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Abstract—The kinematic properties of an array of transmitting
antennas that are transiently excited by a sequence of modulated
pulses, with high repetition rate, are explored. The array’s
parameterization is carried out via the energy radiation pattern. It
is shown that the energy radiation pattern can be decomposed into
a set of different types of beam contributions, defined over a beam-
skeleton, which is determined by the array’s physical and excitation
parameters. The different types of beams are main beams, grating-
lobe beams and cross-pulsed lobe beams, each corresponding to a
different pulsed interference mechanism. While grating lobes are time-
harmonic phenomena, cross-pulsed lobes are unique for excitation with
a pulsed sequence. The different beam types set limits for array
sparsity in terms of the array’s physical and excitation parameters. The
array’s directivity is introduced as a figure of merit of its performance
and to demonstrate the resulting effect of the time-domain excitation
characteristics. The array’s parameterization can be used with any
type of excitation — from extreme narrow band (time-harmonic) to
extreme ultra-wideband (transient/short pulsed) excitation. For time-
harmonic excitation, the resulting characterization matches that of the
classical frequency domain antenna theory.

1. INTRODUCTION

The ever increasing signal bandwidth of transmit/receive systems,
ranging from narrow-band (NB) to ultra-wideband (UWB) regimes or
alternatively from time-harmonic (TH) to transient/short-pulsed (SP)
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regimes, has led to the formulation of radiation concepts for time-
dependent signals in both electromagnetics and acoustics directly in
the time domain (TD) [1–4]. Of particular interest is the application
of UWB/SP signals as excitations to an antenna array and the
effect of these signals on the array’s performance (and synthesis).
The fundamental theory governing single TD radiating elements has
previously been addressed (see, e.g., [1, 5–7]), as has the case of an
array fed by pulsed [1, 8–25].

This paper explores the fundamental kinematic aspects of a
periodic true time delay (TTD) beam steering array under excitation
of a finite sequence of modulated pulses with, possibly, HPRF
(high pulsed repetition frequency). While the kinematic properties
of single pulse excitation have been extensively discussed (see,
e.g., [9, 13, 18, 23]), only scant attention has been given to the HPRF
case [15]. The motivation for exploring the HPRF case follows from its
profound effect on the radiation pattern, whether the time-dependent
pattern or the associated energy pattern. This HPRF effect can
be found in the introduction of a new type of beams termed cross-
pulsed lobe (CPL) beams in addition to the main radiation beam
(in the array steering direction) and the grating lobes (GL). These
CPL beams occur as a result of the interaction of differently tagged
pulses radiated from different elements of the array, see, e.g., [15].
As for GLs in the TH case (see, e.g., [13, 24] for the single pulse
excitation), the CPLs set bound on the array’s performance. Moreover,
CPLs, also, set restrictions on the sparsity of the array to meet CPL-
free radiation pattern. These restrictions become important when
the array is used, for example, in remote-sensing/imaging systems
in which additional radiated “spurious” beams (CPL) may degrade
the overall performance. This contribution is aimed to extend the
mathematical formulation of these kinematic properties by providing
an extensive analysis and quantification followed by demonstrations of
these concepts in view of the energy radiation pattern.

The paper is organized as follows: Problem formulation is given in
Section 2. The array pattern is set in Section 3 as the basic observable
quantity for further characterization. The presentation in Section 3
is motivated by the configuration of the TTD array, however, similar
discussion can also be use for other array applications. A detailed
derivation and array characterization is further given in Section 4
by the beam skeleton and in Section 5 by the beam summation
decomposition. The array sparsity is elaborated in Section 6 by
introducing alternative sparsity measures to meet some GL and CPL–
free radiation patterns. The array directivity is discussed in Section 7
in the light of the beam skeleton structure, sparsity, and array
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parameters. The discussion is followed by numerical simulations to
demonstrate the discussed concepts. A concluding section is given in
Section 8.

2. PROBLEM FORMULATION

In the following section the problem formulation is presented in terms
of the radiating array layout, the model of the array’s elements, and
the observation setup.

2.1. UWB/SP Array and Excitation Setup

Let us consider a one-dimensional linear array of N radiating elements
aligned along the z axis with inter-element spacing d. Without loss of
generality, all array elements have the same source-to-far-field transfer
function (termed effective height) ht(r̂, t), where t is a temporal
coordinate, r̂ = (vρ, u) with ρ = x̂ cosφ + ŷ sinφ, u = cos θ and
v = sin θ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. In the present discussion,
we consider radiating elements having ht(r̂, t) = f(r̂)D(t), where f(r̂)
is an angular vectorial radiation pattern in the r̂ direction and D(t)
is a temporal operator. This decomposition of ht as a product of
temporal and spectral functions mathematically describes many types
of small antennas having a multipolar type of radiation pattern with
D(t) a differential operator (see, e.g., in antenna theory [9, 23, 26]).
For extended type of antennas, ht(r̂, t) can be decomposed as a
combination of products of spectral and temporal functions (see,
e.g., [27]). Additionally, the array is set such that the main radiation
beam is steered into the r̂0 = (sin θ0, 0, cos θ0) direction (note that
since the one-dimensional array is aligned along the z direction, it is
not applicable to steer the beam in the φ direction).

Let us also assume that at the terminal of each of the radiating
elements the incident excitation signal s(t) is a sequence of M pulse-
shaped waveforms s0(t):

s(t) =
M−1∑
m=0

s0(t−mTp), (1)

where Tp is the pulse repetition duration (with PRF = T−1
p ), and

s0(t) is an essentially time and frequency band-limited pulse-shaped
waveform with a prescribed central frequency T−1

0 (T0 is the period of
the signal, see the discussion below).

Combining the excitation model in (1) with the radiating elements
model, the single element’s (far field) transient radiation pattern is
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given by [7]:

e(r̂, t) =
1

4πr

[
ht(r̂, ·) ~ s(·)] (τ) =

1
4πr

M−1∑
m=0

f(r̂)e0(τ −mTp), (2a)

with the pulsed waveform

e0(τ)=[D(·) ~ s0(·)] (τ), (2b)

where r = (x, y, z), with r = |r|, the retarded time τ = t− r/c, c is the
wave propagation speed, and [a(·) ~ b(·)] (t) =

∫
dt′a(t′)b(t− t′) is the

convolution integral. In view of (2a), the element’s far-field waveform
e0(τ) is also a pulsed waveform that has some pulsed characteristics,
which due to D(t) differ from those of its source s0(t).

Since D(t) may contain derivations and since s0(t) has a pulsed
shape, it follows from (2b) that e0(τ) may be modeled (approximated)
as a modulated pulsed-waveform. Consequently, for purposes of
modelling and for the sake of simplicity, let e0(t) = r0(t) cos(ω0t),
where r0(t) is a base-band pulse shaped window with an effective
pulse-width, say, T †, and ω0 = 2π/T0 is the radian frequency of
the carrier. Note that cT0 = λ0, where λ0 = 2πc/ω0 is the
wavelength at ω0. The ratio T/T0 approximates the number of cycles
contained under the pulsed envelope (r0). As such it is related to
the signal’s frequency bandwidth, therefore it can be used for the
classification of the “pulsed excitation” into one of three types: (i) NB
for T/T0 & O(1), i.e., ω0T > O(1), where the signal is dominantly
characterized by the carrier frequency-ω0 [thus TH (frequency domain)
considerations may be used]; (ii) UWB/SP for T/T0 . 0.2, i.e.,
ω0T . 1, where the signal is dominated by the short pulsed envelope
(window); or (iii) the intermediate range of 0.2 . T/T0 . 1, termed the
quasi-monochromatic (QM) regime, where the signal’s characteristics
are obtained as an interplay between NB (carrier) and UWB/SP
(modulation) properties. Thus modeling e0(t) as a modulated pulse
allows for a unified quantification of some unique kinematic properties
that are attributed to QM and UWB/SP excitation regimes.

The distinction between the excitation regimes implies that
the inter-element spacing should also be normalized differently in
each of the regimes in accordance with the dominant parameter
that characterizes the signal. To this end, in the NB regime the
normalization should be carried out with respect to the carrier period:
d/cT0 = d/λ0 (note that this normalization is the one traditionally
used in TH antenna theory). On the other hand, in the UWB/SP
regime the normalization should be carried out with respect to the
† The pulse-width T can be approximated by T ∼ ‖te0(t)‖2/‖e0‖2, where ‖ ‖2 is the L2

norm that is used in (3) [15].
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pulse width: d/cT (note that this normalization may, unnaturally,
be written in terms of the carrier wavelength (d/λ0)(T/T0)−1 even
though for UWB/SP, due to their extreme bandwidth, it is difficult to
physically interpret the wavelength of the signal). In the intermediate,
QM, regime there is no single dominant signal parameter that can be
used, conveniently, to normalize d.

2.2. Observable Quantities

As we did for to the element’s far-field in (2a), let us assume that
the array’s time-dependent far-field is given by E(r, t) = 1

4πrF(r̂, τ),
where F(r̂, τ) is the corresponding radiation pattern (see the discussion
below). Since the kinematic properties of the array with respect to its
energy radiation characteristics are of concern in this paper, the main
observable quantity to be used is the array’s energy radiation pattern
E(r̂), which is defined via the L2 norm as,

E(r̂) = (4πr)2 ‖E(r, t)‖2

2
=

∫

∞
dτ |F(r̂, τ)|2. (3)

As will be shown below it is convenient to represent energy quantities
via an autocorrelation function. To this end, E(r̂) in Eq. (3) is given
by E(r̂) = RF (τ ; r̂)|τ=0, where the temporal autocorrelation function
is given by:

RF (τ ; r̂) = F(r̂, τ) ? F(r̂,−τ) =
∫

∞
dtF(r̂, t + τ/2)·F(r̂, t− τ/2), (4)

where, here, ? is identified as scalar product and convolution, and ·
indicates a scalar product.

It should be noted that Eq. (3) may also be interpreted within
a transmit-receive relation, where the receiving antenna is a fictitious
field-sampling space-time point-like probe, which is located in the far-
zone of the array. Therefore, E(r̂) represents the total energy received
at the probe’s terminals. For more realistic probes a Friis-type relation
for the calculation of E(r̂) should be used [7].

3. ARRAY PATTERN

Following the formulation in Section 2, the array radiation pattern will
be presented next as the main analysis tool.

Assuming that each of the radiating elements is insonified by
s(t) of (1) to yield the radiated field e(r̂, τ) of (2a), the time-
dependent array’s radiation pattern F(r̂, τ) is obtained by delaying
the elements’ contributions by two progressive delay terms: the spatial
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delay dc−1 cos θ and the steering delay td = dc−1 cos θ0, which aims to
steer the main radiation beam into the r̂0 direction, thus giving:

F(r̂, τ) = f(r̂)Fa(r̂, τ), Fa(r̂, τ) =
N−1∑
n=0

M−1∑
m=0

e0 (τ +ndc−1cos θ−ntd−mTp) .

(5)
Note that Fa(r̂, τ) may be regarded as the radiation pattern of the array
itself without the spectral “filtering” effect of the elements’ angular
pattern. The discussion here is directed toward the analysis of the
array’s kinematic properties, and therefore inter-element coupling is
neglected. Note though that in TD transient array analysis inter-
element coupling is manifested as a weak delayed-type response (see,
e.g., [23]).

Inserting Eqs. (5) and (1) into Eq. (3) yields the expression for
the energy radiation pattern, which may be rearranged as:

E(r̂) = |f(r̂)|2Ea(r̂), Ea(r̂) = RFa(0; r̂), (6a)

whereRFa is the autocorrelation of Fa, which is given by the expression
in (4) but for Fa (instead of F ), giving:

Ea(r̂) = Ea(u) =
N−1∑
n=0

M−1∑
m=0

N−1∑

k=0

M−1∑

l=0

R [c−1d(n−k)(u−u0)−(m− l)Tp] ,

(6b)
where u = cos θ, u0 = cos θ0 is a spectral variable that is restricted to
|u| ≤ 1 in the visible/propagating domain, whereas |u| ≥ 1 corresponds
to the evanescent spectral domain. R(·) is the autocorrelation function
of e0(t), which is given as in (4) but with e0. In view of (2b),

R(τ) =
[RD(·) ~Rs0

(·)](τ), (7)

in which Rs0
is the autocorrelation of the excitation pulse s0(t),

and RD(τ) = D(τ) ~ D(−τ) is the corresponding autocorrelation
differential operator associated with D(t) ‡.

To conclude, note the following: (i) The energy radiation pattern,
as defined in Eq. (6a), and the array pattern Fa in Eq. (5) facilitate
a general pattern multiplication principle for all excitation regimes
similar to the known pattern multiplication principle for TH (or NB)
excitations, see in [30, 31]; therefore justifying the identification of Ea(r̂)
as the array’s energy pattern. (ii) Ea is a property of the array’s
physical layout, the excitation pulse (s0(t)) and elements’ transfer
‡ For multipolar type of antennas, D(t) = δ(ν)(t), i.e., ν times differentiation of Dirac’s
delta (ν an integer, see in [7, 26, 28, 29). Therefore in Eqs. (6)–(7), the differential operator

is RD(τ) = D(τ) ~ D(−τ) = (−1)νδ(2ν)(τ), giving R(τ) = (−1)νR(2ν)
s0

. These types of
operators are employed to bring the single antenna’s temporal effect into the analysis.
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function (D(t)) manifested via RD. Consequently, Ea is the equivalent
of the “array factor” that is used in TH analysis.

As stated above, the aim of this paper is to investigate the
kinematic properties of the array. Following the pattern multiplication
principle demonstrated by Eq. (6), the kinematic properties of the
array can be recovered by treating Ea(r̂). Though the expression
for Ea(r̂) in Eq. (6b) is inconvenient for characterization of the
array’s kinematic properties, it is used as the starting point for the
parameterization in Section 4. It should be noted that the general line
of derivation of the array radiation pattern performed in this section
to yield Eq. (6) is not unique to UWB/SP TTD antenna array theory
and can be found in other disciplines that employ arrays of transducers
for transmission and/or reception of signals with some energy measures
(see, e.g., [32, 33]). However, the present line of derivation is motivated
by the use of transient antennas with a given transient effective height.
Hence, it serves as a starting point for the discussion conducted in
the next sections to derive the beam structure and other kinematic
properties of such TTD arrays.

4. ARRAY ENERGY PATTERN: BEAM SKELETON

In this section, we explore the fine details of the array’s energy
radiation pattern Ea as a function of the spectral variable u. We start
by deriving the beam (radiation lobes) skeleton as a set of angular
directions for which Ea(u) has local maxima (i.e., radiation lobes) and
follow by providing a TD (transient) interpretation.

4.1. Beam Skeleton Via the Energy Pattern

A possible local maximum of Ea(u) can be found whenever an element
of the summation in Eq. (6b) reaches a local maximum as a function of
u. Whether this possible local maximum can be observed in Ea(u), and
can thus be an actual local maximum, depends both on the number
of contributing summation elements that reach a local maximum at
that same u and on the array parameters (of the physical layout,
exciting signal, and the element’s temporal response). To parametrize
the angular location of the local maxima, let τγ with γ = 0,±1,±2, . . .
such that |τ0| < |τ±1| < |τ±2| < . . . < O(T ) be the set of values
for which R(τ) obtains a local maximum (i.e., R(1)(τγ) = 0 and
R(2)(τγ) < 0). Since R(τ) is an autocorrelation function, it reaches its
global maximum for τ = 0; therefore, let τ0 = 0 (γ = 0). Furthermore,
R(τ) = R(−τ), giving τγ = −τ−γ (|γ| ≥ 1). Thus, applying these
properties of the autocorrelation function together with (6b) yields
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the set of directions uα,β for which Ea(u) obtains a local maximum:

uα,β,γ = uα,β +
1
α

(cτγ

d

)
, uα,β = uα,β,γ=0 = u0+

(
β

α

)(
cTp

d

)
(8a)

where α and β are integer numbers with:

1 ≤ |α| ≤ N − 1, 0 ≤ |β| ≤ (M − 1), gcd(α, β) = 1. (8b)

Note that: (i) As pointed out above, uα,β is independent of the
actual excitation signal or antenna type, since it is related to the global
maximum of R(τ) that is obtained for τ = τ0 = 0. Furthermore,
in light of Eq. (8a), uα,β depends only on the array layout and the
pulsed sequence properties (Tp, M) and not on the actual pulse shape;
therefore, it is strictly a property of the array itself and may thus be
identified as the beam skeleton of the array. (ii) Since e0(t) may contain
some microstructure (such as modulation, see, e.g., its modeling in
Section 2.1), its autocorrelation functionR(τ) may also have additional
local maxima uα,β,γ for τ = τγ 6= 0, with γ 6= 0, which depends on the
pulsed-waveform and the type of antenna element. However, since
R(τγ) ≤ R(0), it follows that Ea(uα,β,γ) ≤ Ea(uα,β,0), where equality is
obtained for a periodic R(τ) (i.e., TH excitation). Consequently, the
radiation pattern attains two types of local maxima: those that depend
on the periodicity of the array and the excitation pulsed sequence (uα,β)
and those that depend on the waveform characteristics (uα,β,γ). The
interpretation of these results in terms Fa(r̂, τ) are discussed next.

4.2. Beam Skeleton Interpretation Via the Transient Pattern

The set of local maximum directions uα,β,γ can be interpreted as
being associated with different mechanisms of constructive pulsed
interference [15]. The field radiation pattern at a given uα,β,γ is
obtained via Eq. (5):

Fa(uα,β,γ , τ)=
N−1∑
n=0

M−1∑
m=0

e0

(
τ +

(
n

β

α
−m

)
Tp+n

1
α

τγ

)
. (9)

From Eq. (9), two interference mechanisms are identified:
(i) Given α = n1 − n2 and β = m1 − m2, where 0 ≤ n1,2 ≤ N − 1

and 0 ≤ m1,2 ≤ M − 1, γ = 0, uα,β = uα,β,0 is the direction
of a complete constructive interference between pulse number m1

radiated by element number n1 and pulse number m2 radiated
by element number n2; see also in of Ref. [15, Figure 2]. These
local maxima (in Ea or more generally in E , provided that the
element’s main beam pattern, |f(r̂)|, is wide enough) are termed
CPLs. The set of CPL directions is therefore given by the beam
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skeleton {uα,β} of the radiation pattern. Note that: (i) the local
maxima of the field due to cross–pulse interference result from the
inherent periodicity in the array’s layout and the pulsed sequence
excitation; and (ii) the set of CPL directions are confined within
u1,−|M−1| ≤ u ≤ u1,M−1. Nevertheless, the visible observation
domain, |u| ≤ 1, does not confine the contributing CPLs to
|uα,β| ≤ 1, since around each CPL direction there is a radiation
lobe with some spectral content (say ∆α,β). Therefore, the
contributing CPLs are those with |uα,β| ≤ 1+∆α,β; see also Fig. 1.

(ii) For a given α, β, as in item (i), and γ 6= 0, uα,β,γ is the
direction in which there is constructive interference of at least two
contributions with a relative delay of τγ . However, since R(τ) ≤
R(0), the two pulses do not overlap completely. To interpret
uα,β,γ , recall the element’s field modeling e0(t) = r(t) cos(ω0t) (see,
Section 2.1). In the QM and NB regimes,R(τ) ≈ 1

2Rr(τ) cos(ω0τ),
where Rr(τ) is the autocorrelation of r(t). In these frequency
regimes, it follows that τγ ' γT0. Thus, inserting uα,β,γ into
Eq. (9) suggests that the phase difference between the two
interfering pulses is ω0τγ = 2πγ, which further suggests that in
the TH regime uα,β,γ (γ 6= 0) corresponds to a GL of order
γ associated with a CPL that is identified by its α, β index.
Applying the above TH GL interpretation for the QM and NB
excitation regimes suggests that uα,β,γ may also be recognized as
the direction in which a GL occurs. Note, however, that for γ 6= 0,
the actual maxima in Ea are slightly perturbed from the uα,β,γ

direction due an interplay between the decaying envelop of Rr(τ)
and the peak of the cosine modulating term in R(τ). The major
difference between the TH regime and the QM and NB regimes is
that since R(τγ) ≤ R(0), the GLs’ peak magnitudes in QM and
NB decay as |γ| increases.
Finally, we should note that for the NB and extreme QM
excitation regimes, side lobes (SLs) can also be observed. SLs are
formed via an interference mechanism similar to the mechanism
that gives rise to GLs, but with a relative delay between any
two interfering contributions, which is a fraction of τγ , with an
additional constraint over the total delay between the earliest and
latest pulsed contributions. Further parameterization of SLs will
not be pursued here, since they are of negligible magnitude for QM
and UWB/SP types of excitation due to difficulties in achieving a
complete constructing/destructing interference as a result of the
pulsed shape of the waveform.
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4.3. Beam Skeleton Example

To conclude the discussion in this section, we provide an example to
demonstrate the above concepts of the energy radiation pattern and
beam skeleton.

In this example (Fig. 1), the energy radiation pattern is depicted
for a sparse array of N = 7 omnidirectional point-like radiating
elements with an inter-element spacing of d/cT = 50, and u0 = 0. The
excitation is set to yield a pulsed wave-field that can be modeled as a
sequence of M = 15 Gaussian modulated pulses e0(t) = r(t) cosω0(t)

(see Section 4.2 item ii) with r(t) = e−
1
2 (t/T )2 and Tp/T = 45.

Figs. 1(a) and 1(b) depict Ea for two carrier frequencies, an UWB/SP
signal with T/T0 = 0.1 and a QM excitation signal with T/T0 = 0.5
(recall that the frequency regime of the excitation signal is dictated
by T/T0, where T0 is used for nornalization). The CPLs are clearly
visible at the local maxima for 0 < |u| ≤ 1. Table 1 lists the CPLs’
central angular locations (uα,β calculated by (8a) with γ = 0) and their
associated relative level of magnitudes (array CPL level, A-CPLL, see
in Section 5). Note that in Fig. 1(b), QM excitation, the γ = ±1 GLs
associated with each CPL can be seen by the additional peaks around
each of the CPLs.
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Figure 1. Energy radiation pattern E for a sparse array of N = 7
omnidirectional radiating elements with inter-element spacing d/cT =
50 excited by a sequence of M = 15 pulses that can be modeled
by Gaussian modulated pulses and Tp/T = 45, (a) T/T0 = 0.1
(UWB/SP); and (b) T/T0 = 0.5 (QM).
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Table 1. Central angular location of the CPLs.

α β ±uα,β (Eq. (8)) A-CPLL (Eq. (11))

1 1 0.9 0.8476

2 1 0.45 0.4721

3 1 0.3 0.3306

3 2 0.6 0.3143

4 1 0.225 0.2571

4 3 0.675 0.2408

5 1 0.18 0.2190

5 2 0.36 0.2136

5 3 0.54 0.2082

5 4 0.72 0.2027

6 1 0.15 0.1810

6 5 0.75 0.1701

5. ARRAY PATTERN: BEAM SUMMATION

Having defined the beam skeleton in Section 4, we now reformulate the
summation in Eq. (6b) as a summation of beam contributions§ that
are structured upon the CPL beam skeleton {uα,β}. To this end, let
the energy radiation pattern be decomposed as:

Ea(u) = E∞a +B0(u− u0)+
N−1∑

|α|=1

M−1∑

|β|=1

Bα,β(u−uα,β), (10a)

where E∞a = N × M × R(0) and the summation indexes satisfy
gcd(α, β) = 1. The second term in Eq. (10a) is identified as the main
beam radiation in the u0 direction, which is given by:

B0(u) = 2M

N−1∑

p=1

(N − p)R(c−1dpu). (10b)

The summation in Eq. (10b) collectively combines the contributions
with β = 0 (and therefore |α| = ±1). Similarly, Bα,β in Eq. (10a) are
the individual beam contributions, centered at the CPL direction uα,β:

Bα,β(u) =
Np∑

p=1

(N − p|α|)(M − p|β|)R(c−1dαpu), (10c)

§ Beams are considered here as contributing energy quantities that are centered around a
prescribed direction (u) and have some spectral width.
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with

Np = min
{⌊

M − 1
|β|

⌋
,

⌊
N − 1
|α|

⌋}
. (10d)

Due to the decaying properties of the envelope of R(τ) for |τ | >
0, B0(u) and Bα,β(u) attain their global maxima at u = 0 and
subsequently decay away as u increases. Thus, they may be regarded
as being localized around u = 0. Furthermore, for Bα,β to actually
be observed in Ea, it should have a magnitude that is greater than
that of its surrounding background, i.e., according to Eq. (10a),
Bα,β(0) > E∞a + B0(uα,β − u0) +

∑
α′,β′ Bα′,β′(uα,β − uα′,β′), where

|α′| = 1 . . . N − 1, α′ 6= α, and |β′| = 1 . . . M − 1, β′ 6= β. In all other
cases, the beams’ contribution is negligible and is absorbed into the
background. It should be noted that this last condition on the beam’s
observability depends on: (i) the spectral density of the beams (in u);
and (ii) the elements’ radiation pattern |f(r̂)|2 via Eq. (6a).

Since the CPLs are confined within the spectral region u1,−|M−1| ≤
u ≤ u1,M−1, it follows that beyond this region of confinement
(i.e., following (8), |u − u0| > (M − 1)cTp/d), the argument of
the autocorrelation functions in Eq. (10) by far outnumbers cT/d
(a measure of the correlation length of R); hence, all the beams’
contributions are negligibly small, giving Ea(u) = E∞a . For further
discussion see the concluding paragraph in Section 6.

As follows from Eq. (10c), for different beam indexes (α,β), the
corresponding CPLs, Bα,β(u), are not scaled replicas of one another
(as in the similar case of GLs with TH excitation). This conclusion
follows from Fa(uα,β, τ), which in view of Eq. (9) exhibits different
pulsed sequences for different sets of α, β (see in [15, Fig. 2]).

Once the decomposition of Ea in Eq. (10) yields a concise
representation in terms of the set of (α, β)-CPLs, The normalized
magnitude of the array’s energy radiation pattern for the different
CPLs (i.e., at uα,β), termed the array’s CPL-level (A-CPLL) is
calculated:

A-CPLLα,β =
Ea(uα,β)
Ea(u0)

' E∞a + Bα,β(0)
E∞a + B0(0)

(11a)

=
1+2Np

N
+

Np(Np+1)
MN 2

{
2Np+1

3
|α||β|−N |β|−M |α|

}
.(11b)

The approximation in Eq. (11a) assumes that the beams are well
separated, thus giving Ea(uα,β) ' E∞a + Bα,β(0), and Ea(u0) = E∞a +
B0(0) = MN 2R(0). Approximating (11b) for the extreme cases of
M → ∞, and finite N yields A-CPLLα,β ∼ 1

|α| + 1
N2

|α|−1
|α| . Recalling



Progress In Electromagnetics Research, Vol. 115, 2011 23

(a)

10
-2

10
-1

10
0

10
1

2

4

6

8

10

12

T/T
0

D
ir
e
c
ti
v
it
y

(b)

Figure 2. Directivity curves for an array with N = 7 elements, excited
by a pulse sequence with M = 31 modulated pulses, Tp/T0 = 40:
(a) D as a function of the inter-element spacing d/cT0 for different
bandwidths with T/T0 = 0.001, 0.01, 0.1, 0.25, 0.5, 1, and 5 (¤, ¦, solid,
dotted, dashed, dashed-dotted and ◦ lines, respectively); (b) D as a
function of the frequency bandwidth for d/cT0 = 0.2, 0.8872, and 10
(solid, dotted, and dashed lines, respectively).

the example in Section 4.3, the rightmost column in Table 1 lists the A-
CPLL values (11), sorted by their α, β for the array. One should note
the excellent agreement between the approximation obtained by (11)
and the exact values shown in Fig. 1.

It should be noted that: (i) following Eq. (11), A-CPLL
depends on the number of pulses M in the excitation signal s(t);
(ii) furthermore, in the case in which the CPLs are not well separated,
one should use the exact definition in the first equality in (11a),
which suggests that the temporal pulsed waveform also affects the
A-CPLL via its autocorrelation in (10); and (iii) since the radiating
elements may have a radiation pattern that is not omnidirectional (i.e.,
|f(r̂)|2 6= 1), the actual CPLLα,β may be lower than the A-CPLLα,β.

6. ARRAY SPARSITY

As follows from the above discussion, the array and excitation
parameters determine the angular distribution of the radiated beams
(beam skeleton, GLs, and SLs). Furthermore, the numerical values
assigned to those parameters, in turn, determine the number of
radiation beams within the visible spectral domain. In array design,
sometimes there is a need to design arrays with as few elements as
possible to meet some given radiation properties. However, as the
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inter-element spacing becomes larger than some threshold, and the
array becomes sparse (with respect to given measures), the design
results in some additional dominant radiated beams that can cause
spurious effects upon using the array in a system (e.g., remote
sensing/imaging, etc.). In this section we explore this threshold and
its consequent effect in view of the beam skeleton.

For this discussion, we consider a sparse array as an array whose
inter-element spacing (d) is greater than some prescribed quantity
(“threshold”) that is associated with any periodicity inherent in the
array, i.e., physical layout, pulsed sequence and microstructure of
the pulsed temporal waveform. Consequently, the array’s radiation
pattern constitutes more than its main radiation beam (and its SLs)
within the visible spectral domain (i.e., attaining, also, GLs and/or
CPLs). The possible periodicities, if they do indeed exist, induced by
the array’s setting suggest two sparsity measures: (i) pulse repetition
sparsity (PRS), i.e., sparsity with respect to the pulse repetition
duration Tp (or the PRF); and (ii) sparsity with respect to the
pulse’s microstructure, i.e., modulation or in-pulse ripple (manifested
by the τγ), termed microstructure sparsity (MS). The closest CPL
to the main beam (u0 direction) has (|α|, |β|) = (N − 1, 1); thus, in
light of Eq. (8a), setting this beam outside the observation domain
(|u| > 1)suggests that d < [(N − 1)(1 + |u0|)]−1 cTp. Hence, for a PRS
array, d ≥ [(N − 1)(1 + |u0|)]−1 cTp. This thresholding demonstrates
the effect of the excitation sequence PRF on the radiation pattern or
alternatively sets design guidelines for obtaining an HPRF array free of
“spurious” beam within the observation domain. On the other hand,
MS is associated with the presence of main beam GLs within the visible
spectral domain in QM and NB excitations, in a manner similar to the
TH excitation. In that case, for an MS array, d ≥ [1 + |u0|]−1|cτ±1|,
which suggests that there is at least one GL within the observation
domain. Note that in the TH regime, where cτγ = γcT0 = γλ0 (λ0

is the wavelength at the carrier frequency), the MS criterion coincides
with the TH sparsity [30]. Furthermore, for QM (and NB) excitations,
both PRS and MS may exist, but for UWB/SP excitation regime,
PRS is the dominant mechanism. Obviously, as already discussed in
previous work [13, 15, 24], sparse arrays can be designed such that they
have some favorable properties.

To conclude this part of the paper, we note that as d grows
beyond the PRS threshold more and more CPLs are driven into the
visible spectral domain. The highest CPL to enter is indexed by
(|α|, |β|) = (1,M − 1), and the critical inter-element spacing for this
to occur is d > (M − 1) [1 + |u0|]−1 cTp (see, e.g., (8a)). Once all
the CPLs are within the visible spectral domain, a further increase
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in d results in the enclosure of all the CPLs within a spectral span
|u−u0| ≤ (M − 1)cTpd

−1. For u outside this spectral domain, Fa(u, τ)
breaks into a sequence of N × M essentially separate pulses, which
yield a constant energy radiation pattern Ea(u) = E∞a . Recall that for a
single pulse excitation (M = 1), sparsity can be defined with respect to
the breaking of the main radiation beam into a sequence of N distinct
pulses. This definition suggests the criterion d/cT > 1 (where T is a
measure of the radiated pulse) for the sparse array, see in [13, 24]. This
type of sparsity may be termed pulse width sparsity (PWS). In light
of this definition, the condition d > (M − 1) [1 + |u0|]−1 cTp induces a
PWS-like condition.

7. ARRAY DIRECTIVITY

Following the discussion on the radiation pattern characteristics,
we now introduce directivity as a figure of merit for the array’s
performance and explore its properties in view of the beam skeleton.
Directivity is defined here with respect to the energy radiation pattern
as in TH, see Refs. [30, 31]. The aim here is to quantify the net
effect of the various radiation lobes on the array’s directivity. To this
end, we assume that the angular radiation pattern of the radiation
elements is omnidirectional, |f(r̂)| = 1 (hence Ea = E). Note, though,
that the temporal characteristics of the elements’ response are already
embedded within the energy radiation pattern via the RD operator
in (4). Consequently, the array’s directivity is given by:

Da = 4π
maxr̂ Ea(r̂)∫∫

4π

dΩ Ea(r̂)
= 2

Ea(u0)
1∫

−1

du Ea(u)

(12)

where dΩ = sin θdθdφ. It is important to note that, in practice, since
f(r̂) is not omnidirectional, it tends to smooth out the Ea term in
Eq. (12) and hence to decrease the effect of the CPLs, GLs and SLs
on the radiation pattern away from the array’s steering direction and,
consequently, the effect of the lobes on the directivity D (calculated
using the first equality in (12) with E instead of Ea).

Next, inserting the expression for the energy radiation pattern of
Eq. (10) into Eq. (12) yields the array’s directivity in terms of the
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different beam contributions as:

Da =

[
1
N

+
1

N 2

N−1∑
p=1

N − p

p
Γ(p, u0)

+
1

2N 2M

N−1∑

|α|=1

M−1∑

|β|=1

Np∑
p=1

N−p|α|
p|α| (M−p|β|)Γ(p|α|, uα,β)



−1

(13a)

where the summation over α and β is restricted by gcd(α, β) = 1 and
includes only those beams that contribute to the radiation pattern
within the visible observation domain |uα,β| . 1 (see the discussion in
item i of Section 4.2), and

Γ(l, ū) =
c

d

(1−ū)lc−1d∫

−(1+ū)lc−1d

du
R[u]
R[0]

, (13b)

is the radiated field signal’s shape factor, which may be seen as a
truncated average of the signals’ autocorrelation.

Expression (13) is general and can be used uniformly for
calculation of the array’s directivity for radiated wave fields with any
bandwidth, as is discussed in the following section.

7.1. Array Directivity: Survey of Special Cases

In the following discussion, we explore several interesting, extreme (in
case of parameter settings) cases to demonstrate the effect of the beam
skeleton layout on the array’s performance. To this end, we assume
that the radiated pulsed wave-field is characterized using the effective
parameters T and T0, as was discussed after Eq. (2) (these parameters
are driven from the modeling of e0, see in (2)).

7.1.1. Time Harmonic Excitation

The first case to be discussed is the extreme NB excitation ( T
T0
À 1)

that, in view of the discussion in Section 2.1, may be identified as TH.
This case may be treated by assuming that there is only a continuous
modulated excitation waveform with Tp → ∞. This assumption
suggests that, as expected, only the main beam, with its associated SLs
and GLs, lies within the visible observation domain. Furthermore, it
follows that e0(t) ∼ cos(ω0t), giving R(u) ∼ cos(ω0u) for |u| ≤ 1, which
in turn gives Γ(p, u0) = 2

k0d sin (pk0d) cos (pk0d u0), where k0 = ω0/c
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and finally

Da

∣∣∣∣
NB

=


 1

N
+

2
N 2

N−1∑

p=1

N − p

pk0d
sin (pk0d) cos (pk0d u0)



−1

. (14)

Expression (14) is the textbook result for the directivity of a linear
array of N omnidirectional elements with TH excitation [30, 31].

7.1.2. Dense Array

It may easily be seen that for a dense array, where d/cT ¿ 1 (and
practically d/cT → 0), i.e., the inter-element spacing is small compared
to the effective pulsed width, the carrier wavelength, and the pulse
repetition duration (see in Section 6), there are no CPLs within the
observation domain. Eq. (13b), then, gives Γ(l, ū) ≈ 2l to yield Da ' 1
(similar to the case of small-sized arrays in TH antenna theory that
have an omnidirectional radiation pattern [30, 31]).

7.1.3. Sparse Array

For UWB/SP excitation, the radiated pulse consists of a small number
of cycles, possibly less than one, such that e0(t) is set to yield a “nice
enveloped/bell-shaped” pulse. In that case, let the correlation length
(width of R) be linearly proportional to T . For a large enough d/cT
(usually > 1, near or beyond the range of d for sparse array realization),
the integration limits in Eq. (13b) may be altered to approximate Γ
by:

Γ(p|α|, uα,β) ' c

d
H(1− |uα,β|)

∞∫

−∞
dy
R[y]
R[0]

, (15)

where H(·) is the Heaviside step function. Inserting Eq. (15) into
Eq. (13a) yields the final expression for the directivity of the UWB/SP
driven array. Moreover, since the correlation length depends linearly on
T , it follows according to (13b), that Γ(p|α|, uα,β) ∼ cT

d . Consequently,
sparse conditions with d

cT À 1 give rise to D → N (see also Fig. 2(a)).

7.2. Array Directivity: Example

To conclude the discussion in this section, we provide an example to
demonstrate the above concepts of directivity and its performance for
the different cases of Section 7.2.

The first example (Fig. 2) depicts the directivity curves of an
array with N = 7 elements, excited by a pulse sequence with M = 31
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Gaussian modulated pulses (e0 as in Section 4.3), Tp/T0 = 40 where
T0, the carrier period, is used for normalization, see the discussion in
Section 2.1, and u0 = 0. Fig. 2(a) shows D as a function of the inter-
element spacing d/cT0 for different wave-field frequency bandwidths
with T/T0 = 0.001, 0.01, 0.1, 0.25, 0.5, 1 and 5. Here, D was calculated
by Eq. (12). Note that the span of d/cT0 covers the conditions for MS
(NB and QM excitations) and PRS (QM and UWB/SP excitations). It
can be seen that for the NB regime (T/T0 = 5) D follows the directivity
curves obtained in the literature for the classical TH antenna theory,
which is given by Eq. (14) [31]. As the bandwidth is increased from NB
to QM regimes, by lowering T/T0, the smooth undulations of D, due to
the GL dynamics within the observation domain, decay to somewhat
low values as d/cT0 ∼ O(1). A further increase in the frequency
bandwidth toward the UWB/SP regime (T/T0 = 0.25, 0.1, 0.01, and
0.001) introduces a new type of “staircase”-like oscillations for some
high values of d/cT0, which are attributed to CPL dynamics (see the
inset in Fig. 2(a)). Fig. 2(b) depicts D as a function of the frequency
bandwidth for d/cT0 = 0.2, 0.8872, and 10. As can be seen, D attains
its minimum value for T/T0 ' 0.14, which may be identified as the
transitional point between UWB/SP and QM bandwidth regimes. This
minimum in D may be attributed to the fact that e0(t) is obtained as an
interplay between two temporal waveforms, a pulsed envelope (r(t)),
which is dominant for T/T0 . 0.14, i.e., less than one cycle signal, and
the carrier cosine cosω0t, which is dominant for T/T0 & 0.14.

In the second example (Fig. 3), D is shown as a function of d/cT
for an array with N = 7 elements, excited by a pulse sequence that
is modeled as in the previous examples, where T = 1, Tp/T = 45,
T/T0 = 0.1 (UWB/SP regime), and the number of modulated pulses
is M = 2, 5, 15, and 35, and u0 = 0. It can be seen that as the
number of pulses increases, the array’s directivity becomes lower, since
the radiated energy tends to disperse between an increased number of
CPLs. Moreover, whenever a new CPL “enters” the visible domain,
an abrupt drop in D is observed, which may be seen in Fig. 3
from the staircase-like behavior of the curves. Furthermore, once
d/cTp ≥ (M − 1), all the CPLs are already within the observation
domain, while a further increase in d/cT only “squeezes” the CPL
skeleton more and more towards the main beam, and the array
is now in its PWS condition (recall the discussion in Section 6).
Furthermore, in this condition, there is a smooth increase in the
array’s directivity due to the decrease in the span of the radiated
beams (“beam squeezing”). The ◦ markings on the M = 5 curve that
overlap indistinguishably with the dotted line of the curve denote the
approximated directivity calculated by using Eq. (13a) with Eq. (15).
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Figure 3. D as a function of d/cT for an array with N = 7 elements,
excited by a pulse sequence, where T = 1, Tp/T = 45, T/T0 = 0.1 and
the number of pulses is M = 2, 5, 15, and 35 (solid, dotted, dashed,
and dashed-dotted lines, respectively). The small circle markings over
the M = 5 (dotted) line represent the directivity as calculated by using
the approximation in (15).

Note that the approximation becomes valid for d/cT > 1 (see the
discussion in Section 7.1.3). Furthermore, the approximation is
sufficiently accurate, except for d/cT ' (|β|/|α|)(Tp/T ), i.e., in the
immediate vicinity of the abrupt drops in D (as may be seen in the
inset in Fig. 3 for the indistinguishable curves for M = 5). These
values of d/cT correspond to the rise of a new CPL within the visible
spectral domain (uα,β = 1). Possible inaccuracies observed in the
approximation in the vicinity of the abrupt changes in D are due
to the augmentation of the finite integration limits in Eq. (13b) to
infinite limits in Eq. (15), which implies that there are no partial CPL
contributions within the visible domain, i.e., the use of Eq. (15) implies
that whenever a new CPL appears, it immediately contributes its full
effect to decreasing D. This assumption stands in contrast to the
physical realization that the CPLs gradually enter the visible domain
as d/cT increases.

8. CONCLUSION

The kinematic properties of a sparse TTD beam steering array
radiating a possibly modulated-like periodic pulsed sequence were
explored. The TD radiation pattern was introduced as an intermediate
step in formulating the energy radiation pattern. Since the energy
pattern is time independent but nevertheless encapsulates the basic
kinematic properties of the array, it serves for characterization of the
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array. Next, the beam (radiation lobes) skeleton was introduced as
the set of all radiation directions for which there are local angular
energy peaks (or alternatively a cross pulsed coherent interference in
TD). These energy peaks were identified as CPLs and GLs. GLs are
common in QM and NB excitation regimes, while CPLs are a basic
property of periodic pulsed excitation. The lobe/beam skeleton led
to the decomposition of the energy pattern into a summation of beam
contributions that are angularly centered around the CPLs’ directions.
The beam skeleton depends on the array parameters, i.e., inter-element
spacing, effective pulse width, carrier period (if a modulated pulse is
indeed used or approximated), and the excitation sequence PRF. In
light of these array parameters, the sparsity of the array was addressed,
where a sparse array constitutes a radiation field (radiation pattern)
with more than one beam within the observation domain (the main
beam and at least one GL or CPL). Hence, the PRS was defined as the
condition of having CPLs within the observation domain, while MS
was defined as the condition of having no CPLs but only GLs within
the observation domain. Having discussed the kinematic properties of
the array, we presented the array’s directivity as a figure of merit for
its performance. The derived expression for the directivity can be used
uniformly with excitation signals within the three bandwidth regimes.
Moreover, for NB excitation, it gives rise to the expression known from
classical array theory under TH excitation. For QM and UWB/SP
types of excitations, the directivity is also affected by CPLs (beam
skeleton properties) within the visible radiation domain. For the range
of parameters used in the present demonstrations, a regular behavior of
the directivity was observed. Different setting of the parameters and in
particular an interplay between the element’s spatial distribution, the
single pulse waveform and the pulse sequence may lead to an extreme
state of the directivity in the form of super-directivity. This issue is
explored elsewhere with regard to array synthesis and optimization.

In conclusion, let us consider three further points: (i) The
discussion here assumed a unidimensional array, but it can also be
extended, following the same arguments of derivation, to 2- and
3-dimensional arrays, where the radiation pattern depends on two
spectral parameters, i.e., u = cos θ cosφ and v = cos θ sinφ. (ii) The
present characterization shows that the TH kinematic antenna theory
(SL, GL, directivity and sparsity) is a special case of the time-
dependent array under periodic pulsed excitation. (iii) The present
discussion may be viewed as divided into two parts. In the first part,
a mathematical formulation of the ERP, the beam skeleton and the
various beam types was introduced. The second part used the ERP
formulation to discuss the array sparsity and the directivity. Once
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the characteristics of the sparsity and directivity were identified they
can be used for further analysis/synthesis and optimization of the
array performance. Note that synthesis or optimization of the array
performance can be carried out with respect to other parameters either
in the TD pattern or in the energy pattern (ERP). Nevertheless the
present discussion shows that TD characteristics are also manifested
in the ERP. Hence, kinematic optimization with respect to various
parameters (other than the directivity and sparsity) can be formulated
with the ERP. Moreover, the present discussion assumed an ERP
that is expressed via the L2 norm (3), but a similar analysis can be
performed for any Lp norm (see, e.g., the numerical example for the ∞
norm in [15, Figure 5]) or norms that are defined over finite temporal
duration. Thus emphasizing additional TD characteristics that may
also be synthesized or optimized. Finally, in TTD arrays such as those
discussed here, one may optimized the performance with respect to
three sets of degrees of freedom: the array spatial distribution (d), the
single pulse characteristics (T , T0), and the excitation sequence (Tp).
These issues are being pursued elsewhere.
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