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Abstract—Frequency-dependent admittance (J-) inverter is incorpo-
rated in synthesis of microstrip trisection filters to achieve a quasi-
elliptic function response. In the admittance matrix of the lowpass pro-
totype, certain coupling is modeled by a constant J-inverter multiplied
by the complex frequency variable s. Direct synthesis of three lowpass
prototypes is presented. Based on the standard lowpass to bandpass
transformation, coupled microstrip resonators with both electric and
magnetic coupling are devised to implement the J-inverter with desired
frequency-dependent characteristics. Tapped-line input/output is used
and several transmission zeros can be created in the upper and lower
rejection bands. In experiments, a third-order filter with four zeros,
a fourth-order circuit with three zeros, and a fourth-order filter with
five zeros are designed and fabricated. Measured results are compared
with the simulation responses to validate the theory.

1. INTRODUCTION

Bandpass filters with a quasi-elliptic function response are very at-
tractive in implementing the RF front-ends of wireless communication
systems since excellent frequency selectivity can be obtained with a
low circuit order. The selectivity is achieved by the two transmission
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zeros on both sides of the passband. For microstrip realization, reduc-
tion of number of resonators is particularly important. This is because
not only the circuit area can be saved but also insertion loss can be
improved since such resonators usually have a relatively low quality
(Q) factor.

It is well-known that the conventional 2 × 2 configuration, i.e., a
quadruplet [1–3], possesses a pair of transmission zeros on both sides
of the passband due to the cross coupling between the first and the
last resonator. Many microstrip filters with a quasi-elliptic function
passband have been realized. The realized circuits in [4] achieve a
rejection of 50 dB at the two zero frequencies, in addition to a wide
upper stopband. The multimode resonators in [5, 6] are also suitable
for creating such passbands. The design in [7] with miniaturized spiral-
shaped resonators with rectangle window feed structure also realizes
transmission zeros on both sides of the passband.

Obviously, a rigorous synthesis procedure, e.g., [8], is required
for creation of such zeros. In [9], a particular coupling scheme is
arranged for source, load and a triple-mode cavity to realize a third-
order filter with a pair of zeros. In [10], fourth-order canonical filters
with source-load cross-coupling are developed to generate four zeros.
Theoretically, for a coupled-resonator filter of order N with frequency-
independent coupling, the maximal number of finite transmission zeros
is N . If frequency-dependent coupling is used, however, a third-
order filter may have four zeros [11]. In [12], a box-like coupling
scheme including a two-mode resonator accompanied by a hairpin
resonator is proposed to realize a third-order filter with a pair of zeros.
Increasing number of zeros around the passband can greatly enhance
the frequency selectivity so that the number of resonating elements can
be reduced. This is accompanied with several advantages including low
insertion loss in the passband, easy design and a compact circuit size.

In this paper, Section 2 describes synthesis of third- and fourth-
order filters with a quasi-elliptic function response. A trisection
configuration with a frequency-dependent admittance or J-inverter
is proposed to generate the zeros. The configuration has at least
three attractive properties. First, the condition of the zeros is very
simple and involves only two circuit elements in the lowpass prototype.
Second, in the admittance matrix of the lowpass prototype, all diagonal
elements are not required to add any reactive elements. Third, when
a higher order circuit is designed, the trisection can be cascaded with
other resonators by direct coupling. Section 3 describes synthesis of
three lowpass prototypes. The element values are analytically derived
by matching the two-port ABCD matrix entries with those derived
from the prescribed insertion loss functions. Section 4 describes the
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microstrip realization of the frequency-dependent J-inverters, Section 5
compares measured responses of experimental circuits with theoretical
prediction and simulation, and Section 6 draws the conclusion.

2. SYNTHESIS AND CONDITION OF FINITE ZERO

When a two-port network has Nz finite transmission zeros and unity
source and load impedance, its ABCD matrix can be written as [13]

[ABCD] =
1

P (s)/ε

[
A (s) B (s)
C (s) D (s)

]
(1a)

P (s) =
∏Nz

n=1

(
1− s

szn

)
(1b)

where Nz is less than the circuit order N , szn denotes the nth zero
and the constant ε specifies the inband ripple level. The polynomials
in (1a) can be derived from the insertion loss function with a general
Chebyshev form [13]

CN = cosh

[
N∑

n=1

cosh−1 (xn(Ω))

]
(2a)

xn (Ω) =
Ω− 1/Ωn

1− Ω/Ωn
(2b)

where Ω = s/j and Ωn = szn/j, where s is the complex frequency
variable. Fig. 1 plots the responses of a third-order and a fourth-order
Chebyshev filter with a 0.1-dB inband ripple level to be realized in
this paper. The former and the latter circuits are designated to have
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Figure 1. Lowpass Chebyshev responses of the third- and fourth-order
prototype filters to be synthesized. Passband ripple = 0.1 dB.
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zeros at ±j3 and ±j2.3, and the corresponding rejection levels in the
stopband are 31 and 40 dB, respectively. Based on (1), (2) and the
procedure described in [13], it can be derived that for the third-order
filter,

A(s) = D(s) = 1.0949s2 + 1 (3a)
B(s) = 1.0298s (3b)
C(s) = 1.1521s3 + 1.9106s (3c)

and for the fourth-order filter,

A(s) = D(s) = 1.9633s3 + 2.2588s (4a)
B(s) = 2.2051s4 + 4.0108s2 + 1.1642 (4b)
C(s) = 1.7482s2 + 0.85896 (4c)

The coefficients of the polynomials in (3) and (4) are used to determine
the element values of lowpass prototypes as follows. Fig. 2 shows
two circuits capable of generating a pair of transmission zeros using
a frequency-dependent J-inverter represented by sJ. The circuit in
Fig. 2(a) has two signal paths from the input to the output port. One
is the frequency-dependent J-inverter and the other is a cascade of
two unity J-inverters with a shunt capacitor C = sg in between. The
Y -matrix of the upper path is

[Y ] = sJ

[
0 1
1 0

]
(5)

where a phase shift of 90◦ is assumed [14], and that of the lower path
can be derived as

[Y ] =
1
sg

[
1 1
1 1

]
(6)

The transmission zeros can be obtained by enforcing Y21 of the entire
network to zero, i.e.,

s2 = − 1
Jg

(7)

The two zeros s = ±jΩz = ±j/
√

Jg if Jg > 0 holds, and they are
purely imaginary and symmetric about the real axis in the complex
frequency plane.

For the network in Fig. 2(b), one can treat the whole circuit as
a four-port, derive its Y -matrix, reduce the four-port to a two-port by
setting ports 2 and 3 open circuit, and then enforce Y41 of the resultant
two-port to zero. It leads to

s2 = − 1
2gJ − J2

(8)
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Figure 2. wo circuits with frequency-dependent J-inverters for
generating a pair of transmission zeros. (a) A single trisection. (b)
Two trisections.

For a prescribed transmission zero Ωz, the J-inverter value is only
about one half of that in (7). It will be shown later that number of
design parameters of the fourth-order filter is less than that of a filter
of the same order constructed by cascading the trisection in Fig. 2(a)
with an additional resonator.

3. CIRCUIT SYNTHESIS

Figure 3 plots three possible lowpass prototypes built with the
trisections in Fig. 2. Fig. 3(a) is a third-order circuit, and Fig. 3(b)
and Fig. 3(c) are fourth-order circuits with one and a cascade of two
trisections, respectively. The element values of these circuits will be
determined by matching the coefficients of their ABCD polynomials
with those in (3) and (4). The ABCD matrix of the two-port in the
dashed-line box in Fig. 3(a) can be derived as

[
A B
C D

]
=

1
1 + s2Jg

[ −1 −sg
sJ

(
2 + s2Jg

) −1

]
(9)

Thus, for the whole circuit

A(s) = D(s) = g2g3s
2 + 1 (10a)

B(s) = g2s (10b)

C (s) =
(

g1g2g3 − J2
13

g2

)
s3 + (g1 + g3 − 2J13) s (10c)

By letting g1 = g3 and matching the coefficients in (10) with those in
(3), we obtain g1 = 1.0632, g2 = 1.0298, and J13 = 0.1079. Hence the
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Figure 3. Three lowpass circuit prototypes. (a) Third-order circuit.
(b) Fourth-order circuits with a cascade of an additional resonator
and one trisection. (c) Fourth-order circuits with a cascade of two
trisections.

admittance matrix can be written as

[Y ] =




1 j 0 0 0
j s1.0632 j s0.1079 0
0 j s1.0298 j 0
0 s0.1079 j s1.0632 j
0 0 0 j 1


 (11)

where the (1, 1)th and (5, 5)th elements denote the source and load
resistors, respectively.

For the fourth-order prototypes in Fig. 3(b), an extra resonator is
cascaded with the trisection and the full ABCD matrix can be derived
as

A(s)=D (s) =
g1g2g3

J12
s3 +

g1 + g3J
2
12

J12
s (12a)

B (s)=
g1g2g3g4−g1g3J

2
24

J12
s4+

(
g1 (g2+g4−2J24)

J12
+J12g3g4

)
s2+J12(12b)

C (s)=
g2g3

J12
s2 +

1
J12

(12c)

By matching the coefficients with those in (4), its admittance matrix
can be written as

[Y ] =




1 j 0 0 0 0
j s1.1232 j1.1642 0 0 0
0 j1.1642 s1.8309 j s0.1701 0
0 0 j s1.1115 j 0
0 0 s0.1701 j s1.1390 j
0 0 0 0 j 1




(13)
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It is found that J12 (= 1.1642) is not a unity inverter and that g1 6= g4,
g2 6= g3 and J13 6= J24, since the circuit is not symmetric. The circuit
symmetry can be restored if two trisections are properly arranged as
shown in Fig. 3(c). The ABCD matrix for the circuit in the dashed-
line box involves polynomials of degrees greater than two. The degrees,
however, can be reduced by using the approximation |J | ¿ 1. It leads
to [

A B
C D

]
=

j

1 + s2 (2Jg − J2)

[
s(g − 2J) 1
s2g2 + 1 s(g − 2J)

]
(14)

This matrix is not strictly reciprocal since AD − BC 6= 1 due to
the approximation. Nevertheless, the deviation is so small that the
approximation is still accurate enough for the following synthesis. Let
g1 = g4, g2 = g3, J01 = J45, and J13 = J24, the total ABCD matrix
becomes

A(s) = D(s) = g1g
2
2s

3 + (g1 + g2 −−2J13)s (15a)
B(s) =

[
g2
1g

2
2s

4 + g1(g1 + 2g2 −−4J13)s2 + 1
]
/J2

01 (15b)

C(s) =
(
g2
2s

2 + 1
)
J2

01 (15c)

Because of symmetry, the circuit in Fig. 3(c) has two synthesis
parameters less than the asymmetric structure in Fig. 3(b). One is
that the external Q of the input and output resonators can be realized
by the same coupling structure and the other is that only two, instead
of three in Fig. 3(b), adjacent coupling coefficients have to be realized.
The admittance matrix of the entire network can be written as

[Y ]=




1 j0.9268 0 0 0 0
j0.9268 s0.9647 j s0.06787 0 0

0 j s1.4266 j s0.06787 0
0 s0.06787 j s1.4266 j 0
0 0 s0.06787 j s0.9647 j0.9268
0 0 0 0 j0.9268 1




(16)
Since our aim is to design a high-selectivity filter with a small
number of resonators, only synthesis of networks of order N ≤ 4 is
considered. However, high-order filters with more transmission zeros
can be constructed by cascading the trisections, like that shown in
Fig. 3(c).

In circuit realization, the frequency-independent coupling coeffi-
cients between adjacent resonators can be obtained from the matrices
in (11), (13), and (16) and expressed as [14, 15]

Kj,j+1 = ∆
Jj,j+1√
gjgj+1

(17a)



202 Hsu and Kuo

where ∆ is the fractional bandwidth. Through a weak coupling test,
the simulation |S21| of two coupled resonators will present two peaks.
If the peak frequencies are fa and fb, the coupling coefficient can be
calculated as

Kj,j+1 =
f2

b − f2
a

f2
b + f2

a

(17b)

Design graphs for coupling coefficient versus gap size can then be
obtained. The external Q (Qext) of an Nth-order circuit is related
to the bandwidth by [14]:

(Qext)i =
g0g1

∆J2
01

(18a)

(Qext)o =
gNgN+1

∆J2
N,N+1

(18b)

where g0 and gN+1 represent the source and load resistances,
respectively. The position of the input and output ports is determined
by matching singly loaded Q (Qsi) of the tapped resonator with
external Q (Qext) of the filter in (18).

4. MICROSTRIP REALIZATION OF
FREQUENCY-DEPENDENT J-INVERTER

In the lowpass prototypes in Fig. 3, the frequency-dependent J-
inverter has a form of sJ. From the standard lowpass to bandpass
transformation, i.e., s → j(ω/ω0 − ω0/ω)/∆, the coupling coefficient
between resonators j and j + 2, i.e., sJ13 and sJ24, can be written as

Kj,j+2

(
ω

ω0
− ω0

ω

)
=

Jj,j+2√
gjgj+2

(
ω

ω0
− ω0

ω

)
(19)

where ω0 is the center frequency and ∆ the fractional bandwidth. The
J-inverter can be implemented by the coupling between two coupled
resonators as modeled by the parallel-LC network in Fig. 4 [16], where
both magnetic and electric coupling exist between the inductors and
capacitors. From the equations in Fig. 4, the two-port Y -parameters
can be derived as

Y21 = −j

√
C

Lr

(
E

C

ω

ω0
− M

L

ω0

ω

)
(20a)

Y11 = j

√
C

Lr

(
ω

ω0
− ω0

ω

)
(20b)
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Figure 4. Lumped-circuit model for the frequency-dependent J-
inverter between two coupled resonators.

where ω0 = 1/
√

LrC and Lr = L(1−M2/L2). Comparison of (19) and
(20a) reveals that the frequency-dependent J-inverter can be realized
if E/C=M/L and

Kj,j+2 =
Jj,j+2√
gjgj+2

= −E

C
(21)

Based on (20a) and (20b), E/C can be obtained by simply calculating
−Y21/Y11. However, both Y21 = 0 and Y11 = 0 at ω = ω0. In
this case, the L’Hospital rule can be used to extract the E/C from
simulation or measurement Y21 and Y11 data. Let b21 = Im[Y21]/Y0

and b11 = Im[Y11]/Y0, then Kj ,j+2 can be formulated as

Kj,j+2 = −
(

db21

dω

/
db11

dω

)∣∣∣∣ ω = ω0
(22)

where Y0 = 1/Z0 and Z0 is port impedance. In case of b11 6= b22, (22)
should be modified to

Kj,j+2 = −
(

db21

dω

/√∣∣∣∣
db11

dω
× db22

dω

∣∣∣∣
)∣∣∣∣∣ ω = ω0

(23)

Note that this frequency-dependent J-inverter is not adequate for
coupling between adjacent resonators on the main signal path since
E/C = M/L holds and the net coupling is zero at ω = ω0. It will be
useful, however, for non-adjacent coupling to create finite transmission
zeros near ω0. Such frequency-dependent electric/magnetic coupling
has been revealed among the combline resonators in [17], where these
two types of coupling, however, are intentionally suppressed in order to
obtain frequency-independent coupling since in circuit synthesis each
off-diagonal element in the coupling matrix is assumed constant.

The microstrip structures in Fig. 5 are devised to realize the
frequency-dependent J-inverters, which are used for experimental
filters in the later sections. The electric coupling (E/C) mainly relies
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Figure 5. Microstrip frequency-dependent J-inverters. (a) Coupled
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εr = 2.2, thickness = 0.508mm.
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Figure 6. (a) Normalized susceptances and (b) |S21| responses of the
J-inverter in Fig. 5(a).

on the open ends of the coupled resonators while the magnetic coupling
(M/L) on the middle section. The sizes Le, Lm, De and Dm can
be determined by fitting the b21 and b11 curves of the test circuit
to those in (20). Fig. 6(a) plots simulation results of b21, b11 and
(db21/dω)(db11/dω) for the circuit in Fig. 5(a) for De = 0.19, 0.23, and
0.27mm using the simulation software package IE3D [18]. The circuit
has a relative dielectric constant εr = 2.2, thickness = 0.508mm,
and port impedance Z0 = 50Ω. For the third-order circuit described
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in (11), K13 = 0.1079/
√

g1g3 = 0.1015, and it can be realized by using
De = 0.27 mm, from Fig. 6(a).

When De is decreased, Fig. 6(a) indicates that the magnitude
of (db21/dω)/(db11/dω) increases, especially at high frequencies. It
implies that the upper zero will be more sensitive to the variation of
De. Fig. 6(b) plots the |S21| response for the test circuit in Fig. 5(a).
The |S21| responses have dips near 2.5 GHz since net coupling is zero. It
is resulted from the cancelation of the electric and magnetic coupling.
One can observe from the results in Fig. 6(b) that the upper zero
created by the tapped-input/output is sensitive to the variation of De.

The coupling structure in Fig. 5(b) is close to the narrow-band
hairpin-comb filters in [19] when the gap width Dx = De. The purpose
of Dx is to add a degree of freedom to designing the microstrip J-
inverters such that the cancelation of electric and magnetic coupling
can occur at the resonant frequency as required by (19).

5. SIMULATION AND MEASUREMENT

All experimental circuits are designed at f0 = 2.5 GHz and built on
a substrate with εr = 2.2 and thickness = 0.508mm. Fig. 7(a) shows
the layout of the trisection filter based on the lowpass prototype in
Fig. 3(a) with the admittance matrix in (11). The in-band ripple is
0.1 dB and ∆ = 6%. The realization of the frequency-dependent J-
inverter is in Fig. 5(a). The gap D12 is determined by the coupling
coefficient K12 = 0.0573 from (17a). The tap point, denoted as Lf ,
is chosen to match the Qsi of the stepped-impedance resonator [20] to
Qext = 17.72 in (18).

The lengths of the low-Z and high-Z sections of the first and
third resonators in Fig. 7(a) are 7.59 and 7.79mm, respectively. The
2.64% difference is resulted from fine-tuning of the final filter for
recovering the resonance shift caused by the proximity effect of the
second resonator. In our experience, the fine-tune process of the final
filter parameters is inevitable; however, the parameters can rapidly
converge when the initial values are properly given. The theoretical,
simulated, and measured responses are shown in Fig. 7(b). There are
four zeros in the stopband. The zeros fz1 and fz4 are created by the
tapped-line while fz2 and fz3 are by the trisection. When the gap width
D13 is too large to provide significant electric coupling, the J13-inverter
becomes magnetic coupling and purely frequency-independent, then
only one zero in the lower stopband can be generated. In the passband,
the measured insertion loss is 1.75 dB, and return loss is better than
15 dB. The rejection level in the upper stopband is −29.5 dB, which
is merely 1.6 dB higher than the prediction. This deviation is due to
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that the magnitude of (db21/dω)/(db11/dω) increases when frequency is
increased, as shown in lower part of Fig. 6(a). The broadband response
in Fig. 7(c) shows that the measured 20 dB-rejection can be extended
up to 5.75 GHz or 2.3f0. It is found that the peak at 6.57GHz is caused
by the first spurious resonance of resonator 2, of which the impedance
ratio is slightly smaller that of the other resonators so that it has a
lower first spurious resonance. The measured and simulated group
delays (τ) are also given.

The second demonstration is a fourth-order filter based on the
prototype in Fig. 3(b) with the admittance matrix in (13) using coupled
uniform microstrip resonators. The J24-inverter can be designed by
a similar approach for the previous circuit except that one of the
input/output feeds is replaced by a coupled-line. Then, (23) is used
to calculate Kj ,j+2 since b11 6= b22. The in-band ripple is 0.1 dB and
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Figure 7. Layout, simulation and measured responses of the first
circuit. (a) Layout. Dimensions in mm: D12 = 0.47, D13 = 0.27,
D′

13 = 0.79, L1 = 7.79, L′1 = 7.19, L2 = 7.59, L3 = 8.58, L4 = 7.42,
Lf = 1.95, W1 = W3 = 0.4, W2 = 2, W4 = 1.74. (b) |S21| and |S11|
responses. (c) Group delay and broadband responses.
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∆ = 5%. The circuit layout and responses are in Fig. 8. Note that one
arm of resonator 2 is used to implement the J24-inverter and the other
is used to couple with resonators 1 and 3 by L12 and L23, respectively.
In Fig. 8(b), the zero fz1 is 0.4GHz lower than prediction because the
values of theJ24-inverter at low frequencies are slightly smaller than
that it is specified by the (3, 5)th entry in (13). In measurement, the
inband insertion loss is only 1.96 dB. It can be seen that the zero fz3

is determined by the tap point of port 1. If the alternative tap-point
T ′, which has the same Qsi value, is used a zero will be produced
in the lower stopband. This circuit has only three zeros; however, the
frequency fz3 can be fully controlled by adjusting the length of Lf1 with
a proper line width of resonator 1 for matching the port impedance.

Figure 9(a) shows the circuit layout of a fourth-order filter based
on the prototype in Fig. 3(c) with the admittance matrix in (16) with
stepped-impedance resonators. Its in-band ripple and ∆ are the same
as those of the previous fourth-order circuit. Note that there are
two identical frequency-dependent J-inverters, i.e., J13 and J24, in the
circuit. For establishing proper coupling between resonators 2 and 3,
the two trisections are configured in a back-to-back arrangement with
an offset distance S. Fig. 9(b) and Fig. 9(c) plot the simulation and
measured responses. Five zeros around the passband can be observed.
The upper rejection band is broadened by the zeros fz4 and fz5. From
the calculated response by (16) in Fig. 9(b), fz2 and fz3 are generated
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Figure 8. Layout, simulation and measured responses of the second
circuit. (a) Circuit layout. Dimensions in mm: D12 = 0.64, D23 =
0.46, D34 = 0.3, De = 0.3, Dm = 0.38, Dx = 8.94, L12 = 13.16,
L23 = 4.61, L34 = 12.6, Le = 5.38, Lf1 = 17.12, Lf2 = 3.35,
Lm = 3.03, W = 1.55. (b) Group delay, |S21| and |S11| responses.
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by the trisection. Our circuit simulation indicates that the zeros fz1

and fz5 are dominated by the tapped-input/output structure. The
position of the zero fz4 is affected by both; however, its generation
mechanism is still unknown to the authors. The measured data show
that the insertion loss is 2.34 dB at f0, which is 0.38 dB higher than
that of the second circuit due to the high-impedance segments. It
is found that a rejection level of better than 40 dB can be achieved
within the band covering from 2.64 to 4.91 GHz, and the stopband
with a 30-dB rejection level is up to 6.03 GHz (2.4f0). The circuit size
is 3.8 × 3.3 cm2, about 55% of the area 5.8 × 3.9 cm2 of the second
circuit.
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Figure 9. Layout, simulation and measured responses of the third
circuit. (a) Circuit layout. Dimensions in mm: D12 = 0.4, D13 = 0.19,
D′

13 = 0.79, L1 = 7.79, L′1 = 7.19, L2 = 7.64, Lf = 1.95, S = 3.0,
W1 = 0.4, W2 = 2. (b) Group delay, |S21| and |S11| responses. (c)
Broadband responses.
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6. CONCLUSION

Coupled stepped-impedance resonators and uniform half-wave res-
onators are devised to implement the microstrip frequency-dependent
J-inverters for synthesizing quasi-elliptic function passbands in trisec-
tion configuration. Direct synthesis of network elements has been de-
veloped for three lowpass prototypes by matching the coefficients of
the two-port ABCD polynomials. The elements in the synthesized
admittance matrices have been used to determine the coupling coef-
ficients and external Q values of the input/output resonators for the
experimental filters. The synthesized third- and fourth-order filters
present four and five transmission zeros, respectively. Simulation and
theoretical prediction are validated by measured responses.
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