0.01.

practically composed by a limited number of CBF contributions that
radiates effectively in the broadside direction of which λ0(u) has the
most dominant effect. Consequently the ERP for T/T0 ¿ 1 (i.e.,
UWB/SP regime) resembles λ0(u), as can be noted in Fig. 7(c). Note
that in this excitation regime, different sparsity considerations should
be applied that are based on the pulsed duration T , see the detailed
discussion in [3] (and in [14]).

4.2. Waveform-dynamic

Each contributing component in the summation in Eq. (13a) is given by
a product of two terms (waveforms) that exhibit dissimilar dominance
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behaviors in a different frequency regime. The first term is the pulsed
bell-shaped slowly-varying autocorrelation Rr0

, which depends on T ,
while the second term, a much more rapidly-varying carrier, depends
on T0. Hence, the CBFs’ behavior in the different bandwidth regimes is
governed by an interplay between these terms (controlled by the T/T0

ratio) as discussed next.
While in the extreme NB regime (T/T0 À 1 or in the TH regime),

the CBFs of Eq. (13a) can be well approximated by

λn(u) ∼ Rr0
(0)√

2N − 1

sin
(
(2N − 1)

[
d

cT0
u + n

2N−1

]
π
)

sin
([

d
cT0

u + n
2N−1

]
π
) , (18)

which can be recognized as a type of Dirichlet interpolation function
set (these CBFs are depicted in Figs. 1(a), 2(a), 4(a), and 6(a)). For
the NB and QM regimes, the summation in Eq. (18) is difficult to
analyze. Applying the Euler-Maclaurin sum formula [15], provides a
convenient integral expression of the CBFs for further use to yield

λn(u) =
1√

2N − 1

N−1∫

1−N

dyRr0
(µy)eiξny + Rem(u) (19a)

Rem(u) =
1√

2N − 1

{
Rr0

(
(N − 1)µ

)
cos

(
(N − 1)ξn

)

+ 2

N−1∫

0

dy ϑ(y)
∂

∂y

[Rr0
(µy) cos (ξny)

]
}

, (19b)

where ϑ(y) = y − [y] − 1
2 is the sawtooth function, with [y] as the

greatest integer smaller than y and |ϑ(y)| < 1
2 .

The magnitude of the CBFs at the nodes of the CBF-lattice {un,l}
is given by

λn(un,l) =
1√

2N − 1

N−1∑

k=1−N

Rr0
(kdc−1un,l). (20)

It can easily be verified that due to the generally decaying bell-shaped
envelope of Rr0(τ), the ordered sequence of peak values of the CBFs
decay as |un,l − u0,0| grows (with u0,0 as the peak of the first CBF,
λ0). To explore this behavior and its dependence on the frequency
bandwidth (T/T0) let us assume, for the sake of simplicity, that r0(t) ∼
e−t2/2T 2

is a Gaussian pulsed envelope giving, Rr0(τ) ∼ e−τ2/4T 2
(but
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other pulsed waveforms can be chosen). Inserting Rr0(τ) into Eq. (20)
and using the Euler-Maclaurin sum formula as in Eq. (19), the relative
peak contribution of the CBFs (normalized CBFs) is given by

λ̄n(un,`) =
λn(un,`)
λ0(u0,0)

≈
√

π

2
erf (Θ)

Θ
,

Θ =
1
2

(
T0

T

)(
`− n

2N − 1

) (21)

where erf is the error function [16] and λ0(u0,0) = 2(N−1)√
2N−1

√
πT +

Rem(u0,0), with |Rem(un,`)| ≤
√

πT√
2N−1

. It should be noted that
the function erf (Θ)/Θ is a monotonic decreasing function as |Θ|
increases with lim

Θ→0
erf (Θ)/Θ = 2/

√
π and an asymptotic linear decay,

lim
Θ→∞

erf (Θ)/Θ = 0. For the extreme NB case (T/T0 À 1), it can

be seen that λ̄n(un,`) = 1 for all n ∈ N and ` ∈ Z, i.e., all CBFs
have the same relative peak magnitude, which is also evident from
their expression in Eq. (18). On the other hand, for pulse excitation
within the lower NB and QM regimes, T/T0 . O(1) where Θ > 0,
it follows that for a given n and `, λ̄n(un,`) is a decreasing function
with decreasing T/T0 (an increase in the excitation bandwidth).
Furthermore, for a given n and T/T0, λ̄n(un,`) decreases as |`| increases
[see, e.g., Eq. (21)]. For the array’s ERP, this last observation suggests
that if, in addition, the array’s physical parameters are, also, set such
that #nm > 1 (nm-sparse array) and in particular, for the case of
0-sparsity where there are some GLs within the observation domain,
the peak magnitude of these GLs decay away from the main radiation
beam ¶. In the UWB case where T/T0 → 0, (limiting case of the above
discussion), only the zeroth CBF (n = 0) contributes dominantly while
λ̄n(un,`) is negligibly small for all (n, `) pairs that are different from
(0, 0). Different choices of pulsed waveforms (other than Gaussian)
give similar results as can be noted via the CBF layouts in Figs. 1,
2, 4, and 6 for the Lorenzian pulse. The difference between different
pulsed waveforms is in the decay rate of the CBFs peaks (the erf term
in Eq. (21) is replaced by an alternative term).

4.2.1. CBF Partitioning and Sparsity

The discussion on kinematics in Section 4.1 was based on the the
array’s layout and carrier frequency without applying any waveform
¶ Recall that this decay of the GLs, also discussed in [2, 3], from an alternative point of
view.
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considerations. The addition of the waveform-dynamic implies that the
CBF partitioning and sparsity can be modified in view of the associated
waveform effects. To that end, note that the peak magnitude of the
CBFs, λn(un,l), decays as the indexes (n, |`|) grow (see, e.g., Figs. 1(b),
2(b), 4(b), and 6(b)) and introduce a threshold parameter ε ≤ 1.
Next, any normalized with respect to λ0(0) CBF contribution which
is ≤ ε can be considered as having a negligible effect on the ERP.
By accounting for only non-negligible contributions, the partition of
the CBF-lattice (Section 4.1) and the sparsity categorization can be
redefined with respect to ε to yield the (nm, ε)-sparsity in a similar
manner to that discussed in Section 4.1.1. To demonstrate this term
refer to Section 4.1 where it was shown that the CBF layout in Fig. 4(b)
belongs to a “one element partition”. Setting a high enough ε, the
contribution of CBFs with index around 20 can be neglected, hence
setting the array realization to that of an “empty partition” with
respect to ε for some CBFs. Similarly, consider a realization that
based on purely kinematic arguments is found as having “more than
one element partition” and consequently being sparse. Thresholding
the CBFs may reset them to constitute different partition and hence
change the array’s sparsity condition.

Note that: (i) This discussion is applicable for UWB/SP and
QM excitations whereas NB excitation is insensitive to waveform
considerations; (ii) The analysis can be applied for the P 6= 0
case where various states of sparsity with respect to the excitation
parameters are expected to generalize the discussion in [3]; and
(iii) (nm, ε)-sparsity can be applied upon comparing several array
realizations or on assessing the robustness of the array’s performance
to noise and uncertainty in the parameters.

4.3. Numerical Efficient ERP Evaluation

The CBF decomposition discussed above can be used for applications
in analysis, synthesis and optimization. One such application is
the efficient, repetitive, evaluation of the ERP or, similarly, the
simultaneous calculation of the ERP for many array excitation
sequences. To this end, let us assume that the array layout and type
of excitation pulse is given and the ERP is needed for different sets
of excitation weights [different {snp} sets, where here we consider the
p = 0 case]. In that case, the set of CBFs can be calculate in advance
by Eq. (13) for a given set of Nθ dirctions and stored in a matrix T
whose size in Nθ×(2N − 1) for which it’s (i, j)th element, i = 1, . . . , Nθ

and j = 1, . . . , 2N−1, is Ti,j = λj(cos θi). The matrix T represents the
layout of the CBFs as depicted in Figs. 1, 2, 4, and 6 for Nθ = 1001.
Next, following Eq. (12), the ERP is obtained by multiplying T with a
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matrix Sg whose size is (2N −1)×Ns where Ns is the number of array
realizations and each of its columns is the vector containing the square
of the absolute magnitude of the DFT coefficients of a zero padded
sequence of N array weights (of one of the possible Ns realizations).
Note, that T is the transformation (mapping) matrix between the sets
of discrete array weights to the discrete sets of ERP values: Ea = T ×Sg

(of size Nθ ×Ns). It should also be noted that once T was calculated
by a fast Fourier transform (FFT, see in Eq. (13) or Eq. (11) and
the discussion in Section 3.2.1), with a computational complexity of
∼ O(NθN log N) operations, the ERP evaluation at Nθ directions
costs the evaluation of Sg (costs approximately NsN log N operations
for large N) and the matrix vector product that costs approximately
O(NsNθN) operations. For comparison, the direct computation via
Eq. (6) costs O(NsNθN

2), which is more numerically expensive than
the CBF based calculation (via Eq. (12)) for large number of array
elements and array realizations.

5. SUMMARY AND CONCLUSIONS

A set of CBFs for the mathematical formulation of the ERP of a
short-pulsed transient linear array was derived. Upon defining sets
of (i) layout parameters (geometry, type of radiating elements) and
(ii) pulsed excitation waveforms that can be radiated by the array,
the set of CBF elements form a mapping between the “energy” of
the DFT coefficients of the excitation sequence and the far-field ERP.
Though the CBFs are the basic building blocks of the ERP, by
themselves they do not represent a valid realizable energy radiation
pattern. Considering the CBF set directional (spectral, u-dependent)
characteristics, gives rise to a reformulation of the general term of TH
array sparsity to incorporate for various states of sparsity. Moreover, it
provides a complementary point of view (waveform or CBF motivated)
of sparsity for TTD arrays. Theses concepts were, also, demonstrated
for several array realizations.

As a concluding remark, the representation of the radiation
pattern by the CBFs as in Eq. (12) can be applied for an array analysis
or as an efficient mechanism for array synthesis. In analysis the CBF
formulation can be employed for an efficient ERP calculation with
numerically low complexity (Section 4.3) or as a tool for establishing
bounds on array performance vis-à-vis the relationship between the
CBF elements. In an ERP synthesis problem for achieving prescribed
characteristics or in an inverse source problem, the CBF formulation
provides simple means for controlling the ERP. These issues will be
explored in a different communication.
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