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Abstract—This paper presents a new method of sequential microwave
filter tuning. For filters with R tuning elements (including
cavities, couplings and cross-couplings), based on physically measured
scattering characteristics in the frequency domain, the Artificial Neural
Network (ANN) is used to build inverse models of R sub-filters.
Each sub-filter is associated to one tuning element. The sub-filters
are obtained by successive opening or shorting of resonators and by
removing coupling screws. For each sub-filter, the ANN training
vectors are defined as physical reflection characteristics (input vectors)
and the corresponding positions of the tuning element, which is
detuned, in both directions, from its proper setting (output vectors).
In the tuning process, such inverse models are used for calculating
the tuning element increments needed for setting the tuning element
in the proper position. The tuning experiment, conducted on 8- and
11-cavity filters, has shown the performance of the presented method.

1. INTRODUCTION

Although the methodologies for designing filters of various configura-
tions have been known for decades, researchers are still introducing
new solutions [1–8]. Depending on filter technology, frequency band
and production quality filters have to be tuned or are ready for use
directly after manufacturing. Filter tuning must be performed by ex-
perienced operators, which generates costs, and is a very important
phase in production.

Filter tuning has been a very popular subject of research in the last
couple of decades. All tuning methods can be divided into two main
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categories: parallel tuning and sequential tuning. In parallel tuning,
like in the method proposed by Thal [22] and recently reported in [23]
algorithms indicate which tuning elements cause filter detuning. The
other one of the filter tuning categories is sequential tuning, where
the tuning is performed successively from one filter side to another
(usually from filter input to the output). The first sequential method
was presented by Dishal in [9]. This method originally used a very
loosely coupled detector attached to the first resonator in order to
measure amplitude oscillograms. While analyzing voltage values on
the center filter frequency, the tuning was performed from the filter
input, where a generator was attached, to the filter output. For all odd-
numbered resonators the maximum voltage, and for all even-numbered
resonators the minimum voltage was observed on center frequency, in
accordance with the input impedance changes (short, open, short etc.),
while the successive resonators were being tuned. Next method was
introduced by Atia and Williams in [10]. This method combines the
concept of Dishal, with their methodology of measuring frequencies at
which the phase of the input reflection coefficient is either 0◦ or 180◦.
This methodology was further developed by Chen [11]. In his approach,
cavities and coupling tuning elements are adjusted sequentially one by
one in accordance with the match of the measured input impedance
to the resonance condition. In next method for sequential filter
tuning [12] Ness, used group delay of the reflection coefficient. In this
approach, group delay values at the center filter frequency must be set
at the designed value sequentially for each cavity, while simultaneously
maintaining the symmetry of the entire group delay characteristic.
Modification of this method was proposed by Zahirovic and Mansour
in [13]. The authors applied the derived group delay using Hilbert
transformation of the transmission coefficient module. This method
uses the module characteristic of the transmission. As a result, scalar
network analyzers can be used instead of expensive vector network
analyzers. Another approach was demonstrated by Dunsmore in [16],
where tuning was carried out in the time domain. In this approach
the time response of the tuned filter is compared to the response of
properly tuned filter template in time domain, and tuning elements
are sequentially set in proper positions. In elaboration [17] the authors
present the tuning concept based on cloning the frequency domain
data. The next method based on sequential parameter estimation was
presented in [21]. In this work the authors presented an algorithm
for computer-aided tuning, which prevents error propagation. A new
system and method based on scalar measurement, applied for tuning
of integrated tunable filters is reported in [24].

In recent works, the authors have introduced new methods based
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on artificial intelligence algorithms (AI) not only in filter tuning but
also in designing [18]. In [14, 15], the authors presented a method
based on fuzzy logic system (FLS). Using linguistic expert rules, they
proved that such an approach can be suitable for filter tuning. A novel
approach based on ANN was presented in [25]. In this work, we proved
that, thanks to multidimensional approximation ability of neural
networks, unambiguous mapping between detuned filter characteristic
and tuning element deviations which caused such detuning is possible.
The method of improving efficiency of this approach [25] by using
numerous golden filters was presented in [26]. Considering all the
results obtained using the methods based on AI, continuation of such
research seems very promising.

This paper presents a new sequential tuning method, based on
ANN applied for cavity filters. For filters having R tuning elements,
including cavities, couplings and cross-couplings, we have built R
inverse sub-filter models which are modeled by ANN. The training set
for each sub-filter is prepared in such a way that the tuning element is
slightly detuned, in both directions, from its proper position. During
this process, the training vectors consisting of reflection characteristics
and corresponding tuning element deviations are collected. After the
training process, the ANN, for each sub-filter, and for the detuned
reflection characteristic, generates the tuning element increment, which
is needed to set the tuning element in a proper position. If the tuning
element increment generated by ANN equals zero, it indicates that
the proper tuning element position has been reached. Then, the next
tuning step is performed, and the next tuning element (inverse model)
is taken.

In the first part of the paper, the general concept and the
methodology of constructing inverse models are presented. Next,
tuning experiments for 8- and 11-cavity filters are demonstrated. The
summary and relevant remarks are presented at the end of the paper.

2. GENERAL CONCEPT

In general, transmission and reflection characteristics of two-port filter
network, composed of a series of N inter-coupled resonators can be
defined as a ratio of two polynomials [19, 20].

S11 (ω) =
FN (ω)
EN (ω)

; S21 (ω) =
PN (ω)
εEN (ω)

(1)

where ω represents angular frequency and ε denotes constant
normalizing of S21 to the equiripple level. The degree of common
denominator E (ω) and S11 numerator F (ω) is N , and the degree of
P (ω) corresponds to the number of non-infinite transmission zeros.
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For a physical filter, scattering characteristics are adjusted by
its tuning elements. The number of tuning elements depends on
filter topology, the number of resonators, tunable couplings and cross-
couplings. For synchronously coupled N cavity filters, the number of
tuning elements is usually R = 2N +1. For filters with cross-couplings,
this number is increased by the number of tuning elements responsible
for adjusting the transmission zeros.

2.1. Sequential Inverse Modeling of the Filter Sub-filters

The reflection characteristic of the filter with R tuning elements can
be generally expressed as a function of all tuning element deviations
(including coupling tuning elements)

S11 (ω) = H (ω, ∆Z1, ∆Z2, . . . , ∆ZR) (2)

In our further analysis, we assume that the function describing the
reflection characteristic is defined in such a way that, for all tuning
element deviations equal zero ∆Zn = 0, it represents the characteristics
S0

11 of a properly tuned filter

S0
11 (ω) = H (ω, 0, 0, . . . , 0) (3)

The main concept of the presented method is to use a properly
tuned physical filter as a template to build R sub-filter inverse models.
For a filter having R tuning elements as the rth sub-filter, we define
the filter having 1, 2, . . . , r − 1, tuning elements properly tuned and
the elements r + 1, . . . , R removed or short-circuited. In such case,
only the rth tuning element can be changed for adjusting of reflection
characteristics (Figure 1).

1     2       3      4     5       6      7     8       9       10     11    12   13    

+_K

Figure 1. The 8th sub-filter model of N = 6 cavities, R = 13 tuning
elements filter. The tuning elements 1–7 are tuned, 9–13 are removed.

The inverse models, for all R sub-filters, are built based on
physically measured reflection characteristics, generally described
by (1). In the process of building inverse models, we start from
the Rth tuning element (the last tuning element at the filter
output). For every rth sub-filter we create (2K + 1) training
vectors as a set of the following pairs Pn =

{
Sk

n, ∆Zk
n

}
, where
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∆Zk
n= {−K,−K + u,−K + 2u . . . , 0, . . . , K − 2u,K − u,K}. The

value of u defines the minimal angle change in (deg) of each of the
tuning elements.

The value of K is the multiple value of u and defines the maximum
tuning element increment in both directions. Both u and K values
depend on sensitivity of physical tuning elements and should be chosen
experimentally. For each rth sub-filter, with ∆Zr = 0, S0

r represents
proper scattering characteristics (the pattern in the tuning process).
After creating the Pr set, if the rth tuning element is a coupling, its
tuning element needs to be removed from the filter; while if it is a
cavity depending on inverse model assumption, it needs be removed
or short-circuited. Then, the next Pr−1 set for (r -1) sub-filter model
can be created. After creating the last sub-filter set P1, all the tuning
elements are removed or short-circuited. For every set Pr, we create the
operator Ar: S (Zr) → ∆Zr which maps detuned S (Zr) characteristic
to the tuning element value ∆Zr which has caused the detuning. In
our approach, the operator Ar is modeled by artificial neural network
ANNr. The characteristics Sk

r (real and imaginary part) and ∆Zk
r

are used respectively as ANNr input vectors and as ANNr output
vectors in the training process. For each sub-filter model, and for each
reflection characteristic Sr being used for building Ar operator, the
following definition of error (4) is applied to check the ANN learning
ability during the ANN training process

Lr =
∑2K+1

k=1

∣∣∆Zk0
r −∆Zkx

r

∣∣
2K + 1

[u] (4)

where r — sub-filter model number, k — tuning element increment
index, ∆Zk0

r — the correct value of the tuning element increment,
∆Zkx

r — the tuning element increment value generated by ANN, both
for the corresponding Sk

r . After ANNr is trained, it works for the rth
sub-filter as the mapper of measured detuned reflection characteristic
S∗r to the tuning element increment ∆Zr, which is the source of the
detuning (Figure 2).

This method possesses numerous attractive features. One of them,

ANNr ∆Zr
Sr

*

Figure 2. ANN generating tuning element deviation, which is the
source of detuning, for the detuned scattering reflection characteristic
for rth sub-filter.
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which ought to be highlighted, is that, the inverse models are built
based on the characteristic of physical filters. We have used the
same environment both for building the inverse models and for tuning.
Moreover, because reflection measurements are very sensitive to losses,
in the presented approach we can build inverse models from both filter
sides, detuning the filter from its middle towards the filter input and
output. Such mechanism will be presented below, in the experiment
for an 8-cavity filter.

2.2. Tuning Procedure

During the tuning process, the tuning screws (cavities, couplings and
cross-couplings) are set one by one, in order to match (in the meaning
of the ANN network generalization) scattering (real and imaginary)
reflection characteristics for all R inverse sub-models. The cavity
tuning elements must be treated in the same way as in the process
of building the inverse models, but all coupling tuning elements must
be removed from the filter. For the rth tuning element, we use the Ar

operator, which models the rth sub-filter. The tuning process starts,
from the filter input, with the first tuning element. We use the A1

operator which, for the measured detuned sub-filter characteristic S1,
generates the tuning element increment A1 : S1 (Z1) → ∆Z1. The
increment ∆Z1, after the application on the tuning element Z1, sets the
tuning element in the proper position Z1+∆Z1, thus obtaining a proper
scattering characteristic S0

1= f(Z1+∆Z1) for the 1st sub-filter. If the
tuning element is set in a proper position, A1 will generate ∆Z1= 0.
When the first tuning element is properly set, we use the second A2

operator which, for filter reflection characteristics S2, returns ∆Z2.
We adjust the second set of tuning elements to achieve the ANN2

response ∆Z2= 0. Having adjusted in this way, successively, all the
tuning elements from filter input to its output, we can regard the
tuning process is completed.

3. NEURAL NETWORK ARCHITECTURE

There are many techniques that can realize multidimensional
approximation, in our case the process of mapping the filter scattering
characteristic S to tuning element deviations ∆Z. Artificial neural
networks can be successfully used for this task [27].

In this approach, a 3-layer feed-forward (FF) network architecture
(input, hidden and output layer) has been chosen. As we always
consider only one tuning element at the time (contrary to the method
presented in [25, 26]) the output layer has only one neuron. The



Progress In Electromagnetics Research, Vol. 115, 2011 119

number of neurons, in the hidden layer, must be chosen experimentally
as a compromise between learning time and learning/generalization
ability of the network. In our experiment presented further we specified
5 hidden neurons.

As presented in (1), in general, transmission and reflection
characteristics of a two-port filter network, composed of a series of N
inter-coupled resonators can be defined as a ratio of two polynomials

S (ω)=
A (ω)
B (ω)

=
∑M

i=0 aiω
i

∑N
j=0 bjωj

(5)

This equation can be transformed into
∑M

i=0
aiω

i= S (ω)
∑N

j=0
bjω

j (6)

and in matrix form it can be written as

XL×(M+1)a(M+1)×1−YL×(N+1)b(N+1)×1= 0 (7)

and then [
XL×(M+1) − YL×(N+1)

] [
a(M+1)×1

b(N+1)×1

]
= 0 (8)

which gives the final matrix form of homogeneous linear equation

ZL×(M+N+2)d(M+N+2)×1= 0 (9)

Last Equation (9) can be solved is if S (ω) characteristic (5) is
sampled in at least L ≥ N + M + 2 points. If we consider reflection
characteristic S11, then M = N [19]. Having such discrete set of
Sl (ωl) , l = 1, 2, . . . L, we can, using these points, restore the whole
characteristic in an analytical form. Considering this, we assume
that for L ≥ 2(N + 1), unambiguous mapping between reflection
characteristic S11 sampled at L points to tuning element positions
is possible. Each sampled complex point of reflection characteristic
requires two input neurons, one for real and the second for the
imaginary part this gives us dependence between filter order N and
number of input layer neurons WI ≥ 2L.

3.1. Advantages of ANN Direct Mapping of Scattering
Characteristics to the Position of Tuning Element

The method proposed in this paper has one very important feature.
The operator A : S(Z) → ∆Z generates the zero value for one unique
set of each tuning element.

In this part of the paper, we will compare the results of two
methods which generate the error of tuning elements, indicating to
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what extent the filter characteristic is detuned. The first one will be
the method introduced by us and the second is the method based on
error definition specified by† (10). S0

r defines tuned, and Sd
r detuned

filter characteristics respectively

c =
∑L

l

(∣∣∣KeS0
r (l)− KeSd

r (l)
∣∣∣
2
+

∣∣∣TmS0
r (l)− TmSd

r (l)
∣∣∣
2
)

(10)

where L is the number of samples of filter characteristic.
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Figure 3. An exemplary normalized error defined by (10) (solid line)
and normalized ANN response (dotted line) as a function of tuning
element deviations.

Figure 3 presents the error defined by (10) (solid line) and the
ANN response (dotted line) for different sets of tuning element. The
curves are normalized to their maximum value. While analyzing them
we can observe that the error curve generated by dependence (10) has
numerous local minima, which can lead to setting the tuning element in
an improper position. Looking at the ANN response, we can infer that
it always describes unambiguously the proper tuning element position.

4. TUNING EXPERIMENT

In order to present the concept in practice, tuning experiments have
been performed. Below, we present the tuning experiment results for
two different filters. The first one is an 11-cavity cross-coupled filter
with self-locking screws (Figure 4) and the second one is an 8-cavity
cross-coupled filter with standard tuning screws with nuts (Figure 8).

† Similar error function was used in [21] to extract initial parameters of the sub-filter.
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Figure 4. Layout (a), (c) and topology (b) of the filter used in
the experiment. Small circles represent tunable coupling and cross-
couplings. Bigger circles represent cavities. There are no coupling
tuning elements between cavities 15–17, 17–18. Fixed cross-coupling
occurs between cavities 2–6.

4.1. Self-locking Screws, 11-cavity Filter with Tunable
Cross-couplings

The device tuned is an 11-cavity filter (the TX part of GSM diplexer)
with 10 tunable couplings (Figure 4). The unit has self-locking screws.
The cavities are represented by larger circles and the couplings and
cross-couplings by the smaller ones. One fixed cross-coupling occurs
between cavities 2–6 and two tunable cross-couplings are present
between cavities 6–11 and 12–15. There are no tuning elements
between cavities 15–17 and 17–18. The center frequency of the
filter is f0 = 943.5MHz and the bandwidth ∆f = 35MHz. The
technical filter specification requires that the reflection characteristic
level should be within the passband below −18 dB. The ANN training
sets Pr are prepared by manual change of tuning elements. In the
experiment we used 1u = 360◦/16 = 22.5◦ and K = 20. The
reflection characteristics were sampled at 256 complex points. The
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tuning elements were extracted, for both cavities and couplings, for
all sub-filters, after collecting the ANN training set Pr. The inverse
models were built based on the following tuning elements extraction
path: 21, 20, 19, . . . , 2, 1. It means that the tuning was performed in
the opposite direction 1, 2, 3, . . . , 20, 21. In our experiment, the inverse
filter models were built based on the reflection characteristics collected
from one filter, which can be described as an inverse model template
(IMT). The tuning process was performed for another filter of the
same type, which shall be defined as a tuned filter (TF). The tuning
process consisted of 21 sequential steps, which is the number of tuning
elements. The scattering characteristics, measured during the chosen
tuning steps are depicted in Figures 5–7. In all figures, the properly
tuned characteristics of the IMT, which serve as individual sub-filter
templates, are represented by solid lines. The characteristics of the TF
are represented by dotted lines. Figure 5(a) presents the real part of the
reflection characteristic in the situation when all tuning elements are
removed from the filter. The corresponding reflection and transmission
characteristics in (dB) are depicted in Figure 5(b).
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Figure 5. (a) Real part of reflection. All tuning elements, 1–21,
are removed. Solid line — IMT characteristic, dotted line — TF
characteristic. (b) Transmission and reflection in (dB). All tuning
elements, 1–21, are removed. Solid line — IMT, dotted line — TF
characteristics.

The scattering characteristics, on completion of the 11th step
of tuning, when 5 resonators are properly tuned, are presented in
Figures 6(a), (b). Finally, the reflection characteristics on completion
of the whole tuning process are presented in Figures 7(a), (b).
We can observe that, since the tuned characteristics fulfill technical
requirements, the tuning was performed successfully. If we start
with all tuning elements extracted, the tuning time for this filter is
about 5 minutes. While testing 5 other filters of the same type, we
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Figure 6. (a) Real part of reflection. Tuning elements, 1–11,
are tuned. Solid line — IMT characteristic, dotted line — TF
characteristic. (b) Transmission and reflection in (dB). Tuning
elements, 1–11, are tuned. Solid line — IMT characteristics, dotted
line — TF characteristics.
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Figure 7. (a) Real part of reflection. All tuning elements, 1–
21, are tuned. Solid line — IMT characteristic, dotted line — TF
characteristic. (b) Transmission and reflection in (dB). All tuning
elements, 1–21, are tuned. Solid line — IMT, dotted line — TF
characteristics.

observed that the return loss was, in all cases, below −16 dB. For some
filters additional fine tuning is required. The paper [26] presents the
method of improving tuning efficiency, which can also be applied in
this approach.

4.2. Standard Screws, 8-cavity Filter with Fixed
Cross-couplings

The next filter tuned is an 8-cavity cross-coupled filter with standard
tuning screws with nuts (Figure 8). The filter was originally used as an
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Figure 8. The picture (a) and topology (b) of the filter used in
the experiment. Small circles represent tunable couplings and cross-
couplings. Bigger circles represent cavities. There is no tunable
coupling element between cavities 7–8. Fixed cross-couplings can be
found between the cavities 1–7 and 8–14.

RX filter in GSM combiner. The filter has two fixed cross-couplings,
one between cavities 1–7 and the second one between cavities 8–
14. There is no coupling tuning element between cavities 7–8. The
center frequency of the filter is f0 = 897.5MHz and the bandwidth
∆f = 35 MHz. The technical filter specification requires that the
reflection characteristic level should be within the passband below
−16 dB. The ANN training sets Pr are prepared by manual change
of tuning elements. In the experiment we used 1u = 360◦/8 = 45◦
and K = 10. The sub-filters were built in such a way that the tuning
elements were extracted from the filter center, in both directions, to
its input and output. The inverse models were built based on the
following tuning element extraction path: 8, 7, 9, 6, 10, 5, 11, 4, 12,
3, 13, 2, 14, 1. The inverse models were built based on reflection
characteristic sampled at 32 complex points. Similarly to the previous
diplexer tuning, in this experiment the filter inverse models were built
based on the reflection characteristic collected from a different filter
(inverse model template -IMT), than the one which was being tuned
(TF). In all cases the characteristics for both filters are presented in
figures. Below we present the filter characteristic obtained during the
tuning process. Figures 9(a) and 9(b) present filter reflection and
transmission characteristics with all tuning elements extracted. The
discrepancies between characteristics of IMT and TF are caused by
inaccuracies of filter production. These filters were intentionally chosen
to demonstrate the reliability of the presented tuning method. The
next curves, presented in Figures 10(a) and 10(b) show the situation
on completion of the 10th tuning step, where elements 1–5 and 10–14
are properly set.

The last characteristics, depicted in Figures 11(a) and 11(b), show
the filter condition on completion of the tuning, with all elements set.
The tuning time for this filter, is about 3 minutes. It includes one
tuning iteration, where each tuning element is positioned only once.
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Figure 9. (a) Real part of reflection. All tuning elements, 1–14,
are removed. Solid line — IMT characteristic, dotted line — TF
characteristic. (b) Transmission and reflection in (dB). All tuning
elements, 1–14, are removed. Solid line — IMT, dotted line — TF
characteristics.
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Figure 10. (a) Real part of reflection. Tuning elements, 1–5,
10–14 are tuned. Solid line — IMT characteristic, dotted line —
TF characteristic. (b) Transmission and reflection in (dB). Tuning
elements, 1–5, 10–14 are tuned. Solid line — IMT characteristics,
dotted line — TF characteristics.

Due to filter discrepancy in some cases filter characteristics differ a
little from specified tuning goals and the filter requires fine tuning,
which can be performed very easily without any algorithm support
and tuner’s experience.

4.3. Advantages and Drawbacks of the Method in
Comparison with Time Domain Approach

To check how effective the proposed method is, we tuned again the
filters tuned in the experiment using time domain approach (TDA) [16].
The TDA results were not so satisfactory. Reflection characteristics
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Figure 11. (a) Real part of reflection. All tuning elements, 1–
14, are tuned. Solid line — IMT characteristic, dotted line — TF
characteristic. (b) Transmission and reflection in (dB). All tuning
elements, 1–14, are tuned. Solid line — IMT, dotted line — TF
characteristics.

in pass band, after one iteration, achieved the level of −10 dB only,
and in the next iterations it was very difficult to improve the result.
The existence of cross-couplings in both filters could be the main
reason of this phenomenon. It is a well-known fact that time domain
approach does not work well with cross-coupled filters. The drawbacks
of our method includes the necessity of building as many ANN inverse
models as many tuning elements are in the filter. Using robots for this
purpose makes this process fully automatic, whilst the algorithms after
customization can be used in both automated and manual tuning.

5. CONCLUSION

The new sequential filter tuning method based on artificial neural
network inverse modeling in a frequency domain has been proposed.
We have shown that the method of ANN direct mapping of detuned
filter characteristic to tuning element error is very effective even in
case of cross-coupled filters. Although the tuning experiments were
demonstrated for the filters with all tuning elements extracted before
tuning, the method can be applied, with short-circuited cavities, during
the preparation of sub-filter inverse models and then in the tuning
process. In the experiment, the filters were terminated with the
matching load at output. The method can be successfully applied
to filters terminated with open or short-circuit load. Although the
method was demonstrated based on reflection characteristics, it can
be customized with regard to any filter characteristics constituting
the filter tuning goal. In order to demonstrate flexibility of this
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approach, all learning samples are collected manually and all tuning
experiments are performed manually. Nevertheless, this method can
also be successfully applied for automated filter tuning.
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