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Abstract—Accurate and effective system-level modeling has become
necessary to address electromagnetic compatibility (EMC) issues in
modern circuit and system design. Model order reduction (MOR)
techniques provide a feasibility to approximate complex circuit models
with compact reduced-order models. In this paper, an effective
MOR technique entitled multi-point moment matching (MMM) is
implemented for the partial element equivalent circuit (PEEC)
modeling. Moment information at multiple frequency points is used
in this method in order to accurately estimate a given system over
an entire frequency range of interest, and for each frequency an
enhanced asymptotic waveform evaluation (AWE) is applied to obtain
a reduced-order model by constructing a pole-residue representation of
the original transfer function. The improvements of conventional AWE
in aspects of both moment computation and moment matching can
avoid ill-conditioned moment matrices and unstable dominant poles.
The complex frequency hopping (CFH) technique is employed to select
the multiple expansion points by using a newly developed upward-
search algorithm. Numerical simulations of coupled microstrip lines
in both frequency and time domain indicate the effectiveness of the
proposed method.
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1. INTRODUCTION

The increasing complexities of physical structures, signal features and
electromagnetic (EM) environment of modern electronic systems make
EM modeling an increasingly tough task. Despite significant advances
in EM modeling methodologies, computational efficiency is desirable
especially for complex modeling problems.

Currently, the partial element equivalent circuit (PEEC)
method [1] is one of the promising numerical methods for EM modeling
of various engineering problems, e.g., EM compatibility (EMC), EM
interference (EMI), and signal integrity (SI) of high-speed digital
circuits [2]. The main advantage of PEEC is its ability to provide
a circuit interpretation of the electric field integral equation (EFIE) in
terms of partial elements, namely resistances, partial inductances and
coefficients of potential. It especially has great potentials for mixed
electromagnetic-circuit problems because it is ease to integrate the
field solver with real circuit elements.

Integration of a PEEC model directly into a circuit simulator is
computationally expensive for two main facts. One is that a large
number of circuit elements are generated for complex structures at high
frequencies; and the other is that the circuit matrices based on modified
nodal analysis (MNA) [3] are usually dense due to full inductive
and capacitive coupling. In order to model/simulate such problems
efficiently, developing compact model representation via model order
reduction (MOR) [4, 5] is desirable for PEEC modeling.

The basic idea of MOR techniques is to reduce the size of a system
described by circuit equations, but preserve the dominant behavior of
the original system. MOR techniques, for instance, the asymptotic
waveform evaluation (AWE) [6–8], Krylov subspace projection based
algorithms (e.g., Lanczos method [9–11], Arnoldi algorithm [12, 13],
and passivity-preserving PRIMA [14, 15]), and truncated balanced
realization (TBR) methods [15] have been topics of intense research
in the EM modeling field in recent years.

AWE is an efficient approximation either in frequency domain
or time domain where explicit moment matching is employed to
compute the dominant poles and residues of the order truncated
transfer functions via the Padé approximation. In various
practical applications, it was found that AWE suffers from ill-
conditioned moment matrices especially for the higher-order moment
approximation [4]. In addition, since a Padé approximation is accurate
only near the expansion point, AWE is limited in its ability to capture
the dominant poles of a network over a wide frequency range [17].
To achieve accurate simulations in various EM modeling applications,
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a more effective method proposed in this paper uses a multi-point
moment matching (MMM) technique. Moment information at multiple
expansions is employed in this method. For moment matching at
each expansion point, the approximation is improved by combining
several procedures. The moment computation for each expansion is
enhanced by the moment scaling and frequency shifting; meanwhile the
accurate dominant poles can be obtained by moment shifting. Complex
frequency hopping (CFH) [18] is employed where an efficient upward-
search strategy is incorporated for the selection and minimization
expansion points over the frequency bandwidth of interest. Numerical
experiments show that the proposed multi-point moment matching
is suitable for PEEC modeling when no external nonlinear circuit
elements are connected.

This paper is organized as follows. An overview of PEEC
formulations using MNA is proposed in Section 2. The framework
of PEEC modeling based on model order reduction techniques is
presented in Section 3, and the proposed MMM based reduced-order
modeling is detailed in this section as well. Section 4 gives a modeling
example of coupled microstrip lines. Finally, Section 5 ends with
conclusions.

2. PEEC FORMULATION

The basic full-wave PEEC formulation is derived from the electric field
integral equation which is given by

Ei(r, t) =
J(r, t)

σ
+ µ

∂

∂t

∫
G

(
r, t, r′, t′

)
J

(
r′, t′

)
d3r′dt′

+
1
ε
∇

∫
G

(
r, t, r′, t′

)
ρ

(
r′, t′

)
d3r′dt′; (1)

where Ei denotes the incident electric field, and the unknowns, J and
ρ are the current density in the interior and the charge density on
the surface of the conductors, respectively. σ is the conductivity of the
conductor; and µ and ε represent the permeability and the permittivity
in the surrounding medium, respectively.

The corresponding Green’s function in (1) is given by

G(r, t, r′, t′) =
δ (t− t′ − |r− r′|/c)

4π|r− r′| ; (2)

where the Dirac delta function in the numerator is the result of the
finite value of the speed of light in the background medium, c = 1/

√
µε,

which causes a time delay.
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The PEEC model also includes the continuity equation
∇ · J + ∂

∂tρ = 0 as the Kirchoff’s current law at each node of equivalent
circuits. The EFIE and continuity equation are spatially discretized
using the Galerkin method, where a current basis function Ψi(r) and
a charge basis function Φs(r) are introduced.

J(r, t) =
Nv∑

i=1

Ii(t)Ψi(r). (3)

ρ(r, t) =
Ns∑

s=1

Qs(t)Φs(r). (4)

The volume current density and surface charge density can be
described as (3) and (4), where Nv and Ns are the numbers of volume
and surface discretization respectively. The most popular choice of the
basis functions is piecewise constant basis functions. The information
of cross sections of volume-cells is included in the current basis function
Ψi(r), and Φs(r) contains the information of surface area of surface-
cells. The discretization procedure implies that the current density
flows through each volume-cell and the surface charge density on each
surface-cell are considered as constants.

To interpret the field relation as equivalent circuit equations, the
partial circuit elements are defined. The Equations (5) and (6) give
the definitions of partial inductance and partial coefficient of potential
respectively. Equation (7) is the resistance of a volume-cell.

Lij(t, t′) = µ

∫∫
Ψi(r)G

(
r, t, r′, t′

)
Ψj(r′)d3r′d3r; (5)

Pml(t, t′) =
1
ε

∫∫
Φm(r)G

(
r, t, r′, t′

)
Φl(r′)d3r′d3r; (6)

Rij =
∫

Ψi(r)
1

σ(r)
Ψj(r)d3r. (7)

Since J and ρ and are coupled by the continuity equation, it is
natural to match the current and charge basis functions, in the sense
that each current basis function takes charge from one charge basis
function to another [16]. In other words,

∇ ·Ψi =
Ns∑

s=1

EisΦs. (8)

The matrix E is a sparse Nv ×Ns matrix and its entry is defined as

Eis =

{ +1 if Ψi takes charges from Φs

−1 if Ψi puts charges to Φs

0 remaining parts
.
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The EFIE (1) and continuity equation can be rewritten as a group
of matrix differential equations.

{
Lİ − EPQ + RI = 0
ET I + Q̇ = 0

. (9)

The electrostatic potential at each surface-cell is given by V = PQ,
which will be the node voltages in the equivalent circuit. So we can
write the PEEC formulation in MNA matrix circuit equations

{
Cẋ(t) + Gx(t) = bu(t)
y(t) = lT x(t) , (10)

where: C =
[

L 0
0 P−1

]
; G =

[
R −E
ET 0

]
; x(t) =

[
I
V

]
.

The vectors u(t) and y(t) denote excited sources and port outputs,
respectively. b and l are selector matrices. The state parameter x(t) is
composed of I and V which are the MNA variables corresponding to
the branch currents and node voltages.

3. REDUCED ORDER MODELING BASED ON
MOMENT MATCHING

Figure 1 illustrates the working flow of the proposed reduced-order
PEEC modeling. As conventional solutions, the equivalent circuit
of a parameterized modeling structure can be generated with the
conventional PEEC discretization. The circuit description based on
MNA is created after completing the calculation of partial element
matrices.

A multi-point moment matching (MMM) technique is employed
to approximate the transfer function of an original system using
moment information at multiple frequency points, and an enhanced
single-point moment matching technique is used at each expansion
point. Ill-conditioned moment matrices and unstable dominant poles
in conventional AWE may result in inaccurate responses. In order to
overcome this problem, the moment computation for each frequency
point expansion is enhanced by combining the moment scaling and
frequency shifting techniques; meanwhile the accurate dominant poles
can be obtained by moment shifting. In the proposed MMM procedure,
we adopt the complex frequency hopping, where an adaptive upward-
search strategy is incorporated for selecting and minimizing expansion
points over the frequency bandwidth of interest.
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Figure 1. Flowchart of the reduced-order PEEC modeling.

3.1. Single-point Moment Matching

Applying the Laplace transform of the MNA formulation (10), we
can obtain corresponding state equations in s domain. Under the
assumption of an initial condition X(0) = 0, the transfer function H(s)
from input U(s) to output Y (s) is given by

H(s) =
Y (s)
U(s)

= lT (G + sC)−1b. (11)

The AWE in general consists of two stages, i.e., moment
computation and moment matching. Specifically, the moments are
the coefficients of an expansion of the transfer function [5].

H(s) = lT [I + sG−1C]−1G−1b =
∞∑

i=0

mi(s− s0)i. (12)

The moments mi can be computed as

mi = lT Air, (13)

where A = −(G + s0C)−1C , r = (G + s0C)−1b.
Moment matching finds an order-limited rational function

representation H̃(s) for the original transfer function H(s) using Padé
approximation. The general [L/M ] type Padé approximation has a
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form of (14), where L and M denote the orders of the numerator and
denominator, respectively.

H̃(s) =
PL(s)
QM (s)

=
∑L

i=0 ai(s− s0)
i

1 +
∑M

j=1 bj(s− s0)
j
. (14)

A set of 2M successive moments {mL−M+1,mL−M+2, · · · ,mL+M}
will be used to calculate the coefficients of the denominator polynomial
in (14) according to the linear equation


mL−M+1 mL−M+2 · · · mL

mL−M+2 mL−M+3 · · · mL+1
...

...
. . .

...
mL mL+1 · · · mL+M−1







bM

bM−1
...
b1


=−




mL+1

mL+2
...

mL+M


.

(15)
Alternatively, poles and residues give a partial fraction represen-

tation of the rational transfer function H̃(s) in a form of

H̃(s′) =
PL(s′)
QM (s′)

=
M∑

i=1

ki

s′ − pi
, (16)

here s′ = s− s0, and ki’s, pi’s are residues and poles, respectively.
The poles are actually the roots of the denominator polynomial

QM (s′), and the respective residues can be calculated by


p−1
1 p−1

2 · · · p−1
q

p−2
1 p−2

2 · · · p−2
q

...
...

. . .
...

p−q
1 p−q

2 · · · p−q
q







k1

k2
...
kq


 = −




m0

m1
...

mq−1


 . (17)

With the pole-residue representation of the transfer function, it is
easy to estimate system responses in frequency domain by

Y (s) = H̃(s) · U(s). (18)
Time domain response can be approximated indirectly through Laplace
transform and inverse Laplace transform as

y(t) = L−1
{

H̃(s) · L{u(t)}
}

; (19)

here L{·} and L−1{·} denote the operators of Laplace transform and
inverse Laplace transform.

We take a unit ramp input r(t) as an example. The Laplace
transform of the input is L{r(t)} = 1/s2; therefore, the corresponding
transient response obtained by (19) can be written as

yr(t) =

[
q∑

i=1

ki

p2
i

(
epit − pir(t)− 1

)
]

u(t); (20)
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Figure 2. A pulse input waveform.

where u(t) is a unit step function.
This approach of the time-domain response calculation can be

extended to general inputs by applying superposition of elementary
responses. A pulse input which is widely used in the interconnect
analysis is shown in Fig. 2. The input waveform can be expressed as
(21), and the corresponding time-domain response is given by (22).

Vinput(t)=
1
tr

[r(t)−r(t−tr)]− 1
tf

[r(t−tr−td)−r(t−tr−td−tf)]. (21)

Voutput(t)=
1
tr

[yr(t)−yr(t−tr)]− 1
tf

[yr(t−tr−td)−yr(t−tr−td−tf)],(22)

here yr(t) is the response of a unit ramp input which is shown in (20).

3.2. Enhanced AWE

The performance of AWE depends on the invertibility and condition
number of the corresponding moment matrix in (15) [17]. The moment
matrix easily becomes increasingly ill-conditioned or near singular as
its size increases. This implies that higher order approximation is
impossible and thus one can only expect to extract only a few accurate
poles from a single expansion. The condition of the moment matrix can
be improved by scaling the moment values. One can refer to [17, 18]
for the detail of the moment scaling technique.

The approximation will lose its accuracy with increasing distances
in complex s plane from the expansion point. Conventional (standard)
AWE uses the moments expanded at the origin, so it is not sufficient
for high frequency approximations. The frequency shifting technique
uses Taylor’s expansion at frequency point s0 (s0 6= 0) for the moment
calculation, and s′ = s − s0 can still preserve the usage of standard
AWE.

An entire matrix of possible Padé approximations with respect
to different choices of L and M is known as Padé table. One of the
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important properties of Padé approximation is that poles of horizontal
sequences (fixed M , increasing L) in the table converge to the actual
poles [18, 19]. This is as (23) indicates, where pj ’s are the actual poles of
transfer function. Based on this property, a method entitled moment
shifting is utilized to obtain accurate poles. The basic idea of this
improvement is to use higher order moments in horizontal sequences
to obtain stable poles. The corresponding residues can be obtained by
(17) as usual once the stable poles are found.

lim
L→∞

QM (s) =
M∏

j=1

(
1− s

pj

)
. (23)

3.3. Multi-point Moment Matching

The CFH extends the conventional single-point moment matching
to an efficient multi-point moment matching. The moments at
multiple expansions are obtained to enable an approximate transfer
function which matches the original function up to a predefined highest
frequency of interest [20].

In CFH, at least two expansion points are required. The accuracy
of any two successive expansions can be checked by matching the
poles generated at these points [18]. Alternatively, the successive
expansions can be also verified for their accuracy by comparing values
of the approximate transfer functions obtained at these expansions
with respect to a point intermediate to them [21, 22]. The former two-
point selection criterion is incorporated in the proposed approach.

CFH relies on the specific search algorithm to determine the
expansion points and to minimize the number of expansions over the
entire frequency bandwidth. The specific search algorithm involved in
our research can be referred as an upward-search approach illustrated
in Fig. 3. The expansion points are chosen in the complex plane near
or on the imaginary axis. High frequency response is dominated by
higher order moments and thus a denser expansion point selection
should be adopted at higher frequency range. From this point of
view, the proposed upward-search is developed to obtain a non-uniform
expansion selection. The steps involved in the search approach are
summarized as follows:

fL = fmin;
fH = fmax;
while fH % endless loop with only one exit

if CFH conv(fL, fH) = true
break; % the only loop exit of the search process
record pole-residues at fH and fH ;
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else
while CFH conv(fL, fH) = false

fL = 1
2(fL + fH)

end
record pole-residues at fH and fH ;
fH = fL;
fL = fmin;

end
end
record pole-residues at fL and fL;

The CFH conv(fL, fH) in the above MATLAB code flow denotes
the two-point selection criterion for fL and fH , and its true value
implies that the moment information at fL and fH is sufficient for
moment matching in the frequency range fL ∼ fH .

The whole process starts with the boundary frequencies of the
investigated bandwidth, fmin and fmax. Firstly, one determines the
two-point selection criterion by CFH conv(fmin, fmax). The search
stops subject to the satisfaction of the selection criterion; otherwise
continue the search by determining CFH conv(f (1)

1 , fmax), here
f

(1)
1 = 1

2(fmin + fmax). The notation f
(k)
i denotes the ith interpolated

expansion point between fmin and fmax after k determination loops.
Following such procedure, the sub-process stops only if the two-point
selection criterion is satisfied at a point f

(k+1)
1 (intermediate to fmax

and the previous point f
(k)
1 ) and fmax. In the case illustrated in Fig. 3,

the first two expansions after three rounds of tests are f
(3)
1 and fmax.

Secondly, a similar process is employed at the left part of frequency
band (fmin ∼ f

(3)
1 ). The final determined expansion points in Fig. 3

are fmin, f
(1)
3 , f

(2)
2 , f

(3)
1 and fmax. Due to the search trend towards the

upper boundary in the process, a name of upward-search is given.

Upward-searching

fmin fmax

f
2

(1)
f
1

(1) f
1

(2)

f
3

(1) f
2

(2)
f
1

(3)

Figure 3. An upward-search algorithm for expansion point selection.
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4. NUMERICAL RESULTS

The configuration of coupled microstrip lines shown in Fig. 4 is
typical in printed circuit board (PCB) structures. The common
ground provides a possibility of interference due to crosstalk. The
two transmission conductors are 50 mm long and 3 mm apart. They
have identical rectangular cross sections with dimensions of 1mm
in width and 0.2 mm in thickness. A voltage excitation source, VS

(1 volt) consisting of a source resistance RS (50 ohms) is connected
at a terminal S, and another end of the generator conductor is
terminated with a 50 ohms resistor. A receptor conductor connects two
terminations NE and FE, represented by resistors RNE (50 ohms) and
RFE (50 ohms).

4.5   
r 
ε =

 S

  L  FE

NE  

V  S

Figure 4. A simulation structure of coupled microstrip lines.

The basic rule of thumb for surface- and volume-cell discretization
in PEEC modeling is to use a fixed number of cells per shortest
wavelength λmin (corresponding to the highest frequency of interest).
20 cells/λmin is considered in this PEEC model. The full PEEC
model is solved using conventional spice-solvers, e.g., Pspice. The
corresponding reduced-order model can be obtained from the MNA
formulation and solved by moment matching.

The induced voltages from 1MHz and up to 5 GHz at the near end
NE are investigated. Fig. 5 shows the frequency responses obtained
by spice-solver, single-point moment matching, i.e., standard AWE
and MMM. Good agreements of Pspice results and MMM results are
obtained, while the conventional AWE fails beyond 1 GHz. Table 1
also shows numbers of expansion points with respect to frequency
ranges. Normally, more expansion points are necessary for a wider
frequency range. Comparing with total investigated frequency points
(e.g., 30 points/decade in this case), the upward-search algorithm is
computationally effective.

In addition, for transient response analysis, the terminal S is
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Table 1. Numbers of expansion points with respect to frequency
ranges.

Frequency range Number of points
1 MHz ∼ 100MHz 2
1 MHz ∼ 500MHz 9
1MHz ∼ 1GHz 11
1MHz ∼ 5GHz 20

excited by a voltage pulse with 0.5 ns rise/fall time and 2 ns duration.
The voltage waveform induced at near-end NE has been computed
by using both spice-solver and reduced-order modeling. The results
are shown in Fig. 6. Comparing the results by conventional AWE and
the proposed MMM method, better agreements with Pspice results are
obtained by using MMM.

5. CONCLUSION

The MNA approach provides PEEC models with systemic linear
state-space matrix formulation description, which offers a possibility
of reduced-order modeling. In this paper, an effective model
order reduction technique based on multi-point moment matching is
proposed to improve the PEEC modeling. Efficient approximations
can be achieved in a local expansion point by a single-point moment
matching, i.e., AWE; nevertheless, conventional AWE suffers from
ill-conditioned moment matrices and unstable dominant poles which
result in inaccurate responses. The proposed enhanced AWE combines
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some improvements in aspects of both moment computation and
moment matching to overcome these problems. To effectively represent
a system over a wide frequency range, moment information at multiple
expansions is used in the proposed MMM method. An upward-search
algorithm assembled in the CFH technique is employed to select the
multiple expansion points. It can be concluded from the numerical
simulations that PEEC method in conjunction with the proposed
reduced-order modeling procedure has extensive applications.
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