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Abstract—The present study deals with a novel approach for
fractional space generalization of the differential electromagnetic
equations. These equations can describe the behavior of electric and
magnetic fields in any fractal media. A new form of vector differential
operator Del, and its related differential operators, is formulated in
fractional space. Using these modified vector differential operators,
the classical Maxwell equations have been worked out for fractal media.
The Laplace, Poisson and Helmholtz equations in fractional space are
derived by using modified vector differential operators. Also a new
fractional space generalization of the potentials for static and time
varying fields is presented.

1. INTRODUCTION

There has been much interest to study different physical phenomenon
in fractional dimensional space [1–14] during the last few decades.
The concept of fractional space is used to replace the real anisotropic
confining structure with an isotropic fractional space, where the
measurement of this confinement is given by fractional dimension [1, 2].
It is also important to mention that the experimental measurement of
the dimension of real world is 3± 10−6, not exactly 3 [1, 4].
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Among several methods, a methodology to describe the fractional
dimension is fractional calculus [15], which is also used by
different authors [16–23] in studying various electromagnetic problems.
Axiomatic basis for spaces with fractional dimension have been
provided by Stillinger [1], along with a fractional space generalization
of Laplacian operator and a solution of Schrödinger wave equation in
fractional dimensional space. Equations of motion in a non-integer
dimensional space have been formulated in [3]. Recently Muslih [24]
provided a dimensional regularization technique in order to convert any
integral of a function from fractional dimensional space to a regular
dimensional space along with a description of differential geometry of
fractional dimensional space. The electromagnetic field on fractals was
studied in [9]. The radiation phenomenon of fractal geometries have
also been studied by different authors recently [25–31].

The generalization of electromagnetic theory in fractional space is
of much importance to study the phenomenon of wave propagation and
scattering in an anisotropic fractal media [14]. Fractal models of media
are becoming popular due to relatively small number of parameters
that define a medium of greater complexity and rich structure [9]. In
general, the fractal media cannot be considered as continuous media,
because some of points and domains are not filled by the medium
particles. These unfilled domains are called porous [10]. The fractal
media can be treated as continuous media for the scales much larger
than average pore size. In order to describe the fractal media, the
continuous medium model for fractal media reported in [10], suggests
to use the space with fractional dimension. An introductory work on
fractional multipoles and electromagnetic field in fractional space is
reported in [11–13].

In this work we provide a novel generalization of differential
electromagnetic equations in fractional space. Firstly, basic vector
differential operators are generalized in fractional space and then using
these fractional operators Maxwell, Laplace, Poisson and Helmholtz
equations have been worked out in fractional space. The differential
electromagnetic equations in fractional space, established in this work,
provide a basis for application of the concept of fractional space in
practical electromagnetic wave propagation and scattering problems
in fractal media.

In Section 2 a review of already existing study to construct
a generalized Laplacian operator using integration in D-dimensional
fractional space is briefly described. In Section 3, fractional
space generalization of the Del operator, written as ∇D, and its
related differential operators (i.e., gradient, divergence and curl) in
vector calculus is obtained. In Section 4, a novel fractional space
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generalization of differential Maxwell equations is presented. In
Section 5, fractional space generalization of the Laplace and Poisson
equations is established in addition to fractional space generalization of
potentials for static field. In Section 6, potentials for time varying fields
in fractional space are derived. In Section 7, the Helmholtz equation
in fractional space is established. Finally, conclusions are drawn in
Section 8.

2. FRACTIONAL SPACE GENERALIZATION OF
LAPLACIAN OPERATOR

In [1] a formalism is provided for integration on D-dimensional
fractional space. According to this formalism, the integration of
radially symmetric function f(r) in a D-dimensional fractional space
is given by [1]: ∫

dx0f(r(x0,x1)) =
∫ ∞

0
drW (r)f(r) (1)

where r(x0,x1) is the distance between two points x0 and x1, and
weight W (r) given by

W (r) = σ(D)rD−1 (2)
with

σ(D) =
2πD/2

Γ(D/2)
(3)

From this a single variable Laplacian operator is derived in D-
dimensional fractional space as:

∇2
Df(r) =

[
∂2

∂r2
+

D− 1
r

∂

∂r

]
f(r), 0 < D ≤ 1 (4)

In Equation (4) and throughout the discussion, the subscript D is
used to emphasize the dimension of space in which this operator
is defined. An extension of formalism in Equation (1) to two
variable integration yields an expression for a two-coordinate Laplacian
operator in fractional space.

∇2
D =

∂2

∂x2
+

∂2

∂y2
+

D− 2
y

∂

∂y
, 0 < D ≤ 2 (5)

In [3] the results from [1] are generalized to n orthogonal coordinates
and Laplacian operator in D-dimensional fractional space in three-
spatial coordinates is given as:

∇2
D =

∂2

∂x2
+

α1 − 1
x

∂

∂x
+

∂2

∂y2
+

α2 − 1
y

∂

∂y
+

∂2

∂z2
+

α3 − 1
z

∂

∂z
(6)
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where, three parameters (0 < α1 ≤ 1, 0 < α2 ≤ 1 and 0 < α3 ≤ 1)
are used to describe the measure distribution of space where each one
is acting independently on a single coordinate and the total dimension
of the system is D = α1 + α2 + α3. It is obvious that for three
dimensional space (D = 3), if we set α1 = α2 = α3 = 1 in (6), the
fractional Laplacian operator ∇2

D reduces to the classical Laplacian
operator ∇2 [32] in Euclidean space.

3. FRACTIONAL SPACE GENERALIZATION OF DEL
OPERATOR AND RELATED DIFFERENTIAL
OPERATORS

In this section we wish to develop a generalization of vector differential
operators in fractional space using scalar Laplacian operator described
in previous section.

3.1. Del Operator in Fractional Space

From Equation (6), we consider single variable Laplacian operator in
fractional space:

∇2
D =

∂2

∂x2
+

D− 1
x

∂

∂x
, 0 < D ≤ 1 (7)

We wish to find an expression for Del operator ∇D in fractional space.
As

∇D = |∇D| · ∇̂D (8)

In single variable case we assume ∇̂D = x̂ also |∇D| =
√
∇2

D, because

∇D.∇D = ∇2
D, where ∇2

D is given in (7).

|∇D| =
√

∂2

∂x2
+

D− 1
x

∂

∂x
(9)

Expansion of (9) using Binomial series expansion [32] for | x |À 1,
ignoring terms involving second or higher degree of x in denominator,
leads to the following form:

|∇D| = ∂

∂x
+

1
2

D− 1
x

(10)

From (8) and (10), Del operator in single variable x with fractional
dimension D is given by:

∇D =
(

∂

∂x
+

1
2

D− 1
x

)
x̂ (11)
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Extending above procedure to three variable case for | x |, | y |, | z |À 1
we get Del operator ∇D in fractional space as follows:

∇D =
(

∂

∂x
+

1
2

α1 − 1
x

)
x̂+

(
∂

∂y
+

1
2

α2 − 1
y

)
ŷ+

(
∂

∂z
+

1
2

α3 − 1
z

)
ẑ (12)

where, parameters (0 < α1 ≤ 1, 0 < α2 ≤ 1 and 0 < α3 ≤ 1) are
used to describe the measure distribution of space where each one is
acting independently on a single coordinate and the total dimension
of the system is D = α1 + α2 + α3. It is important to mention that
Equation (12) and all differential operators presented in later sections
are valid in far-field region only (i.e., | x |, | y |, | z |À 1) because of the
first order approximation given by (10). Clearly, for three dimensional
space (D = 3), if we set α1 = α2 = α3 = 1 in (12), the fractional Del
operator ∇D reduces to the classical Del operator ∇ [32] in Euclidean
space.

3.2. Gradient Operator in Fractional Space

The gradient of a scalar field ψ in fractional space is a vector that
represents both the magnitude and the direction of maximum space
rate of increase of ψ in fractional space. Using (12) the modified form
of the gradient of scalar field ψ, written as gradDψ, in far-field region
in the fractional space is given as:

gradDψ = ∇Dψ =
(

∂ψ

∂x
+

1
2

(α1 − 1)ψ
x

)
x̂ +

(
∂ψ

∂y
+

1
2

(α2 − 1)ψ
y

)
ŷ

+
(

∂ψ

∂z
+

1
2

(α3 − 1)ψ
z

)
ẑ (13)

3.3. Divergence Operator in Fractional Space

From (12) a generalized form of divergence of a vector F = Fxx̂+Fyŷ+
Fz ẑ at point P (x0, y0, z0) in far-field region in the fractional space is
written as divDF and is given by

divDF = ∇D · F =
∂Fx

∂x
+

1
2

(α1 − 1)Fx

x
+

∂Fy

∂y
+

1
2

(α2 − 1)Fy

y

+
∂Fz

∂z
+

1
2

(α3 − 1)Fz

z
(14)

3.4. Curl Operator in Fractional Space

The modified form of curl of a vector F = Fxx̂ + Fyŷ + Fz ẑ at point
P (x0, y0, z0) in far-field region in the fractional space is written as
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curlDF and using (12) it is given by
curlDF =∇D × F

=
[(

∂Fz

∂y
+

1
2

(α2−1)Fz

y

)
−

(
∂Fy

∂z
+

1
2

(α3 − 1)Fy

z

)]
x̂

+
[(

∂Fx

∂z
+

1
2

(α3−1)Fx

z

)
−

(
∂Fz

∂x
+

1
2

(α1−1)Fz

x

)]
ŷ

+
[(

∂Fy

∂x
+

1
2

(α1−1)Fy

x

)
−

(
∂Fx

∂y
+

1
2

(α2−1)Fx

y

)]
ẑ (15)

or

curlDF = ∇D × F =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x + 1

2
α1−1

x
∂
∂y + 1

2
α2−1

y
∂
∂z + 1

2
α3−1

z
Fx Fy Fz

∣∣∣∣∣∣
(16)

4. FRACTIONAL SPACE GENERALIZATION OF
DIFFERENTIAL MAXWELL EQUATIONS

The Maxwell equations are the fundamental equations describing the
behavior of electric and magnetic fields. In classical electromagnetic
theory following quantities are dealt with:

E= electric field intensity (V/m)
B= magnetic field intensity (A/m)
D= electric flux density (C/m2)
B= magnetic flux density (W/m2)
J= electric current density (A/m2)
ρv= electric charge density (C/m3)
with B = µH and D = εE, where µ and ε are permeability and per-
mittivity of the medium, respectively.

All of these quantities are functions of space variables x, y, z and
tim t. The basic classical Maxwell equations in differential form in
Euclidean space are [33]:

∇ ·D = ρv (17)
∇ ·B = 0 (18)

∇×E = −∂B
∂t

(19)

∇×H = J +
∂D
∂t

(20)

Also the continuity equation

∇ · J = −∂ρv

∂t
(21)
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is implicit in Maxwell equations.
Now we wish to have a generalized form of Maxwell equations in

D-dimensional fractional space. From the results of Section 3, we are
now able to write differential form of Maxwell equations in far-field
region in the fractional space as follows:

divDD = ρv (22)
divDB = 0 (23)

curlDE = −∂B
∂t

(24)

curlDH = J +
∂D
∂t

(25)

and the continuity equation in fractional space as:

divDJ = −∂ρv

∂t
(26)

where, divD and curlD are defined in Equation (14) through (16).
Equation (22) through (25) provide generalization of classical Maxwell
equations form integer dimensional Euclidean space to a non-integer
dimensional fractional space. For D = 3, these fractional equations
can be reduced to classical Maxwell equations in Euclidean space.

In phasor form, assuming a time factor ejωt, Maxwell equations in
fractional space are given by replacing ∂

∂t with jω [33] as below:
divDDs = ρvs (27)
divDBs = 0 (28)
curlDEs = −jωBs (29)
curlDHs = Js + jωDs (30)

and the phasor form of continuity equation in fractional space as:
divDJs = −jωρvs (31)

where, Ds,Bs,Es,Hs,Js, ρvs represent the phasor form of instanta-
neous quantities D,B,E,H,J and ρv, respectively.

5. FRACTIONAL SPACE GENERALIZATION OF
POTENTIALS FOR STATIC FIELDS, POISSON AND
LAPLACE EQUATIONS

From Maxwell equations in previous section, it is shown that the
behavior of electrostatic field in fractional space can be described by
two differential equations:

divDE =
ρv

ε0
(32)

curlDE = 0 (33)
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where, ε0 is permittivity of free space. Equation (33) being equivalent
to the statement that E is the gradient of a scalar function, the scalar
potential for electric filed ψ. Because

curlD(−gradDψ) = 0 (34)

so,
E = −gradDψ (35)

A detailed proof of Equation (34) is provided in Appendix A.
Equations (32) and (35) can be combined into one partial differential
equation for the single function ψ(x, y, z) as follows:

divDgradDψ =
ρv

ε0
(36)

As divDgradDψ = ∇2
Dψ, so finally we get

∇2
Dψ =

ρv

ε0
(37)

where ∇2
D is scalar Laplacian operator in fractional space given by (6).

Equation (37) is called Poisson equation in fractional space. In regions
of space that lack a charge density, the scalar potential ψ satisfies the
Laplace equation given by:

∇2
Dψ = 0 (38)

Equation (37) through (38) are important in solving practical
electrostatic problems in fractional space.

From Maxwell equations in last section, it is shown that the
behavior of magnetostatic field in fractional space can be described
by two differential equations:

divDB = 0 (39)
curlDH = J (40)

From Equation (40) we say that in problems concerned with finding
the magnetic fields in a current free region, the curlD of magnetic field
H is zero. Any vector with zero curlD may be represented as the gradD
of a scalar (see e.g., Equation (34)). Thus, the magnetic field for points
in such regions can be expressed as

H = −gradDψm (41)

where, ψm (in amperes) is the magnetic scalar potential and the minus
sign is taken to complete the analogy with electrostatic field in (35).

From (39), the divergence of B is zero everywhere, so using (39)
and (41)

divD(µgradDψm) = 0 (42)
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Thus for a homogenous medium in fractional space the magnetic scalar
potential ψm satisfies the Laplace equation:

∇2
Dψm = 0 (43)

From (39) we know that for magnetostatic filed divDB = 0. Also
we know that

divDcurlDA = 0 (44)

In order to satisfy (39) and (44) simultaneously, we can define vector
magnetic potential A (in webers/meter) such that

B = curlDA (45)

Now if we substitute (45) into (40) we get

curlDcurlDA = µJ (46)

This may be considered as differential equation relating A to the
current density J. Using vector identity

curlDcurlDA = gradD(divDA)−∇2
DA (47)

with

divDA = 0 (48)

in (46) we get

∇2
DA = −µJ (49)

This is a vector equivalent of Poisson equation in (37). It includes three
component scalar equations which are exactly of the poisson form.

6. FRACTIONAL SPACE GENERALIZATION OF
POTENTIALS FOR TIME-VARYING FIELDS

A we have seen, in Maxwell equations fields are related to each
other and sources as well. But sometimes it is helpful to introduce
some intermediate functions, known as potential functions, which are
directly related to sources and from which we can drive fields [33].
Such function are found useful for static fields as well (see e.g.,
Equations (35), (41), (45)).

From (45) we have B = curlDA. This relation may now be
substituted into Maxwell Equation (24) to get

curlD

[
E +

∂A
∂t

]
= 0 (50)
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Equation (50) states that curlD of a certain quantity is zero. But this
condition allows a vector to be derived as a gradD of a scalar ψ.

E +
∂A
∂t

= −gradDψ (51)

E = −gradDψ − ∂A
∂t

(52)

Equations (45) and (52) are the valid relationships between fields and
potential functions A and ψ. We substitute (52) into (22), to obtain

−∇2
Dψ − ∂(divDA)

∂t
=

ρv

ε
(53)

Then by substituting (45) and (52) into (53), we get

curlDcurlDA = µJ + µε

[
−gradD

∂ψ

∂t
− ∂2A

∂t2

]
(54)

Using the vector identity (45) and choosing

divDA = −µε
∂ψ

∂t
(55)

Equations (53) and (54) can be reduced to

∇2
Dψ − µε

∂2ψ

∂t2
= −ρv

ε
(56)

∇2
DA− µε

∂2A
∂t2

= −µJ (57)

Thus the potential functions A and ψ, defined in terms of sources J
and ρv by the Equations (56) and (57) in fractional space, may be used
to drive electric and magnetic fields using (45) and (52).

7. FRACTIONAL SPACE GENERALIZATION OF THE
HELMHOLTZ EQUATION

From Equations (24) and (25), using B = µH and D = εE, we finally
obtain

curlDE = −µ
∂H
∂t

(58)

curlDH = J + ε
∂E
∂t

(59)

Taking curlD of Equation (58) on both sides and using (59) gives

curlDcurlDE = −µ
∂

∂t

[
J + ε

∂E
∂t

]
(60)
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This result can be simplified using (47) and (26) in (60) as :

∇2
DE =

1
ε
gradDρv + µ

∂J
∂t

+ µε
∂2E
∂t2

(61)

For source-free region (ρv = 0, J = 0) (62) becomes

∇2
DE− µε

∂2E
∂t2

= 0 (62)

Equation (63) is the Helmholtz equation, or wave equation, for E in
fractional space. An identical equation for H in fractional space can
also be derived in the same manner:

∇2
DH− µε

∂2H
∂t2

= 0 (63)

8. CONCLUSION

A novel fractional space generalization of the differential electromag-
netic equations, that is helpful in studying the behavior of electric and
magnetic fields in fractal media, is provided. A new form of vector
differential operator Del, written as ∇D, and its related differential op-
erators is formulated in fractional space. Using these modified vector
differential operators, the classical Maxwell electromagnetic equations
have been worked out. The Laplace, Poisson and Helmholtz equations
in fractional space are derived by using modified vector differential op-
erators. Also a new fractional space generalization of potentials for
static and time-varying fields is presented. For all investigated cases,
when integer dimensional space is considered, the classical results can
be recovered. The provided fractional space generalization of differ-
ential electromagnetic equations is valid in far-field region only. The
differential electromagnetic equations in fractional space, established
in this work, provide a basis for application of the concept of frac-
tional space in practical electromagnetic wave propagation and scat-
tering phenomenon in far-field region in any fractal media.

APPENDIX A. PROOF OF EQUATION (34)

According to Equation (34)

curlD(−gradDψ) = 0

Here, we show that this useful fact that the curl of the gradient of
scalar is zero in far-field region of any fractional space. Using (13) we
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write

G=gradDψ

=
(

∂ψ

∂x
+

1
2

(α1−1)ψ
x

)
x̂+

(
∂ψ

∂y
+

1
2

(α2−1)ψ
y

)
ŷ+

(
∂ψ

∂z
+

1
2

(α3−1)ψ
z

)
ẑ

Now, using (16) we write

curlD(−G)

=

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x + 1

2
α1−1

x
∂
∂y + 1

2
α2−1

y
∂
∂z + 1

2
α3−1

z
−Gx −Gy −Gz

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x + 1

2
α1−1

x
∂
∂y + 1

2
α2−1

y
∂
∂z + 1

2
α3−1

z

−
(

∂ψ
∂x + 1

2
(α1−1)ψ

x

)
−

(
∂ψ
∂y + 1

2
(α2−1)ψ

y

)
−

(
∂ψ
∂z + 1

2
(α3−1)ψ

z

)

∣∣∣∣∣∣∣

= −
(

∂2ψ

∂y∂z
+

(α3 − 1)
2z

∂ψ

∂y
+

(α2 − 1)
2y

∂ψ

∂z
+

(α2 − 1)(α3 − 1)ψ
4yz

)
x̂

+
(

∂2ψ

∂y∂z
+

(α2 − 1)
2y

∂ψ

∂z
+

(α3 − 1)
2z

∂ψ

∂y
+

(α2 − 1)(α3 − 1)ψ
4yz

)
x̂

+
(

∂2ψ

∂x∂z
+

(α3 − 1)
2z

∂ψ

∂x
+

(α1 − 1)
2x

∂ψ

∂z
+

(α1 − 1)(α3 − 1)ψ
4xz

)
ŷ

−
(

∂2ψ

∂x∂z
+

(α1 − 1)
2x

∂ψ

∂z
+

(α3 − 1)
2z

∂ψ

∂x
+

(α1 − 1)(α3 − 1)ψ
4xz

)
ŷ

+
(

∂2ψ

∂x∂y
+

(α2 − 1)
2y

∂ψ

∂x
+

(α1 − 1)
2x

∂ψ

∂y
+

(α2 − 1)(α1 − 1)ψ
4xy

)
ẑ

−
(

∂2ψ

∂x∂y
+

(α1 − 1)
2x

∂ψ

∂y
+

(α2 − 1)
2y

∂ψ

∂x
+

(α2 − 1)(α1 − 1)ψ
4xy

)
ẑ

= 0

All the terms in above equation get cancel and give rise to zero
result. This proves Equation (34).

REFERENCES

1. Stillinger, F. H., “Axiomatic basis for spaces with noninteger
dimension,” J. Math. Phys., Vol. 18, No. 6, 1224–1234, 1977.

2. He, X., “Anisotropy and isotropy: A model of fraction-
dimensional space,” Solid State Commun., Vol. 75, 111–114, 1990.



Progress In Electromagnetics Research, Vol. 114, 2011 267

3. Palmer, C. and P. N. Stavrinou, “Equations of motion in a
noninteger-dimension space,” J. Phys. A, Vol. 37, 6987–7003,
2004.

4. Willson, K. G., “Quantum field-theory, models in less than 4
dimensions,” Phys. Rev., Vol. 7, No. 10, 2911–2926, 1973.

5. Bollini, C. G. and J. J. Giambiagi, “Dimensional renormalization:
The number of dimensions as a regularizing parameter,” Nuovo
Cimento B, Vol. 12, 20–26, 1972.

6. Ashmore, J. F., “On renormalization and complex space-time
dimensions,” Commun. Math. Phys., Vol. 29, 177–187, 1973.

7. Agrawal, O. P., “Formulation of Euler-Lagrange equations for
fractional variational problems,” J. Math. Anal. Appl., Vol. 271,
No. 1, 368–379, 2002.

8. Baleanu, D. and S. Muslih, “Lagrangian formulation of classical
fields within Riemann-Liouville fractional derivatives,” Phys.
Scripta, Vol. 72, No. 23, 119–121, 2005.

9. Tarasov, V. E., “Electromagnetic fields on fractals,” Modern Phys.
Lett. A, Vol. 21, No. 20, 1587–1600, 2006.

10. Tarasov, V. E., “Continuous medium model for fractal media,”
Physics Letters A, Vol. 336, Nos. 2–3, 2005.

11. Muslih, S. and D. Baleanu, “Fractional multipoles in fractional
space,” Nonlinear Analysis: Real World Applications, Vol. 8, 198–
203, 2007.

12. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh,
“On electromagnetic field in fractional space,” Nonlinear Analysis:
Real World Applications, Vol. 11, No. 1, 288–292, 2010.

13. Wang, Z.-S. and B.-W. Lu, “The scattering of electromagnetic
waves in fractal media,” Waves in Random and Complex Media,
Vol. 4, No. 1, 97–103, 1994.

14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, “The wave equation
and general plane wave solutions in fractional space,” Progress In
Electromagnetics Research Letters, Vol. 19, 137–146, 2010.

15. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic
Press, New York, 1974.

16. Hussain, A. and Q. A. Naqvi, “Fractional rectangular impedance
waveguide,” Progress In Electromagnetics Research, Vol. 96, 101–
116, 2009.

17. Naqvi. Q. A., “Planar slab of chiral nihility metamaterial backed
by fractional dual/PEMC interface,” Progress In Electromagnetics
Research, Vol. 85, 381–391, 2008.

18. Naqvi, Q. A., “Fractional dual interface in chiral nihility medium,”



268 Zubair et al.

Progress In Electromagnetics Research Letters, Vol. 8, 135–142,
2009.

19. Naqvi, Q. A., “Fractional dual solutions in grounded chiral nihility
slab and their effect on outside fields,” Journal of Electromagnetic
Waves and Applications, Vol. 23, Nos. 5–6, 773–784, 2009.

20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, “Perfect electromagnetic
conductor and fractional dual interface placed in a chiral nihility
medium,” Journal of Electromagnetic Waves and Applications,
Vol. 24, Nos. 14–15, 1991–1999, 2010.

21. Naqvi, A., A. Hussain, and Q. A. Naqvi, “Waves in fractional
dual planar waveguides containing chiral nihility metamaterial,”
Journal of Electromagnetic Waves and Applications, Vol. 24,
Nos. 11–12, 1575–1586, 2010.

22. Veliev, E. I., M. V. Ivakhnychenko, and T. M. Ahmedov,
“Fractional boundary conditions in plane waves diffraction on a
strip,” Progress In Electromagnetics Research, Vol. 79, 443–462,
2008.

23. Naqvi, S. A., M. Faryad, Q. A. Naqvi, and M. Abbas, “Fractional
duality in homogeneous bi-isotropic medium,” Progress In
Electromagnetics Research, Vol. 78, 159–172, 2008.

24. Muslih, S. I. and O. P. Agrawal, “A scaling method and its
applications to problems in fractional dimensional space,” J.
Math. Physics, Vol. 50, No. 12, 123501–123501-11, 2009.

25. Sangawa, U., “The origin of electromagnetic resonances in three-
dimensional photonic fractals,” Progress In Electromagnetics
Research, Vol. 94, 153–173, 2009.

26. Teng, H. T., H. T. Ewe, and S. L. Tan, “Multifractal dimension
and its geometrical terrain properties for classification of Multi-
band multi-polarized SAR image,” Progress In Electromagnetics
Research, Vol. 104, 221–237, 2010.

27. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and
M. Krairiksh, “A rhombic patch monopole antenna with modified
minkowski fractal geometry for UMTS, WLAN, and mobile
WiMAX application,” Progress In Electromagnetics Research,
Vol. 89, 57–74, 2009.

28. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and
M. Krairiksh, “A bidirectional multiband antenna with modified
fractal slot FED by CPW,” Progress In Electromagnetics
Research, Vol. 95, 59–72, 2009.

29. Karim, M. N. A, M. K. A. Rahim, H. A. Majid, O. B. Ayop,
M. Abu, and F. Zubir, “Log periodic fractal Koch antenna for



Progress In Electromagnetics Research, Vol. 114, 2011 269

UHF band applications,” Progress In Electromagnetics Research,
Vol. 100, 201–218, 2010.

30. Siakavara, K., “Novel fractal antenna arrays for satellite networks:
Circular ring sierpinski carpet arrays optimized by genetic
algorithms,” Progress In Electromagnetics Research, Vol. 103,
115–138, 2010.

31. He, Y., L. Li, C. H. Liang, and Q. H. Liu, “EBG structures
with fractal topologies for ultra-wideband ground bounce noise
suppression,” Journal of Electromagnetic Waves and Applications,
Vol. 24, No. 10, 1365–1374, 2010.

32. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, U.S.
Department of Commerce., 1972.

33. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley,
New York, 1989.


