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Abstract—Spaceborne synthetic aperture radar (SAR) systems
operating at lower frequencies, such as P-band, are significantly
affected by Faraday rotation (FR) effects. This paper presents
a novel algorithm for measuring system errors (channel imbalance
and cross-talk) in the presence of Faraday rotation for spaceborne
polarimetric SAR data. It uses four polarimetric selective calibrators
(four polarimetric active radar calibrators [PARCs] or possibly two
PARCs and two gridded trihedrals). Theoretical analysis and
simulations demonstrate that the optimized calibration scheme puts
tight constraints on the accuracy of the associated Faraday rotation
if the cross-talk is to be accurately measured. There are also
strong constraints on the allowable signal-to-noise ratio and average
polarimetric noise associated with the calibration devices. The analysis
suggests that, unless the calibration sites are at the magnetic equator,
independent measurements of total electron content (TEC) from a
direct ground-satellite line-of-sight dual-frequency system are also
needed.
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1. INTRODUCTION

The European Space Agency (ESA) is currently conducting Phase-A
studies for the BIOMASS mission, which will measure global forest
biomass and contribute to better understanding of the global carbon
cycle [1]. The mission is based on a P-band polarimetric SAR, and one
requirement for its success is that the data should be calibrated in order
to remove system effects, such as channel imbalance and cross-talk.
Accurate calibration is one of the most important issues for a radar
system [2–11]. For polarimetric systems, several successful calibration
approaches are available based on the properties of distributed targets
and calibration devices [7–11]. Though these methods were originally
developed for airborne systems, they are also applicable to satellite
systems, but encounter problems at long wavelengths because of
complications arising from Faraday rotation (FR). This may not be
a serious issue even for frequencies as low as L-band, such as the
ALOS-PALSAR system [12–21], but at P-band it becomes a serious
issue [22–26]. Fortunately, spaceborne SAR systems are much more
stable than airborne systems, and scene-by-scene updates of the system
errors are unlikely to be required [26]. Instead, it should be sufficient to
measure the system errors (i.e., channel imbalance and cross-talks) at
instrumented calibration sites, and then apply these estimated errors
to multiple scenes.

However, the measurements from these sites will be corrupted
by FR, and it is necessary to estimate FR as part of estimating
the radar system errors, since these two sources of error interact.
Freeman investigated the calibration of polarimetric SAR using active
radar calibrators [7, 8], and there are several recent studies about
the calibration of both FR and radar system errors for ALOS-
PALSAR [13–20].

This paper proposes a novel algorithm for calibrating a
polarimetric low-frequency spaceborne SAR using a set of polarimetric
selective radar calibrators, which can all be active or a combination of
active and passive. Throughout the paper we assume a radar system
operating in the horizontal-vertical polarization reference frame, and
introduce the corresponding system model in Section 2. Section 3
derives the full solution for estimating both FR and the radar
system errors. The statistics of the estimation errors in these terms
are investigated in Section 4, both without and with disturbances
(polarimetric noise from the calibrators, system noise and ambiguities).
The values of FR derived using the calibrators are found to be
insufficiently accurate to provide accurate estimates of cross-talk,
unless polarimetric noise is very small and the signal-to-noise ratio
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(SNR) is vary high. Two approaches to circumventing this problem are
discussed in Section 5, together with our summary and conclusions.

2. POLARMETRIC SYSTEM MODEL

2.1. Faraday Rotation

When a polarized electromagnetic wave traverses the ionosphere, its
interaction with free electrons and the Earth’s magnetic field leads
to rotation of the polarization vector [12, 21]. This phenomenon is
known as Faraday rotation. The one-way FR for a SAR signal can be
approximated as [21],

Ω =
K

f2
0

· [B cosψ · sec θ] 400 · TEC (1)

where Ω denotes the one-way FR angle in degrees, f0 is the carrier
frequency in Hz, K is a constant of value 2.365 × 104 [A · m2/kg],
B is the magnetic flux density in Wb/m2, and ψ and θ are the
angles the wave-normal makes with the Earth’s magnetic field and
the downward vertical, respectively. TEC is the total electron content
in TEC units (1 TECU = 1016 electrons m−2). The “magnetic field
factor”, [B cosψ · sec θ] 400, is calculated at a height of 400 km.

2.2. System Model

The measured scattering matrix M in the presence of FR and system
errors (channel imbalance, cross-talk and noise) is given by [12],

M =
[

MHH MVH

MHV MVV

]
= A (r, θ) ejφ

[
1 δ2

δ1 f1

]
·
[

cos Ω sin Ω
− sin Ω cos Ω

]

·
[

SHH SVH

SHV SVV

]
·
[

cos Ω sin Ω
− sin Ω cos Ω

]
·
[

1 δ3

δ4 f2

]
+

[
N1 N3

N2 N4

]
(2)

where SHH , SHV , SVH and SVV are the components of the true
scattering matrix, f1 and f2 denote channel imbalance terms, and
δi and Ni, i = 1–4, are radar cross-talk and additive noise terms,
respectively.

Equation (2) can be written in the form

M = A (r, θ) ejφ ·GFS + N (3)

G =




1 δ4 δ2 δ2δ4

δ3 f2 δ2δ3 f2δ2

δ1 δ1δ4 f1 f1δ4

δ1δ3 f2δ1 f1δ3 f1f2


 (4)
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F =




cos2 Ω − cosΩ sinΩ cosΩ sin Ω − sin2 Ω
cosΩ sin Ω cos2 Ω sin2 Ω cos Ω sin Ω
− cosΩ sin Ω sin2 Ω cos2 Ω − cosΩ sin Ω
− sin2 Ω − cosΩ sinΩ cosΩ sin Ω cos2 Ω


 (5)

whereM=[MHH ,MHV ,MVH ,MVV ]T and S=[SHH , SHV , SVH , SVV ]T
denote the measured and true scattering vectors respectively, and
N = [N1, N2, N3, N4]T is the additive noise vector.

3. CALIBRATION ALGORITHM

3.1. Signatures of Radar Calibrators

At P-band, passive calibration devices, such as dihedrals and
trihedrals, need to be large and become difficult to manufacture and
deploy. As a result, ESA is actively investigating the design and
analysis of polarimetric active radar calibrators (PARCs) as part of
its Phase A studies for BIOMASS. PARCs can be selected to have any
polarimetric signature, and in this paper we consider four types, two
denoted as PARCX and PARCY [7], that have the signature matrices

SX =
[

0 0
1 0

]
(6)

SY =
[

0 1
0 0

]
(7)

together with two others with signature matrices

SGt1 =
[

1 0
0 0

]
(8)

SGt2 =
[

0 0
0 1

]
(9)

This notation is chosen because, in principle, the same signatures
could be obtained using gridded trihedrals (the classical trihedral with
gridded base wires or thin plates; see Fig. 1), which have advantages
over the more commonly-used dihedral and trihedral [27]. Such use
of a mixture of passive and active radar calibrators for calibrating
spaceborne polarimetric SAR systems is discussed in [11, 16, 20, 27, 28].

3.2. Measured Scattering Vectors

Substituting the signature matrices of the passive (9) and active (5)
calibrators into the system model (2), and ignoring noise for the
moment, gives the following measured scattering vectors for the
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different calibrators, where the superscript denotes the type of
calibrator:



MGt1
HH

MGt1
HV

MGt1
V H

MGt1
V V




=
1
2




1− δ2δ4 + (1 + δ2δ4) cos 2Ω + (δ4 − δ2) sin 2Ω
δ3 − f2δ2 + (δ3 + f2δ2) cos 2Ω + (f2 − δ2δ3) sin 2Ω
δ1 − f1δ4 + (δ1 + f1δ4) cos 2Ω + (δ1δ4 − f1) sin 2Ω

δ1δ3 − f1f2 + (f1f2+δ1δ3) cos 2Ω+(f2δ1−f1δ3) sin 2Ω


 (10)




MGt2
HH

MGt2
HV

MGt2
V H

MGt2
V V




=
1
2




− (1− δ2δ4) + (1 + δ2δ4) cos 2Ω + (δ4 − δ2) sin 2Ω
− (δ3 − f2δ2) + (δ3 + f2δ2) cos 2Ω + (f2 − δ2δ3) sin 2Ω
− (δ1 − f1δ4) + (δ1 + f1δ4) cos 2Ω + (δ1δ4 − f1) sin 2Ω
− (δ1δ3−f1f2)+(f1f2+δ1δ3) cos 2Ω+(f2δ1−f1δ3) sin 2Ω


 (11)




MX
HH

MX
HV

MX
V H

MX
V V




=
1
2




δ2 + δ4 + (δ2 − δ4) cos 2Ω + (1 + δ2δ4) sin 2Ω
f2 + δ2δ3 + (δ2δ3 − f2) cos 2Ω + (δ3 + f2δ2) sin 2Ω
f1 + δ1δ4 + (f1 − δ1δ4) cos 2Ω + (δ1 + f1δ4) sin 2Ω

f1δ3 + f2δ1+(f1δ3−f2δ1) cos 2Ω+(f1f2+δ1δ3) sin 2Ω


 (12)




MY
HH

MY
HV

MY
V H

MY
V V




=
1
2




δ2 + δ4 − (δ2 − δ4) cos 2Ω− (1 + δ2δ4) sin 2Ω
f2 + δ2δ3 − (δ2δ3 − f2) cos 2Ω− (δ3 + f2δ2) sin 2Ω
f1 + δ1δ4 − (f1 − δ1δ4) cos 2Ω− (δ1 + f1δ4) sin 2Ω

f1δ3 + f2δ1−(f1δ3−f2δ1) cos 2Ω−(f1f2+δ1δ3) sin 2Ω


 (13)
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Figure 1. The two forms of gridded trihedral.

3.3. Combination of Calibrators

From (10)–(13), the following relationships between the measurements
from different calibrators can be easily derived:



MX
HH + MY

HH

MX
HV + MY

HV

MX
V H + MY

V H

MX
V V + MY

V V


=




δ2 + δ4

f2 + δ2δ3

f1 + δ1δ4

f1δ3 + f2δ1


 (14)




MGt1
HH −MGt2

HH

MGt1
HV −MGt2

HV

MGt1
V H −MGt2

V H

MGt1
V V −MGt2

V H


=




1− δ2δ4

δ3 − f2δ2

δ1 − f1δ4

δ1δ3 − f1f2


 (15)




MX
HH −MY

HH

MX
HV −MY

HV

MX
V H −MY

V H

MX
V V −MY

V V


=




(δ2 − δ4) cos 2Ω + (1 + δ2δ4) sin 2Ω
(δ2δ3 − f2) cos 2Ω + (δ3 + f2δ2) sin 2Ω
(f1 − δ1δ4) cos 2Ω + (δ1 + f1δ4) sin 2Ω

(f1δ3 − f2δ1) cos 2Ω + (f1f2 + δ1δ3) sin 2Ω


(16)




MGt1
HH + MGt2

HH

MGt1
HV + MGt2

HV

MGt1
V H + MGt2

V H

MGt1
V V + MGt2

V H


=




(1 + δ2δ4) cos 2Ω + (δ4 − δ2) sin 2Ω
(δ3 + f2δ2) cos 2Ω + (f2 − δ2δ3) sin 2Ω
(δ1 + f1δ4) cos 2Ω + (δ1δ4 − f1) sin 2Ω

(f1f2 + δ1δ3) cos 2Ω + (f1δ1 − f1δ3) sin 2Ω


(17)

Then (14) and (15) yield the following relationships between the
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radar system errors and the measurements:



δ1δ4 =
(
MX

V H + MY
V H

)− f1

δ2δ3 =
(
MX

HV + MY
HV

)− f2

δ1δ3 = f1f2 +
(
MGt1

V V −MGt2
V V

)

δ2δ4 = 1− (
MGt1

HH −MGt2
HH

)

f1δ4 = δ1 −
(
MGt1

V H −MGt2
V H

)

f2δ2 = δ3 −
(
MGt1

HV −MGt2
HV

)

(18)

Using (18), (16) and (17) can be expressed as linear functions of sin 2Ω
and cos 2Ω: 




a1 sin 2Ω + b1 cos 2Ω = MX
HH −MY

HH = d1

a2 sin 2Ω + b2 cos 2Ω = MX
HV −MY

HV = d2

a3 sin 2Ω + b3 cos 2Ω = MX
V H −MY

V H = d3

a4 sin 2Ω + b4 cos 2Ω = MX
V V −MY

V V = d4

(19)





a1 cos 2Ω− b1 sin 2Ω = MGt1
HH + MGt2

HH = e1

a2 cos 2Ω− b2 sin 2Ω = MGt1
HV + MGt2

HV = e2

a3 cos 2Ω− b3 sin 2Ω = MGt1
V H + MGt2

V H = e3

a4 cos 2Ω− b4 sin 2Ω = MGt1
V V + MGt2

V V = e4

(20)

and 



a1 = 2− (
MGt1

HH −MGt2
HH

)

a2 = 2δ3 −
(
MGt1

HV −MGt2
HV

)

a3 = 2δ1 −
(
MGt1

V H −MGt2
V H

)

a4 = 2f1f2 +
(
MGt1

V V −MGt2
V V

)
(21)





b1 = δ2 − δ4

b2 =
(
MX

HV + MY
HV

)− 2f2

b3 = 2f1 −
(
MX

V H + MY
V H

)
b4 = f1δ3 − f2δ1

(22)

where ai, i = 2–4, and bi, i = 1–4, are unknown coefficients that depend
on the radar system errors, while a1, di and ei, i = 1–4, are known
coefficients which can be directly derived from the radar calibrator
measurements.

3.4. Estimation of FR

It can be deduced from (19) and (20) that{
d1 sin 2Ω + e1 cos 2Ω = a1

d2 cos 2Ω− e2 sin 2Ω = b2

d3 cos 2Ω− e3 sin 2Ω = b3

(23)
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For ideal measurements, this leads to two equivalent solutions for
cos 2Ω and sin 2Ω, denoted by the superscript i, i = 1–2:

{
cos 2Ω(1) = a1e2+b2d1

d1d2+e1e2

sin 2Ω(1) = a1d2−b2e1
d1d2+e1e2

(24)

{
cos 2Ω(2) = a1e3+b3d1

d1d3+e1e3

sin 2Ω(2) = a1d3−b3e1
d1d3+e1e3

(25)

Since cos2 2Ω + sin2 2Ω = 1, the unknown coefficients b2 and b3 can be
obtained from (24) and (25) as:

{
b2 = −B±√B2−4AC

2A

b3 = −B′±√B′2−4A′C′
2A′

(26)

where 



A = d2
1 + e2

1
B = 2a1 (d1e2 − d2e1)
C = a2

1(d
2
2 + e2

2)− (d1d2 + e1e2)
2

(27)





A′ = d2
1 + e2

1
B′ = 2a1 (d1e3 − d3e1)
C ′ = a2

1(d
2
3 + e2

3)− (d1d3 + e1e3)
2

(28)

Hence both b2 and b3 have two analytical solutions, but only those
resulting in real values of cos 2Ω and sin 2Ω are acceptable. This
condition may not be exactly met in actual measurements because of
imperfections in the calibrators, clutter, noise and ambiguities; in this
case, the preferred solutions for b2 and b3 are those giving imaginary
parts of cos 2Ω and sin 2Ω that are close to zero.

Consequently, we can construct the complex variables Zi, i = 1–2,
given by

Zi = cos 2Ω(i) + j sin 2Ω(i), i = 1−2 (29)

which yield two alternative FR estimates:

Ω̂(i) =
1
2
arg{Zi}, i = 1−2 (30)

Both Ω̂(1) and Ω̂(2) take values from −π/2 to π/2 (so have an ambiguity
of π), and have equivalent accuracy. Hence we can half the error
variance by estimating FR as

Ω̂ =
1
2

(
Ω̂(1) + Ω̂(2)

)
. (31)
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3.5. Correcting FR Estimation Ambiguity Using TEC Data

The FR estimates in (30) and (31) lie between ±π/2, leading to an
ambiguity of ±kπ. However, this can be removed by using (1) to
provide an independent estimate of FR, where TEC is given by the
global ionospheric TEC maps estimated by the Global Navigation
Satellite System (GNSS) and use is made of the IGRF10 model for the
Earth’s magnetic field [12]. The International GNSS Service provides
bi-hourly global TEC maps with grid-points spaced 5◦ in longitude
and 2.5◦ in latitude [12, 29], with an overall root mean square (RMS)
errors of 3–5 TECU [29, 30].

Hence, an unambiguous FR estimator is given by [25]:

Ω̂F = Ω̂ + round

(
Ω̂GNSS − Ω̂

π/2

)
· π

2
(32)

where round(·) denotes rounding to the nearest integer, Ω̂GNSS is the
FR predicted from GNSS TEC data and Ω̂ is taken from (31). However,
for reasons discussed in Section 5, the use of GNSS data may not
be necessary, since achieving sufficient accuracy in the system error
estimates appears to require calibration sites deployed at the magnetic
equator, where FR is nearly zero, or an independent measurement of
TEC using a two-frequency transmitter on the satellite with a receiver
at the calibration sites.

3.6. Estimation of Radar System Errors

The estimates of the radar system errors can be calculated in terms
of the FR estimate Ω̂F . According to (22) and (26), the channel
imbalance estimates can be written as



f̂1 = 1
2

[(
MX

V H−MY
V H

)
cos2Ω̂F−(

MGt1
V H +MGt2

V H

)
sin2Ω̂F +

(
MX

V H +MY
V H

)]

f̂2 = 1
2

[(
MGt1

HV +MGt2
HV

)
sin2Ω̂F−(

MX
HV −MY

HV

)
cos2Ω̂F +

(
MX

HV +MY
HV

)]

(33)
Similarly, the cross-talk estimates can be derived on the basis of (19)–
(22), and are given by




δ̂1 = 1
2

[(
MX

V H −MY
V H

)
sin 2Ω̂F +

(
MGt1

V H + MGt2
V H

)
cos 2Ω̂F

+
(
MGt1

V H −MGt2
V H

)]

δ̂3 = 1
2

[(
MX

HV −MY
HV

)
sin 2Ω̂F +

(
MGt1

HV + MGt2
HV

)
cos 2Ω̂F

+
(
MGt1

HV −MGt2
HV

)]
(34a)
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Figure 2. Flowchart of the calibration scheme.





δ̂2 = 1
2

[(
MX

HH −MY
HH

)
cos 2Ω̂F − (

MGt1
HH + MGt2

HH

)
sin 2Ω̂F

+
(
MX

HH + MY
HH

)]

δ̂4 = 1
2

[(
MGt1

HH + MGt2
HH

)
sin 2Ω̂F − (

MX
HH −MY

HH

)
cos 2Ω̂F

+
(
MX

HH + MY
HH

)]
(34b)

The full calibration scheme is summarized in Fig. 2. It is clear
that accurate estimation of FR is of paramount importance if accurate
estimates of both channel imbalance and cross-talk are to be obtained.

3.7. Accuracy Analysis of Radar System Error Estimation

The FR estimation error ∆ΩF = Ω̂F −ΩF , where ΩF denotes the true
FR value, will lead to estimation errors for the radar system errors
given by




∆f1 = − sin∆ΩF
[(

MX
V H −MY

V H

)
sin

(
2ΩF + ∆ΩF

)

+
(
MGt1

V H + MGt2
V H

)
cos

(
2ΩF + ∆ΩF

)]

∆f2 = sin ∆ΩF
[(

MX
HV −MY

HV

)
sin

(
2ΩF + ∆ΩF

)

+
(
MGt1

HV + MGt2
HV

)
cos

(
2ΩF + ∆ΩF

)]
(35a)





∆δ1 = sin ∆ΩF
[(

MX
V H −MY

V H

)
cos

(
2ΩF + ∆ΩF

)

− (
MGt1

V H + MGt2
V H

)
sin

(
2ΩF + ∆ΩF

)]

∆δ3 = sin ∆ΩF
[(

MX
HV −MY

HV

)
cos

(
2ΩF + ∆ΩF

)

− (
MGt1

HV + MGt2
HV

)
sin

(
2ΩF + ∆ΩF

)]
(35b)
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



∆δ2 = − sin ∆ΩF
[(

MX
HH −MY

HH

)
sin(2ΩF + ∆ΩF )

+
(
MGt1

HH + MGt2
HH

)
cos(2ΩF + ∆ΩF )

]

∆δ4 = sin∆ΩF
[(

MX
HH −MY

HH

)
sin

(
2ΩF + ∆ΩF

)

+
(
MGt1

HH + MGt2
HH

)
cos

(
2ΩF + ∆ΩF

)]
(35c)

where ∆f1 and ∆f2 denote channel imbalance estimation errors and
∆δ1, ∆δ2, ∆δ3 and ∆δ4 stand for cross-talk estimation errors.

From (14)–(17), ∆f1 and ∆f2 would be expected to have similar
statistics, as would the cross-talk pairs ∆δ1, ∆δ3 and ∆δ2, ∆δ4. This
is confirmed by the simulations shown in Section 4.1 (e.g., see Figs. 5
& 6).

4. SIMULATIONS AND DISCUSSION

In this section, we assess the performance of the calibration scheme
using Monte Carlo simulation. In Section 4.1, the calibrators are
treated as perfect, but we permit errors in the estimate of FR.
However, calibrator characteristics may deviate from the ideal because
of imperfect construction, inaccurate alignment relative to the satellite
track, etc. The ensuing errors are referred to as average polarimetric
noise (APN), and their effects on calibration accuracy are quantified in
Section 4.2. All estimates in Sections 4.1 and 4.2 assume that system
noise, in which we include clutter and ambiguities, is negligible, but
this depends on the construction of the calibrators and how they are
deployed. Hence, in Section 4.3, we assess the performance of the
calibration scheme as a function of the signal-to-noise ratio (SNR),
both with and without APN.

4.1. System Error Analysis without Calibrator Error

The estimate of FR is given by (32). Without calibrator error, this
is nominally exact, but it is helpful for later analysis to first derive
the effects of error in the FR value on the statistical properties of
the system error estimates. In the simulations, we allow the channel
imbalance amplitudes to range from −3 dB to 3 dB, the cross-talk
amplitudes to range from −40 dB to −10 dB, and the phase errors
in both channel imbalances and cross-talks to range over ±π. We also
carried out simulations where the cross-talk amplitudes were restricted
to the more realistic range −40 dB to −25 dB. These are discussed in
the text, but all figures are derived using the −40 dB to −10 dB range.

Figures 3–6 show the mean and standard deviation (SD) of the
errors in the estimates of the radar system terms as functions of the
FR estimation error (varying within ±1◦). The FR error is seen to
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Figure 6. SD of the phase
error of the cross-talk terms as a
function of FR estimation error.

have little effect on the channel imbalance estimates (see Figs. 3 &
4), but the cross-talk estimates degrade severely as the error increases.
For larger FR errors, the estimates of the cross-talk amplitudes become
significantly biased and have a large SD (Fig. 5). The cross-talk phase
error estimates are nearly unbiased, but their SD grows very rapidly as
the FR error increases (Fig. 6). For the SD of the error in the cross-talk
phases to be less than 5◦, the FR error must not exceed 0.36◦, and to
keep it below 1◦ requires the FR error to be less than 0.07◦ (Fig. 6);
these are strong constraints on the FR estimator.
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4.2. System Error Analysis with Calibrator Noise

The error models for the calibration targets are given by [15]

S′Gt1 =
[

1 δGt1

δGt1 δ2
Gt1

]
(36a)

S′Gt2 =
[

δ2
Gt2 δGt2

δGt2 1

]
(36b)

S′X =
[

δX δ2
X

1 δX

]
(36c)

S′Y =
[

δY 1
δ2
Y δY

]
(36d)

where δGt1, δGt2, δX and δY are complex numbers representing the
APN of the calibrators. The form of these error matrices would be
unchanged if the PARCs were replaced by gridded trihedrals.

To evaluate the impact of APN on the calibration scheme, we
assume for simplicity that |δGt1| = |δGt2| = |δX | = |δY |, and allow these
values to range from −60 to −20 dB; arg(δGt1), arg(δGt2), arg(δX) and
arg(δY ) are taken to be uniformly distributed over ±π.

The FR estimated from the calibration scheme is nearly unbiased
for all values of APN, but Fig. 7 illustrates that its SD, σFR, increases
rapidly with APN; an APN error of −40 dB will yield a σFR of 1◦.
Figs. 5 and 6 indicate that this will lead to cross-talks with amplitude
errors whose SD is 1.8 dB, and phase errors whose SD is 16◦. Even if
APN is as low as −60 dB, σFR is 0.28◦, corresponding to a cross-talk
phase estimation error with SD 4◦. Hence a method that estimates
FR from the calibrator responses will not yield sufficient accuracy to
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Figure 7. SD of the FR estimation error as a function of APN.
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calibrate the system, and independent methods to estimate FR are
needed; these are discussed in Section 5, and for the remainder of the
paper we assume that such methods are available.

The estimation errors in channel imbalance and cross-talk will
depend on both the accuracy of FR estimate and on APN. Simulations
were performed to assess this, with σFR fixed at 0◦, 0.1◦ and 0.3◦.
The effect on the estimate of the channel imbalance is small under
all conditions, and only for APN as large as −25 dB did the SD of its
estimated phase error become as large as 1◦. In contrast, the amplitude
and phase estimates of the cross-talks, despite being nearly unbiased
for APN less than −25 dB, have SDs that depend strongly on σFR (see
Figs. 8 and 9, which show these SDs when σFR is 0.1◦ and 0.3◦). Even
for APN as small as −60 dB, σFR has to be less than 0.3◦ to keep the
SD of all the cross-talk amplitude errors below 1 dB (Fig. 8). Even
more stringently, σFR has to be reduced to 0.1◦ to keep the cross-
talk phase SD within acceptable bounds (Fig. 9). In this case, for
an APN of −60 dB, the cross-talk phase SD is around 2.72◦ when the
cross-talk amplitude is kept below −25 dB, and 1.53◦ when it is kept
below −10 dB, reflecting the fact that cross-talk can be measured more
accurately when it is larger.

4.3. The Effects of Clutter and Noise on Calibration
Accuracy

The analysis in previous sections has assumed that the calibrators
can be constructed and located in such a way that noise and clutter
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Figure 8. (a) SD of the amplitude error of the cross-talk terms as a
function of APN. (b) SD of the amplitude error of the cross-talk terms
as a function of APN.
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Figure 9. (a) SD of the phase error of the cross-talk terms as a
function of APN. (b) SD of the phase error of the cross-talk terms as
a function of APN.

can be neglected. However, the 6 MHz bandwidth allowable under
ITU regulations for a spaceborne P-Band SAR corresponds to a slant
range spatial resolution of 25 m, or 50 m ground range resolution at
an incidence angle of 30◦. Hence, to keep the clutter and ambiguities
to an acceptable level, the areas of low backscatter surrounding the
calibrators need be quite large and carefully chosen. To assess how
critical this requirement is, or equivalently how large the SNR needs to
be, the performance of the calibration was first evaluated for different
levels of SNR, under the assumption of no APN error. This assessment
was based on 100,000 Monte Carlo simulations for each value of SNR
ranging from 20 dB to 60 dB in steps of 1 dB, and assumed the clutter
and noise to be white Gaussian.

Under the conditions of the simulation, values of FR estimated
from the calibrator measurements were insufficiently accurate; even
for an SNR of 60 dB, σFR was approximately 1◦, which leads to
unacceptably large cross-talk errors (see Figs. 5 and 6). Hence, as
in the APN analysis, we assume that the estimate of FR is derived
independently, and the simulations used σFR values fixed at 0◦, 0.1◦
and 0.3◦. The SNR has negligible effect on the amplitude of the
channel imbalance, but needs to exceed 33 dB to keep the phase of the
channel imbalance error below 0.5◦ when the cross-talk amplitudes are
constrained to be less than −25 dB (or 20 dB for cross-talk amplitudes
less than −10 dB). The effects on the cross-talk are more serious, as
shown in Fig. 10 for the amplitude errors and Fig. 11 for the phase
errors. Fig. 10(b) indicates that σFR has to be less than 0.3◦ to keep
the SD of the cross-talk amplitudes below 1 dB. When σFR = 0.1◦,
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Figure 10. (a) SD of the amplitude error of the cross-talk terms as a
function of SNR. (b) SD of the amplitude error of the cross-talk terms
as a function of SNR.
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Figure 11. (a) SD of the phase error of the cross-talk terms as a
function of SNR. (b) SD of the phase error of the cross-talk terms as
a function of SNR.

meeting this condition requires SNR to exceed 43 dB when the cross-
talk amplitudes are less than −25 dB (or 37 dB when the cross-talk
amplitudes are less than −10 dB). Fig. 12 reinforces the need for σFR

to be 0.1◦ or less, since only then can the SDs of the cross-talk phase
errors be held to acceptable values. When the SNR is 60 dB, Fig. 11(a)
shows that the phase error SD is 2.84◦ when the cross-talk amplitudes
are constrained to be less than −25 dB (or 1.6◦ for less than −10 dB).

In practice, system errors have to be estimated in the simultaneous
presence of APN and system noise. Figs. 12–13 illustrate results from
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Figure 12. (a) SD of the amplitude error of cross-talk terms as a
function of APN and SNR for σFR = 0.3◦. The color bar is given in
dB. (b) SD of the amplitude error of the cross-talk terms as a function
of APN and SNR for σFR = 0.1◦. The color bar is given in dB.
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Figure 13. (a) SD of the phase error of cross-talk terms as a function
of APN and SNR for σFR = 0.3◦. The color bar is given in degrees.
(b) SD of the phase error of cross-talk terms as a function of APN and
SNR for σFR = 0.1◦. The color bar is given in degrees.

Monte Carlo simulations under these conditions, with the channel
imbalance amplitudes ranging from −3 dB to 3 dB, the cross-talk
amplitudes ranging from −40 dB to −10 dB, and the phase errors in
both channel imbalances and cross-talks ranging over ±π. Each figure
shows isoclines for cross-talk error statistics as SNR ranges from 20 to
60 dB and APN ranges from−20 to−60 dB. Results for σFR = 0.3◦ and
0.1◦ are shown. Essentially, each isocline consists of a vertical part (i.e.,
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independent of SNR) and horizontal part (i.e., independent of APN).
Hence improving the estimates cannot be achieved by just reducing
APN or increasing SNR separately. APN and SNR are optimally
matched at the roll-off between the vertical and the horizontal parts,
and the values quoted below are based on this.

The errors in the amplitude and phase of the channel imbalance
(not shown) are negligible as long as APN < −35 dB and SNR > 35 dB.
However, Fig. 12(a) shows that keeping the SD of cross-talk amplitude
errors below 1 dB requires APN < −37 dB and SNR > 42 dB when
σFR = 0.3◦; the SD is reduced to about 0.8 dB for the same values
of APN and SNR when σFR = 0.1◦ (Fig. 12(b)). The constraints are
more severe for the estimate of the cross-talk phase; Fig. 13 shows
that σFR has to be reduced to 0.1◦ to keep its SD within acceptable
bounds. The values of APN and SNR needed to keep the phase SD
below a range of values is given in Table 1.

Table 1. Values of APN and SNR needed to keep the SD of the
cross-talk phase error below a range of values.

SD of cross-talk phase error (degrees) APN (dB) SNR(dB)

10.0 −28 34

4.0 −38 45

3.0 −40 48

2.0 −45 53

1.5 −60 60

Table 2. The corresponding accuracy in the channel imbalance and
cross-talk terms for FR accuracies of 0.1◦ and 0.3◦, under the needed
SNR and APN to measure cross-talk phase accuracy of 10◦ (namely,
SNR = 34dB and APN = −28 dB @σFR = 0.1◦, see Table 1).

σFR = 0.1◦ σFR = 0.3◦

SD of channel imbalance amplitude (dB) 0.06 0.07

SD of channel imbalance phase (deg) 0.44 0.48

SD of cross-talk amplitude (dB) 1.38 1.45

SD of cross-talk phase (deg) 10◦ 11◦



Progress In Electromagnetics Research, Vol. 114, 2011 107

5. DISCUSSION AND CONCLUSIONS

Spaceborne SAR systems are much more stable in time and space
than airborne systems, and should need less frequent estimates of
calibration errors. Hence accurate repeated measurements of radar
system errors at a small number of dedicated calibration sites are likely
to be sufficient to give acceptable calibration of the whole dataset.

Taking this as a premise, this paper proposes a calibration scheme
to measure the system errors in the presence of Faraday rotation.
This involves four PARCs selecting for the HH, VV, HV and VH
channels (the PARCs selecting for the HH and VV channels could in
principle be replaced by equivalent gridded trihedrals), supplemented
by independent estimates of TEC from the GNSS. Several calibrator
sites would need to be positioned across the swath to account for
possible variation in system errors with look angle, though calibration
sites at different ranges would not need to be contained in the same
image. Also, if multiple calibration sites were distributed along the
satellite track at similar locations in the swath, and the system errors
are independent of latitude, then averaging of estimates will reduce
their variance.

Theoretical analysis and simulation demonstrate that a critical
issue is the estimate of FR. In the absence of calibrator error, FR
can be very accurately estimated using the measurements from the
calibration devices, leading to nearly perfect estimates of the system
errors. However, calibrator errors, system noise and ambiguities
can significantly degrade FR estimation accuracy, leading to large
relative amplitude and phase errors in the estimated cross-talks. The
simulations indicate that the APN error must be less than −60 dB to
give accurate simultaneous estimates of FR and cross-talk, and even an
SNR as large as 60 dB leads to errors in the cross-talk phase of several
degrees.

Two possibilities seem available to avoid this impasse. The first is
to deploy calibration sites at the magnetic equator, where the Faraday
rotation is zero. This will be effective if the orbital and magnetic field
geometry is known precisely enough to ensure that Faraday rotation
is negligible. However, if there is a risk that the system errors have a
dependence on latitude (perhaps due to changes in solar illumination
conditions), this will not be sufficient. A second approach is to make an
independent measurement of TEC using a two-frequency transmitter
on the satellite with a receiver at the calibration sites. The accuracy
of the TEC estimate derived from this approach can be as high as 0.1
TECU [31].

The associated accuracy of the FR estimate can be approximated
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using the expression for Faraday rotation given in [21]:
Ω ≈ 3.583× (sinΛ + 0.037)× TEC (37)

where Λ is latitude and TEC is measured in TEC units (TECU). This
is derived under the simplifying assumption of a dipolar magnetic
field and coincident magnetic and geographic axes, and for a radar
operating at 435 MHz with look angle 28◦ and an orbital inclination
of 98◦. Hence the SD of the FR estimate increases with latitude; for a
TEC accuracy of 0.1 TECU it reaches 0.1◦ at latitude of 15◦, growing to
approximately 0.36◦ at 75◦N. Hence, even with an independent line-
of-sight measurement of TEC, the calibration sites still need to be
located at low latitudes to give accurate estimates of the cross-talk
phase, unless more accurate ways to provide independent estimates of
TEC can be formulated.

Given such ancillary knowledge of FR, adequate estimates of cross-
talk phase (the most sensitive variable) can be derived. In particular,
Table 2 indicates the levels of SNR and APN needed to measure
the cross-talk phase to an accuracy of 10◦, and the corresponding
accuracy in the cross-talk amplitude and channel imbalance terms,
for FR accuracies of 0.1◦ and 0.3◦. Note that, since cross-talk is taken
to be small, these accuracies are likely to be adequate as regards their
impact on the polarimetric variables. Such requirements on SNR and
APN are likely to be achievable.

One important caveat is needed with regards to the conclusions
above. In this paper, we have been exclusively concerned with
establishing the limits on our capability to measure system errors using
calibration devices. The stringent demands on the FR estimates arise
largely because the system errors are likely to be very small, hence
the perturbation of the measurements caused by FR lead to large
relative errors in the estimates. However, if the system errors are
small, such errors may have little impact on the accuracy of the primary
measurements by the BIOMASS system, which include the scattering
matrix and polarimetric interferometric variables. Hence establishing
the true demands on calibration accuracy requires the analysis in this
paper to be embedded in a full analysis of the performance of the
BIOMASS system. An opportunity to do so is likely to arise from the
end-to-end BIOMASS simulator currently under development for ESA.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their comments
and suggestions, which helped us to improve the paper. This
work described in the paper was supported by the National Science
Foundation of China (NSFC) under Grant 60602045.



Progress In Electromagnetics Research, Vol. 114, 2011 109

REFERENCES

1. Balzter, H., M. Davidson, T. Le Toan, P. Paillou, K. Papathanias-
siou, S. Plummer, S. Quegan, F. Rocca, S. S. Saatchi, H. Shugart,
and L. Ulander, “BIOMASS report for assessment,” ESA SP
1313/2, European Space Agency, 2008.

2. Hasar, U. C. and O. Simsek, “A simple approach for evaluating the
reciprocity of materials without using any calibration standard,”
Progress In Electromagnetics Research, Vol. 91, 139–152, 2009.

3. Dlugosz, T. and H. Trzaska, “A new calibration method for
non-stationary electromagnetic fields measurements,” Journal of
Electromagnetic Waves and Applications, Vol. 23, No. 17–18,
2471–2480, 2009.

4. Litman, A., J.-M. Geffrin, and H. Tortel, “On the calibration of a
multistatic scattering matrix measured by a fixed circular array of
antennas,” Progress In Electromagnetics Research, Vol. 110, 1–21,
2010.
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