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Abstract—This paper introduces a novel technique for efficiently
combining implicit space mapping (ISM) with method of moments
(MoM) for the synthesis of antenna arrays and explores several example
applications of the ISM approach. The antenna arrays geometric
parameters are extracted to be optimized by ISM, and a fitness function
is evaluated by MoM simulations to represent the performance of each
candidate design. A coarse-mesh MoM and a fine-mesh MoM solver
are used for the coarse and the fine models, respectively. To achieve
the parameter extraction, the auxiliary parameter is selected and the
approximation between the two models is accomplished by particle
swarm optimization (PSO). The results show that the running time of
the ISM algorithm is 2 ∼ 3 times faster than that of other optimization
algorithms (e.g., PSO).

1. INTRODUCTION

As the communication technology develops rapidly, requirements
for the antenna radiation performance increase greatly. The
pattern synthesis technology, an effective method of antenna arrays
pattern control, has received more and more attention in the
electromagnetic community. Many optimization algorithms have been
successfully applied to the array synthesis, and these methods can be
categorized into 1) gradient-based (e.g., Woodward, steepest-descent),
2) stochastic (e.g., differential evolution, simulated-annealing, genetic
algorithm (GA), and particle-swarm (PSO)) [1–3], 3) neural-based
approaches. The accurate calculation and fast optimization for array
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synthesis can be made as a result of the rapid improvement of the
computer’s processing performance. In order to calculate the radiation
more accurately and take into account the element coupling (mutual
coupling between elements), some numerical methods such as the
method of moments (MoM) [4–6], the finite difference time domain
(FDTD) and the finite element method (FEM) [7] are combined with
optimization algorithms (e.g., GA, PSO) [8–12]. In spite of this
combination, problems for which great computational time is needed
to accurately simulate each possible solution remain yet excessively
costly. However, with the development of space mapping (SM) [13],
the contradiction between optimal efficiency and accuracy has been
relieved.

Space mapping was proposed by Bandler for the first time in 1994,
and has been successfully applied to RF devices, particularly the design
of filters [13, 17–21]. Space mapping strategy has been previously used
to optimize antennas in recent years [14, 15]. The main idea of SM
is to establish the so-called coarse model (not accurate but fast) and
fine model (very accurate but expensive to evaluate) for optimization.
Then, the coarse model would be optimized by updating the mapping
between the two models to find the global optimal solution. In the SM
process, the optimization for the coarse model ensures the efficiency of
the calculation, while the approximation for the fine model guarantees
the precision.

The SM-based method is rarely used in array synthesis. That’s
because the conventional SM algorithm requires an obvious mapping
relation between the coarse model and the fine model. As the implicit
space mapping (ISM) [16] does not have this restriction. In this
paper, a novel integration of ISM and MoM for the array synthesis
is presented. A coarse-mesh MoM solver is used for the coarse
model and a fine-mesh MoM solver is employed for the fine model.
The PSO algorithm is applied to achieve the optimization for the
coarse model and the approximation between the two models. The
optimization results show the feasibility of the ISM algorithm. It allows
improved optimization efficiency, higher simulation accuracy and less
computational time.

2. BASICS OF IMPLICIT SPACE MAPPING

The SM can be classified into the explicit (or original) SM and the
implicit SM. The explicit SM includes the original SM [17], aggressive
SM [18] and neural SM [19], etc. In the explicit SM, a clear mapping
relationship between the coarse model and the fine model should be
extracted. In each iteration, the coarse model keeps fixed while the
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mapping is updated continuously, and the optimal solution of the fine
model can be obtained if the inverse mapping is available.

2.1. Implicit Space Mapping

If the mapping relationship is not obvious, it may be hidden in the
coarse model. It is necessary to add an extra mapping to match
the coarse model and the fine model. And the extra mapping is the
characteristic of the implicit space mapping.

In ISM, our final purpose is to find the optimal solution of the fine
model, which can be defined as

x∗f = arg min
xf

U(Rf (xf )) (1)

where U is the so-called minimax objective function, x∗f and Rf (xf )
are the optimal solution and responses vector of the fine model,
respectively. Rf (xf ) is evaluated by fine-mesh MoM solver.

The optimal solution of the coarse model x
∗(0)
c is

x∗(0)
c = arg min

xc

U(Rc(xc, x
(0)
a )) (2)

where x
(0)
a denotes the initial auxiliary parameter. The solution of (2)

is an initial process in the SM optimization.
x
∗(i)
c denotes the optimal solution of the ith iteration of the

coarse model. The corresponding coarse model response vector is
Rc(x

∗(i)
c , x

(i)
a ), and it can be evaluated by coarse-mesh MoM solver.

To establish a mapping between the coarse and the fine models by xf ,
xc and xa, it sets

x
(i)
f = x∗(i−1)

c (3)

and x
(i)
a needs to satisfy (4).

∥∥∥Rf (x(i)
f )−Rc(x

(i)
f , x(i)

a )
∥∥∥ ≤ ε (4)

The process above is called as parameter extraction (PE).
Then the prediction could be obtained by optimizing the coarse

model through PSO.

x(i)
c = arg min

xc

U
(
Rc

(
xc, x

(i)
a

))
(5)

and the fine model parameters are updated as

x
(i+1)
f = x(i)

c (6)
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2.2. Parameter Extraction Based on PSO

Parameter extraction (PE) is the key to the space mapping. Many
methods are proposed in recent years, such as multipoint parameter
extraction (MPE) [20], statistical PE [20] and penalty PE [21], etc.
The selection of auxiliary (preassigned) parameter is very important in
PE. For example, if the excitation magnitudes of array elements need
to be optimized, the excitation phases can be used as the auxiliary
(preassigned) parameters [22]. Should be noted that the auxiliary
parameter is used to calibrate the coarse model, it is not a design
parameter. While the auxiliary parameter is fixed, the PSO is used in
this paper to accomplish the process of parameter extraction. The key
to the PE is to solve (4), and the following fitness function can be used
in the PE

fitness = norm
(
Rf

(
x

(i)
f

)
−Rc

(
x

(i)
f , x(i)

a

))
(7)

In general, the final goal of the PE is to realize an infinite
approximation between the coarse and fine models. After PE,
with fixed the auxiliary parameter, the calibrated coarse model is
reoptimized. The mapping from the coarse to the fine models can
be established by the optimized auxiliary parameter. Then assign the
optimized design parameter to the fine model and repeat this process
until the fine model response is sufficiently close to the target response.

2.3. Coarse Model and Fine Model

The fine model utilizes a fine mesh satisfying mesh convergence so that
the results are accurate. The fine model evaluation is computationally
costly. The coarse model utilizes a coarse MoM mesh which can not
achieve the accurate response.

To illustrate the validity of ISM, a linear half-wave dipole array
optimization is considered as examples. Fig. 1 depicts the dipole array
geometry, the dipole element spacing is half-wavelength in which has
16(20) equally spaced elements along the x axis and oriented the z axis.
The coarse and the fine models of each element are subdivided into 4
and 48 triangular patches, respectively. The cost time of calculation of
the coarse and the fine models are about 0.07 s and 1.58 s, respectively.

Details of each step of ISM/MoM are described as follow

Step 1 Define the design parameter and initial auxiliary parameter
xa, set i = 0.

Step 2 Optimize the design parameter x
(i)
c of the coarse model

with x
(i)
a being fixed.
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(b) Fine model(a) Coarse model

Figure 1. MoM mesh models of dipole array.

Step 3 Set x
(i+1)
f = x

(i)
c .

Step 4 Solve the fine model at x
(i+1)
f by fine-mesh MoM solver.

Step 5 Judge whether the termination criteria is satisfied (e.g.,
response meets specifications).
Step 6 Calibrate the coarse model by extracting the auxiliary
parameter x

(i)
a (PE).

Step 7 Set i = i + 1, go to Step 2.

3. EXAMPLE DESIGNS

In order to illustrate the implicit space mapping, the application
of the ISM to linear array antenna design problems is taken into
consideration. The optimization ranges of the excitation magnitude
and phase of each element are from 0 to 1 and from 0◦ to 180◦,
respectively. The following fitness function can be used in the ISM
and the PSO

fitness = α× sum(Fd(θ)− F (θ)) + β × std(Fd(θ)− F (θ))
+γ × (max(Fdp(θ))−max(Fp(θ))) (8)

where Fd(θ) is the desired pattern, F(θ) is the calculated pattern,
Fdp(θ) and Fp(θ) are the peaks of both patterns. The coefficient α,
β and γ adjust the relative weights of these three objectives. All these
patterns were calculated by MOM.
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3.1. Null Controlled Pattern Design

The array is a 16-element asymmetric linear array, and the desired
antenna pattern is marked in Fig. 2 by the dotted lines. The
excitation magnitudes of array elements have been optimized and the
corresponding array factor has nulls in specified directions. Two nulls
are desired to exist between 44◦ and 53◦ and between 128◦ and 137◦,
and their magnitudes should be lower than −40 dB.

The excitation phase is selected as the auxiliary parameter in this
example. After 3 iterations, an optimal null control pattern is obtained
and presented in Fig. 2, and it shows the contrast of the optimal pattern
between the ISM and the PSO. The desired pattern is obtained by using
80 particles and running around 300 iterations through PSO. Thus, it
calculates the fine model 24000 times (D×NPSO = 80×300 = 24000, D
is the number of the particles, NPSO is the iteration times of the PSO).
But only 3 iterations are required to achieve the same goal by ISM,
so it calculates the fine model only 3 times, and calculates the coarse
model 168000 times (NPSO ×D × (NPSO + 1) + NPE ×NISM ×D =
300× 80× 4+300× 3× 80 = 168000, D is the number of the particles,
and NPSO , NPE and NISM are the iteration times of the PSO, PE and
ISM, respectively.). The cost time of calculation of the fine model is
about 22.5 times more than that of the coarse model, so it is equivalent
to calculate the fine model 7467 times. The cost time of the PSO is

Figure 2. Null controlled pattern of an optimized 16-element
asymmetric linear array.
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Table 1. Design and auxiliary parameter.

Iteration Magnitude (design parameter x
(i)
f )

0.040, 0.406, 0.203, 0.824, 0.125, 0.977,
1 0.137, 1.000, 0.411, 0.998, 0.914, 0.690,

0.433, 0.398, 0.487, 0.375
0.001, 0.375, 0.490, 0.457, 0.503, 0.869,

2 0.834, 0.989, 0.195, 1.000, 0.166, 0.875,
0.198, 0.533, 0.115, 0.046

0.105, 0.655, 0.164, 0.921, 0.182, 1.000,
3 0.225, 1.000, 0.913, 0.822, 0.544, 0.453,

0.511, 0.420, 0, 0.109
Iteration Phase (auxiliary parameter x

(i)
a ) (degree)

1
180, 180, 180, 180, 180, 180, 180, 180,
180, 180, 180, 180, 180, 180, 180, 180

35.44, 63.92, 65.49, 64.11, 62.86, 63.32,
2 62.53, 63.89, 64.70, 64.48, 66.08, 64.01,

65.63, 64.47, 65.89, 65.02
16.25, 38.59, 38.88, 38.32, 38.37, 38.60,

3 38.25, 38.63, 37.82, 38.56, 39.12, 39.32,
34.44, 40.40, 39.75, 88.22

10.6 hours and the cost time of the ISM is 3.2 hours. Design and
auxiliary parameter from the 1th to the 3th iteration are shown in
Table 1. It shows the variation of the design parameter and the
auxiliary parameter in each iteration.

3.2. Sector Beam Pattern Design

Given a 20-element symmetric spaced linear array, the desired antenna
pattern is marked in Fig. 3 by the dotted lines. We optimize the
excitation phases of the array elements, and select the excitation
magnitudes as the auxiliary parameter.

The requirements for the sector beam pattern are shown in Fig. 3
using dotted lines. To define the sector beam, the ripples should be
smaller than 0.5 dB, the sidelobe are all below −25 dB between 0◦ and
70◦ and between 110◦ and 180◦.

When the optimization process has been executed for 3 iterations,
an optimal sector beam pattern is obtained and presented in Fig. 3.
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Figure 3. Sector beam pattern of an optimized 20-element symmetric
linear array.

Table 2. Design and auxiliary parameter.

Iteration Phase (design parameter x
(i)
f ) (degree)

1
115.36, 127.44, 180.00, 66.49, 31.34,
71.83, 84.47, 161.70, 177.93, 178.47

2
167.99, 0, 175.90, 30.49, 165.25, 92.32,

45.49, 21.13, 12.34, 10.28

3
62.88, 112.42, 180, 120.53, 165.63,
122.74, 114.73, 33.49, 14.84, 13.06

Iteration Magnitude (auxiliary parameter x
(i)
a )

1
0, 0, 0, 0.181, 0.297, 0.302, 0.279,

0.430, 0.734, 1.000

2
0.021, 0.067, 0.036, 0.058, 0.184,
0.150, 0.050, 0.491, 0.812, 1.000

3
0, 0, 0, 0.149, 0.271, 0.280, 0.277,

0.436, 0.740, 1.000
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The same sector beam problem was optimized in [23] using Taguchi’s
method. The desired pattern was obtained by using 82 particles and
running around 60 iterations. Thus, it calculated the fine model 4920
times. But only 3 iterations are required to achieve the same goal by
ISM using 70 particles, so it calculates the fine model only 3 times,
and calculates the coarse model 58800 times, which is equivalent to
calculate the fine model 2613 times. Design and auxiliary parameter
from the 1th to the 3th iteration are shown in Table 2. The
original value of the auxiliary parameter is obtained by optimizing
both excitation magnitudes and phases of the coarse model. Then
the optimized magnitude is selected as the original value of auxiliary
parameter.

3.3. Cosecant Squared Pattern Design

To further demonstrate the validity of ISM, a relatively complex case,
a cosecant squared pattern design, is attempted here. In this design,
the desired antenna pattern is marked in Fig. 4 by the dotted lines.
The phases of array elements have been optimized, and the excitation
magnitudes as the auxiliary parameter have been selected. The original
value of the auxiliary parameter is obtained the same as the example
above.

Figure 4. Cosecant squared pattern of an optimized 16-element
asymmetric linear array.
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The desired antenna pattern is marked in Fig. 4 by the dashed
lines, in which a null is desired to exist between 65◦ and 80◦. An
optimal cosecant squared pattern is obtained and presented in Fig. 4
through 4 iterations, and it shows the contrast of the optimal pattern
between the ISM and the PSO. The desired pattern is obtained by
using 100 particles and running around 500 iterations through PSO.
Thus, it calculates the fine model 50000 times. But only 4 iterations
are required to achieve the same goal by ISM, so it calculates the fine

Table 3. Design and auxiliary parameter.

Iteration Phase (design parameter x
(i)
f ) (degree)

0.04, 30.78, 60.59, 53.44, 68.38, 106.28,
1 179.61, 28.20, 133.51, 57.50, 91.69,

80.90, 126.30, 45.58, 107.88, 103.32
1.57, 69.29, 77.88, 128.19, 84.88, 147.82,

2 174.13, 180.00, 173.69, 119.79, 164.46,
161.78, 164.56, 174.25, 95.92, 164.80

3.21, 35.73, 63.36, 69.04, 71.77, 103.90,
3 174.31, 86.44, 177.23, 60.61, 110.06,

97.70, 144.15, 118.73, 180.00, 115.73
2.08, 28.88, 61.65, 56.04, 73.14, 109.60,

4 180.00, 40.40, 145.37, 77.19, 97.23,
87.13, 124.00, 76.94, 87.57, 116.55

Iteration Magnitude (auxiliary parameter x
(i)
a )

0.351, 0.399, 0.439, 0.541, 0.836, 1.000,
1 0.809, 0.395, 0.169, 0.293, 0.296, 0.253,

0.215, 0.099, 0.088, 0.225
0.452, 0.508, 0.549, 0.617, 0.848, 1.000,

2 0.730, 0.390, 0.133, 0.337, 0.305, 0.236,
0.201, 0.099, 0.078, 0.199

0.284, 0.385, 0.410, 0.545, 0.769, 1.000,
3 0.816, 0.402, 0.184, 0.325, 0.382, 0.326,

0.294, 0.165, 0.034, 0.203
0.306, 0.406, 0.443, 0.561, 0.865, 1.000,

4 0.812, 0.368, 0.175, 0.232, 0.251, 0.194,
0.178, 0.037, 0.078, 0.176
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model only 4 times, and calculates the coarse model 450000 times,
which is equivalent to calculate the fine model 20000 times. The cost
time of the PSO is 21.9 hours and the cost time of the ISM is 8.8 hours.
Design and auxiliary parameter from the 1st to the 4th iteration are
shown in Table 3.

4. CONCLUSION

An efficient method for the integration of ISM optimization with MoM
for array synthesis has been presented. ISM was applied successfully
in the array synthesis. The optimization kernel was constructed
using ISM and MoM was integrated into the optimizer for fitness
evaluations. For different optimization problems, the phase or the
amplitude is used as the auxiliary parameter to achieve approximation
between the coarse model and the fine model. Optimized results
show that the desired array factors, a null controlled pattern, a
sector beam pattern and a cosecant squared pattern are successfully
obtained. It is found that implicit space mapping is a good candidate
for optimizing various electromagnetics applications. ISM algorithm
allows improved optimization efficiency, higher simulation accuracy,
and less computational time.
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