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Abstract—The renormalization group theory (RGT) is used in this
paper to develop an extension of the multi-scale approach (MS-GEC),
previously developed by the authors, in order to enable the study
of fractal structures at infinite iterations. In this work, we focused
on active fractal structures with incorporated PIN diodes but the
developed concept can be applied to a wide variety of fractals. The
MS-GEC method deals with fractal-shaped objects as a set of scale
levels. The processing is done gradually, one scale at each step,
from the lowest scale till the highest one. To compute the input
impedance of fractal-shaped structures using the MS-GEC method, we
demonstrated that the input impedance of any scale level is generated
from the input impedance of the previous scale level. When the
iteration of fractal tends toward infinity, the structure contains an
unknown number of levels. Since the atomic level cannot be defined,
a critical point is reached limiting then the scope of the MS-GEC
and of the existing classical methods. Based on RGT concepts, if
the relation between the input impedances of two consecutive levels
can be rewritten independently of the critical parameter (which is
in our case the scale level), a transformation called “renormalization
group” is generated. Consequently, the input impedance of the infinite
active fractal structure approaches the fixed point of the defined
transformation independently of the system details at the atomic
level. The MS-GEC method combined to the RGT is a very powerful
technique since it profits from the advantages (rapidity and reduced
memory requirements) of the MS-GEC method and from the ability of
the RGT to solve problems at their critical point.
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1. INTRODUCTION

Due to their self-similarity and infinite complexities, fractal geome-
tries [1] allow for small, multiband and broadband structures design [2–
4]. Moreover, static behavior is no longer preferred and active struc-
tures have been researched to have tunable characteristics under the
control of either semiconductor devices, or by utilizing ferrite as a sub-
strate, or by incorporating PIN diodes, etc. [5–7]. The study of such
active fractal objects at higher iterations requires very long solution
time and important memory resources. At infinite iteration, the frac-
tal structure is one of the toughest problems to deal with. Indeed,
classical methods (MoM, FEM, TLM, etc.) are unable to study such
structures since they cannot manipulate their infinite character. In a
previous work [8], the authors have described the MS-GEC method
which is proved so fruitful in gaining time and memory resources while
allowing an accurate electromagnetic study of fractal-shaped struc-
tures. However, at infinite iterations of fractals, the MS-GEC reaches
its limits since the microscopic level is no longer known and thus the
starting elementary pattern cannot be neither defined nor studied. A
critical point is reached and one wishes to remove such infinite char-
acter from the theory. To circumvent such difficulty, the MS-GEC
method has been extended in this paper, using the renormalization
group theory (RGT) [9–15].

To describe conveniently the RGT, we mention Wilson’s own
assessment of his achievement [10]: “This is the most exciting aspect
of the renormalization group, the part of the theory that makes it
possible to solve problems which are unreachable”. As a result, thanks
to the RGT, although the elementary scale level remains unknown, the
infinite fractal structure can be investigated.

Using the MS-GEC method [8], the input impedance Zkl
of any

scale level kl is generated from the input impedance Zkl+1 of the
previous scale level (kl + 1). This expression is the same for all
scale levels but differs by the level dimensions. The main idea of
the RGT is to rewrite the expression relating Zkl

and Zkl+1 in a
dimensionless form; i.e., independently of the scale level kl. The
obtained expression is called transformation group or more precisely,
“renormalization group”. When the iteration of fractal increases, the
input impedance of the fractal structure approaches the fixed point of
the defined renormalization group. Therefore, the fixed point is the
input impedance of the infinite fractal structure.

This paper is organized as follows: Section 2 provides an overview
of the MS-GEC method where the relation between two consecutive
scale levels is defined. In Section 3, the renormalization group theory is
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introduced and then used to generate the renormalization group. The
fixed point computation and validation are detailed in Section 4. The
advantages of the developed method are described in Section 5.

2. OVERVIEW OF THE MS-GEC METHOD

The MS-GEC method [8] is a multi-scale (MS) approach combined
to the generalized equivalent circuit (GEC) modeling [16–18]. Its
objective is to simplify the study of complex structures and especially
fractal ones. In this paper, the MS-GEC method is applied to compute
the input impedance of the fractal structure with incorporated PIN
diodes depicted Fig. 1 considered at an infinite iteration k. It consists
of perfect metallic strips with negligible thickness printed on a lossless
dielectric and related by PIN diodes. The structure is located in the
cross-section of a parallel-plates EMEM waveguide: two perfect electric
boundaries to the top and the bottom, lateral conditions are magnetic.
Lets a and b be respectively the width and the height of this waveguide.

The MS-GEC method has been applied in [8] to compute the
input impedance of the considered fractal structure at the 2nd and

Toward infinite scale

EMEM waveguide
 

Multimodal excitation a

b

Discontinuity surface  

Perfect metallic strip 

Figure 1. Fractal structure with incorporated PIN Diodes, located in
the cross-section of an EMEM rectangular waveguide.
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the 3rd stages of growth (called here iteration of fractal k) and then
validated when compared to the Moment method. It was demonstrated
that fractal objects can be treated as a set of scale levels: the input
impedance of the whole structure can be computed gradually from the
microscopic level to the macroscopic one. At each step, a scale level
kl is considered. The previous scale level (kl + 1) is integrated within
the current scale level kl using its equivalent input impedance operator
Ẑkl+1 which is derived from the corresponding input impedance matrix
[Zkl+1]. Moreover, the PIN diode at scale level klis replaced by its
equivalent surface impedance ZDkl

.
At any scale level kl, the structure to be considered is as drawn

Fig. 2(a). Note that (kl = 0) refers to the highest level while
(kl → +∞) denotes the microscopic level. α is called the scaling
factor (α < 1): the scale level (kl + 1) is obtained by scaling the klth
level by the factor α. Due to the structure symmetry with regard to the
discontinuity surface, only the half of the generalized equivalent circuit
(GEC) is needed [8]. The simplified GEC is depicted in Fig. 2(b).

(b)
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Figure 2. (a) Structure at the klth scale level where the previous level
(kl +1) is replaced by its input impedance operator Ẑkl+1 and the PIN
diode is replaced by its surface impedance ZDkl

. (b) Its generalized
equivalent circuit (GEC).

Lets (f (kl)
mn ) be the local modal basis of the EMEM waveguide

enclosing the considered scale level kl. The excitation modal sources
are E

(kl)
i = V

(kl)
i f

(kl)
i where f

(kl)
i , i ∈ {0, 1, . . . , N − 1} represent the

active modes of scale level kl and V
(kl)
i are their weighting coefficients.

The impedance operator Ẑ(kl) is expressed in (1) as a function of the
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Figure 3. The PIN Diode. (a) Forward bias equivalent circuit.
(b) Reverse bias equivalent circuit. (c) Reverse bias equivalent RLC
circuit [8, 19].

higher-order modes 〈f (kl)
m,n| and their modes’ impedances z

(kl)
m,n [9].

Ẑ(kl) =
∑
m,n

(m,n) 6=active

∣∣∣f (kl)
m,n

〉
z(kl)
m,n

〈
f (kl)

m,n

∣∣∣ (1)

The problem’s unknown J
(kl)
e is expressed as a series of known test

functions g
(kl)
p weighted by unknown coefficients x

(kl)
p .

J
(kl)
e exists on the Ẑkl+1 domains and the diode domain and is

zero on the lossless dielectric domain. The dual size of J
(kl)
e ,denoted

E
(kl)
e , is defined on the lossless dielectric domain. Thus, J

(kl)
e and E

(kl)
e

verify the condition 〈J (kl)
e , E

(kl)
e 〉 = 0.

One notes that the PIN diode is replaced by its surface impedance
ZDkl

. In fact, According to its ON/OFF state, each PIN diode can be
modeled [8, 19] by one of the equivalent circuits depicted Fig. 3. In this
paper, the values used for forward bias are R = 5 Ω and L = 0.4 nH. For
reverse bias, a capacitance C = 0.27 pF is added. Consequently, the
PIN diode at scale level kl can be substituted by the surface impedance
ZDkl

of width w and height dkl
= (1 − 2α)αklb using its intrinsic

(R, L, C) characteristics [8] as expressed in (2).

ZDkl
=

{ w
dkl

(R + jLω) : forward bias
w

dkl

(
R + jLω − j

Cω

)
: reverse bias

(2)

The impedance operator Ẑkl+1 is a linear representation (3) of the
input impedance matrix [Zkl+1] of the previous scale level (kl + 1).
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It is important to mention that (f (kl+1)
i )i∈[0,N−1] are the active

modes used as artificial excitation sources at the previous scale level
(kl + 1) in order to compute its input impedance matrix.

Ẑkl+1 =
N∑

i=1

N∑

j=1

∣∣∣f (kl+1)
i−1

〉
Zkl+1(i, j)

〈
f

(kl+1)
j−1

∣∣∣ (3)

The generalized Ohm and Kirchhoff laws applied to the GEC
depicted Fig. 2(b) lead to the equations system (4). The continuity of
the current on the discontinuity surface is described by Equation (4a).
Equation (4b) expresses the continuity of the field at the discontinuity
surface.{
J (kl) =−J

(kl)
e (4a)

E
(kl)
e =E

(kl)
0 +E

(kl)
1 +. . .+E

(kl)
N−1+

(
Ẑ(kl)+Ẑkl+1+ZDkl

)
J

(kl)
e (4b)

(4)

A formal relation between sources (real and virtual) and their duals is
then deduced (5).

(
J (kl)

E
(kl)
e

)
=

[
0 0 . . . 0 −1
1 1 . . . 1 (Ẑ(kl) + Ẑkl+1 + ZDkl

)

]




E
(kl)
0

E
(kl)
1
...

E
(kl)
N−1

J
(kl)
e




(5)

Next, we apply the Galerkin method to the equations system (4):
Equations (4a) and (4b) are projected on the excitation modes
(f (kl)

i )i∈[0,N−1] and on the trial functions (g(kl)
p )p∈[1,Ne] respectively.

Therefore, the system (5) is rewritten as in (6).
( [

I(kl)
]

[0]

)
=

(
[0] − [

A(kl)
]

[
A(kl)

]T [
B(kl)

]
)( [

V (kl)
]

[
X(kl)

]
)

(6)

where:[
A(kl) (i, p)

]
i∈[0,N−1]
p∈[1,Ne]

=
[〈

f
(kl)
i , g(kl)

p

〉]

[
B(kl) (p, q)

]
p∈[1,Ne]
q∈[1,Ne]

=
[〈

g(kl)
p ,

(
Ẑ(kl) + Ẑkl+1 + ZDkl

)
g(kl)
q

〉]

Equation (7) is the input impedance matrix [Zkl
] relative to the scale

level kl.

[Zkl
] =

(
1
2

)([
A(kl)

] [
B(kl)

]−1 [
A(kl)

]T
)−1

(7)
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The input impedance matrix [Zkl
] varies with the dimensions of

the considered scale level kl which are related to the iteration
of fractal k. When k tends toward infinity, the atomic level is
unreachable. Consequently, the MS-GEC is unable to study infinite
fractal structures. As a solution, the concepts of the renormalization
group theory (RGT) have been exploited to suggest an extension of
the MS-GEC method.

3. EXTENSION OF THE MS-GEC METHOD USING
THE RENORMALISATION GROUP THEORY

To enlarge the scope of the MS-GEC method to infinite fractal
structures, the concepts of the renormalization group theory have been
employed.

3.1. Concepts of the Renormalization Group Theory (RGT)

The renormalization group theory describes an efficient manner to deal
with problems involving many length scales [9–15]: the problem is
treated gradually, one scale level at each step, from the atomic level
to the macroscopic one. To compute the fluctuations on the larger
scale, one needs to integrate out the fluctuations sequentially starting
with those at the microscopic level and move gradually to the larger
scale. According to K. G. Wilson [9, 10], the fluctuations can be safely
incorporated into effective parameters without altering the real aspect
of the theory. Moreover, one can start from any intermediate level with
a physically appropriate parameter in place of the realistic one.

The main concept of the RGT is described as follows [9]: “Lets Fkl

be the functional describing the fluctuations at the scale level kl. Since
computation is done gradually, Fkl

is generated from the functional
Fkl+1 describing the fluctuations on the previous level (kl + 1). If the
relation between Fkl

and Fkl+1 is expressed in a dimensionless form,
the generated transformation is called transformation group or more
precisely “renormalization group”. This latter is covariant since it does
not reveal any characteristic scale. Consequently, at the larger length
scale, the function Fkl

approaches the fixed point of the renormalization
group independently of the system details at the microscopic level”.

3.2. The MS-GEC Combined to the RGT: MS-RGT

Before using the RGT to extend the MS-GEC approach, one needs to
verify if this latter performs computation similarly to RGT. In fact,
since a fractal structure is obtained by an iterative process, the MS-
GEC is reduced to a recursive algorithm as stated in Section 2 and
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described in [8]: the problem is treated gradually from the lower scale
level to the highest one. The fluctuation to which we are interested
is the input impedance of the fractal structure at infinite scale. To
compute it, we can start from any scale level kl: its input impedance
operator Ẑkl

describes conveniently the details of the lower scales if the
number of active modes used at each level is sufficiently enough [8].

It is clear that the MS-GEC performs computation as does the
RGT. The next step is to determine an explicit relation between the
input impedances of two consecutive scale levels. For that, we begin
from the input impedance matrix [Zkl

] of scale level kl (7).

[Zkl
] =

(
1
2

)([
A(kl)

] [
B(kl)

]−1 [
A(kl)

]T
)−1

=
(

1
2

)( [
A(kl)

] [〈
g(kl)
p , Ẑ(kl)g(kl)

q

〉
+

〈
g(kl)
p , Ẑkl+1g

(kl)
q

〉

+
〈
g(kl)
p , ZDkl

g(kl)
q

〉 ]−1 [
A(kl)

]T
)−1

⇒ [Zkl
] =

(
1
2

)([
A(kl)

][[
B

(kl)
1

]
+

[
B

(kl,kl+1)
2

]
+

[
B

(kl)
3D

]]−1[
A(kl)

]T
)−1

(8)

To extract the relation between [Zkl
] and [Zkl+1], we need to do further

calculations. For that, the modal basis (f (kl)
m,n), the excitation sources

(f (kl)
i )i∈[0,N−1] and the trial functions (g(kl)

p ) used to study the scale
level kl (Fig. (2a)) are detailed in Appendix A.

3.2.1. Explicit Relation between [Zkl
] and [Zkl+1]

Using the excitation sources and the trial functions detailed in
Appendix A, the matrix [A(kl)] used in (8) is rewritten as in (9) where
the matrix [A] is constant, i.e., independent of the scale level kl.[

A(kl)
]

=
√

αkl [A] (9)

As shown in (8), the matrix [B(kl)] is the sum of three matrices
[B(kl)

1 ], [B(kl,kl+1)
2 ] and [B(kl)

3D ] where [B(kl)
1 ] expresses the contribution

of the higher-order modes of the klth scale level. [B(kl,kl+1)
2 ] is due to

the impedance operator Ẑkl+1 describing the previous level (kl + 1).
[B(kl)

3D ] is due to the surface impedance ZDkl
of the PIN diode at scale

level kl.
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Detailed expression of [B(kl)
1 ]

[B(kl)
1 ] is due to the higher-order modes {TE

(kl)
m,n, TE

(kl)
m,0 , TM

(kl)
m,n,

TM
(kl)

0,n
n 6=nactive

} of scale level kl (Appendix A). Therefore, it can be

expressed by (10).
[
B

(kl)
1

]
=

[
B

TE
(kl)
m,n

1
m6=0&n6=0

]
+

[
B

TE
(kl)
m,0

1
m6=0

]
+

[
B

TM
(kl)
m,n

1
m6=0&n 6=0

]
+

[
B

TM
(kl)
0,n

1
n 6=nactive

]
(10)

A detailed calculation leads to Equation (11) where [BTEm,n

1 ], [BTEm,0

1 ],
[BTM

1 ] are constant, i.e., independent of the scale level kl.
[
B

(kl)
1

]
=

(
αkl

)4
[

B
TEm,n

1
m6=0&n 6=0

]
+ αkl

[
B

TEm,0

1
m6=0

]

︸ ︷︷ ︸[
BTE(kl)

1

]

+
[
BTM

1

]

=
[
BTE(kl)

1

]
+

[
BTM

1

]
(11)

Since α < 1, when kl tends toward infinity (kl → +∞), the matrix
[BTE(kl)

1 ] converges to zero. Moreover, for small values of kl(1, 2 . . .),
Fig. 4 and Fig. 5 show a comparison between [BTE(kl)

1 ] (for various
values of kl) and [BTM

1 ] respectively. It is obvious that the contribution
of TE modes is negligible compared to that of TM modes.

Thus, for any value of kl, [B(kl)
1 ] is assumed to be independent of

the scale level kl (12).
[
B

(kl)
1

]
=

[
BTM

1

]
= [B1] (12)

Detailed expression of [B(kl,kl+1)
2 ]

The impedance operator Ẑkl+1 relative to the previous scale level
(kl + 1) is defined on domains (1) and (2) shown in Fig. 2(a) and is
expressed by (13). The functions (f (t)

nactive ,kl+1)(t=1,2),(nactive∈[0,N−1]) are
the active modes used as excitation sources of scale level (kl + 1).

Ẑkl+1 =Ẑ
(1)
kl+1 + Ẑ

(2)
kl+1

Ẑ
(1)
kl+1 =

∑

iactive

∑

jactive

∣∣∣f (1)
iactive ,kl+1〉Zk1+1(iactive , jactive)〈f (1)

jactive ,kl+1

∣∣∣

Ẑ
(2)
kl+1 =

∑

iactive

∑

jactive

∣∣∣f (2)
iactive ,kl+1〉Zk1+1(iactive , jactive)〈f (2)

jactive ,kl+1

∣∣∣
(13)



52 Mili, Larbi Aguili, and Aguili

Figure 4. Contribution of the matrix [BTE(kl)

1 ] relating to TE modes
in the matrix [B(kl)

1 ], (TF: number of test functions), the scale level
kl ∈ {1, 2, 3, 4}, ||B1(TE)|| is the module of each element in the
matrix [BTE(kl)

1 ]. a = 10.2mm, b = 22.9mm, w = 0.5mm, α = 1
3 ,

f = 2.45GHz.

A detailed computation of [B(kl,kl+1)
2 ] leads to the expression (14).

[
B

(kl,kl+1)
2

]
=

[
B2

(
αkl+1 [Zkl+1]

)]
(14)

Detailed expression of [B(kl)
3D ]

The matrix [B(kl)
3D ] is due to the surface impedance ZDkl

representing the PIN diode. Using the expression (2) of ZDkl
and

the testing functions (Appendix A), we demonstrate that the matrix
[B(kl)

3D ] is constant (15).
[
B

(kl)
3D

]
= [B3D] (15)

When replacing (9), (12), (14) and (15) into Equation (8), an explicit
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Figure 5. Contribution of the matrix [BTM
1 ] relating to TM modes

in the matrix [B(kl)
1 ], ||B1(TM)|| is the module of each element in the

matrix [BTM(kl)

1 ], a = 10.2mm, b = 22.9mm, w = 0.5mm, α = 1
3 ,

f = 2.45GHz.

relation between [Zkl
] and [Zkl+1] is generated as stated (16).

αkl [Zkl
]=

(
1
2

)(
[A]

[
[B1]+

[
B2

(
αkl+1 [Zkl+1]

)]
+[B3D]

]−1
[A]T

)−1

(16)

3.2.2. Derivation of the Renormalisation Group

Once the explicit relation between [Zkl
] and [Zkl+1] is defined, the

next step is to write this relation in a dimensionless form. This is
made possible by replacing the real parameter [Zkl

] by an effective (or
renormalized) parameter [10].

In our case, the effective parameter is [Z ′kl
] = αkl [Zkl

].
Consequently, the Equation (16) becomes as stated in (17). This
equation is called the renormalization group.

[
Z ′kl

]
=

(
1
2

) (
[A]

[
[B1] +

[
B2

([
Z ′kl+1

])]
+ [B3D]

]−1 [A]T
)−1

(17)

When the iteration of fractal increases infinitely, the input impedance
matrix of the infinite fractal structure converges to the fixed point of
the renormalization group.

3.2.3. Computation of the Fixed Point

The fixed point characterizes the invariance property of the considered
problem. For that, we should find the matrix [Z] verifying the
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invariance Equation (18).

[Z] =
(

1
2

) (
[A] [[B1] + [B2 ([Z])] + [B3D]]−1 [A]T

)−1
(18)

To compute [Z], the Equation (18) is expressed as a numerical series
M (19). The solution has to be independent of the initial value.

M :

{
Z0 : initial value

Zn+1 =
(

1
2

) (
[A] ([B1] + [B2 (Zn)] + [B3D])−1 [A]T

)−1 (19)

The algorithm used to determine the fixed point is the following:
1. Start with any initial matrix and fix a tolerated error. The error

is defined by ξ = 100 |‖Zn+1‖−‖Zn‖|
‖Zn+1‖ (%) and the tolerated error is

ξtolerated = 0.1%.
2. Compute Z1 = M(Z0) and fix n = 1 (n will be used to compute

the number of iterations needed to compute the fixed point).
3. While (ξ > ξtolerated) do

Zn+1 = M (Zn) ;
n ← n + 1;

End
4. The fixed point is Zn+1.

4. NUMERICAL RESULTS

The purpose of this work is to compute the input impedance of the
infinite fractal structure shown Fig. 1. For that, we have used an
improved version of the MS-GEC method thanks to RGT concepts.
The solution is the fixed point of the renormalization group.

4.1. Computation of the Fixed Point

In a previous paper [8], it was demonstrated that the MS-GEC method
converges toward the MoM method when a sufficient number of active
modes is used (more than 20 active modes). For that, we choose to
excite all the scale levels by 28 active modes. Therefore, the fixed
point is a (28× 28) matrix. To compute it, we choose to start with a
null initial value (20a). At convergence, the residual error ξ relating
to each element of the fixed point is depicted in Fig. 6. It is clear that
the residual error is less than the tolerated error (0.1%).

To prove that the fixed point is independent of the initial value, we
repeat the computation of the fixed point starting with another initial
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value (20b). The relative error between the two fixed points computed
using two different initial values is less than 0.04% (Fig. 7).

Physically, the initial value can be viewed as the input impedance
of the intermediate scale level from which we start computing the input
impedance of the infinite fractal structure. The independency from
the initial value means that, starting from any scale level, the input
impedance of the infinite fractal structure (which is the fixed point) is
not altered.

Z0 =




0 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 0


 (20a) , Z0 =




i i . . . i

i
. . . . . .

...
...

. . . . . . i
i . . . i i


 (20b) (20)

4.2. Validation of the Fixed Point

To prove that the computed fixed point is really the input impedance of
the infinite active fractal structure, we go through the following steps:

1. Compute the input impedance matrix for various iteration of
fractal (k) to approximate the iteration (k = kapproximated infinity)
of the infinite fractal structure. Thus, Zkapproximated infinity

is the
input impedance of the infinite fractal structure (Z∞).

2. Define the relative error between the fixed point ZFixed point and
the input impedance Zk of various iteration order to demonstrate
that Zk converges toward ZFixed point when k increases.
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3. Compare the value of the fixed point ZFixed point with the
input impedance of the approximated infinite fractal structure
Zkapproximated infinity

to prove that the computed fixed point is the
input impedance Z∞ of the infinite fractal structure.
The input impedance matrix of the considered fractal structure

at any iteration k is a (28 × 28) matrix since we choose to excite
every scale level by 28 active modes. To determine the iteration order
kapproximated infinity for which the fractal structure is assumed at infinite,
the input impedance is computed for various iteration orders k. Fig. 8
shows the variation of some elements of the input impedance matrix
Zk for k ∈ [4, 26]. It is obvious that starting from the iteration order
k = 16, we can assume that Zk≥16 is the input impedance of the infinite
fractal structure. Therefore, Z∞ = Zkapproximated infinity

∼= Zk≥16.
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Figure 8. Variation of some
elements of the input impedance
matrix Zk with the iteration order
k, a = 10.2mm, b = 22.9mm,
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Figure 9. Representation of
the maximum error between Zk

and ZFixed point for various values
of the iteration order k, a =
10.2 mm, b = 22, 9mm, w =
0.5mm, α = 1

3 , f = 2.45GHz.

According to RGT concepts, when the iteration order increases,
the input impedance Zk approaches the fixed point ZFixed point .
To prove this, we investigated the relative error variation between
ZFixed point and (Zk)k∈[12,26]. For that, the error made on each element
of the input impedance matrix is computed and then the maximum
error is selected. Fig. 9 shows the variation of these maximum
errors with the iteration order k. Based on the results depicted in
Fig. 9, we deduce that starting from the iteration order (k = 20),
the fractal structure is at infinite scale. Moreover, the fixed point
is proved to be the input impedance of the infinite fractal structure:
ZFixed point = Z∞ = Zk=20. Fig. 10 shows the relative error variation
between ZFixed point and Zk=20. The error remains less than 0.06%.
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Figure 10. Relative error between the fixed point ZFixed point and
the input impedance of the infinite fractal structure Z∞ ∼= Zk=20,
a = 10.2mm, b = 22.9mm, w = 0.5mm, α = 1
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Figure 11. Variation of the processing time with the iteration of
fractal [8].

5. ADVANTAGES OF THE MS-GEC COMBINED TO
THE RGT

The MS-GEC is a powerful technique appropriate to study fractal-
shaped structures since it guarantees an important gain in term of CPU
time and memory resources. In fact, the authors had presented in [8] a
detailed comparison between (processing time, memory requirement)
needed by the MS-GEC method and by the classical Moment method
(MoM). It was proved as depicted in Fig. 11 that the processing time
varies exponentially with the iteration order when using the MoM
method while it varies linearly with the iteration order when using
the MS-GEC method. Moreover, since MS-GEC treats the problem in
steps, the manipulated matrices at each step have significantly reduced
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sizes [8].
However, infinite fractal structures can be studied neither by

the MS-GEC nor by any other existing method due to the unknown
number of scale levels composing such structures.

The renormalization group theory (RGT) provides an efficient
manner which removes the unknown parameter (number of scale levels)
from the theory enabling then the study of infinite fractal structures
without needing to know the number of scale levels composing it.

6. CONCLUSION

Infinite fractal structures are characterized by their infinite complex-
ity and the unknown number of scale levels composing them. Con-
sequently, their study could not be performed by any of the exist-
ing methods who rapidly reach their limits after a limited number of
iterations due to the prohibitive increase of CPU time and memory
resources required.

Concerning the MS-GEC method, it cannot be applied to infinite
fractal structures since the starting elementary scale level cannot be
defined.

In this paper, we developed a method which provides an efficient
manner to deal with infinite fractal structures. It is called MS-RGT
and consists of an extended version of the MS-GEC method thanks to
the use of the renormalization group theory (RGT) concepts.

Its main idea is to rewrite the relation between the input
impedances of two consecutive scale levels in a dimensionless form
by using renormalized parameters. The relation obtained is called
renormalization group. Its fixed point is the input impedance of the
infinite fractal structure.

The MS-RGT approach is a very powerful technique since it profits
from the advantages (rapidity and reduced memory requirements) of
the MS-GEC technique and the ability of the RGT to solve problems
at their critical point. Its accuracy comes from that of the MS-GEC
method which has been demonstrated in the previous paper [8] by a
comparison with the widely used Moment method.

APPENDIX A.

The structure at scale level kl is depicted (Fig. A1). The modal basis
(f (kl)

m,n), the excitation sources (f (kl)
i )i∈[0,N−1] and the trial functions

(g(kl)
p ) used to study the scale level kl are detailed.



Progress In Electromagnetics Research B, Vol. 29, 2011 59

A.1. Definition of the Modal Basis

The waveguide enclosing the klth scale level is an EMEM waveguide.
The modal basis is composed of the modes defined in (A1).
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A.2. Choice of Active Modes

The active modes used as artificial excitation sources are chosen among
the modes of the modal basis (A1). The first active mode is the
TEM (kl); it is a propagating mode since its cutoff frequency is null.

The other active modes are chosen among the TM
(kl)
0n modes.

These latter should respect the structure symmetry with regard to
its symmetry plan (y = 0). Consequently, only (TM

(kl)
0(2n))n∈[1 , N−1] are

used as active modes.

A.3. Choice of Test Functions

The virtual current is defined on the impedance operator do-
mains and on the diode domain, it is null elsewhere. The
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current is expressed as the sum of known test functions
{(g(kl)

p )Ẑkl+1 domains, (g
(kl)
p,ZD)ZDkl

domain} weighted by unknown coeffi-

cients {(x(kl)
p ), (x(kl)

p,ZD)}.
In this work, we used piecewise linear [20] test functions (Fig. A1)

having the same vertical polarization as the excitations sources. Their
expressions on Ẑkl+1 and ZDkl

domains are expressed by (A2) and (A3)
respectively.
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Figure A1. Detailed description of the structure at the klth scale
level.

To avoid the errors due to the discontinuities between domains
when computing the current, the concept of attachment functions was
introduced. At each interface, one attachment function is used.

g(kl)
p (x, y)

=

∣∣∣∣∣∣∣∣

0



∆ykl
−

∣∣∣∣y−y
(kl)
p

∣∣∣∣
∆ykl

if y ∈
[
y

(kl)
p−1, y

(kl)
p+1

]
, x ∈ [−a

2 , a
2

]

0 otherwise

(A2)

g
(kl)
p,ZD(x, y)

=

∣∣∣∣∣∣∣∣

0



∆yZD,kl
−

∣∣∣y−y
(kl)

p,ZD

∣∣∣
∆yZD,kl

if y∈
[
y

(kl)
p−1,ZD, y

(kl)
p+1,ZD

]
, x∈[−w

2 , w
2

]

0 otherwise

(A3)
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piecewise linear functions used as test functions.
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