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Abstract—Applying four-dimensional differential-form formalism, a
novel class of electromagnetic media, labeled as that of P-media, is
introduced in terms of a simple rule. It is shown that it is not possible
to define the medium by expressing D and B in terms of E and H,
whilst using 3D Gibbsian vectors and dyadics. Moreover, the basic
properties of P-media are shown to be complementary to those of the
previously known Q-media, which are defined in a somewhat similar
manner. It is demonstrated that, for plane waves in a P-medium, there
is no restriction to the wave one-form (corresponding to the k-vector).
Importantly, the uniaxial P-medium half space also leads to another
realization of the recently studied DB boundary conditions. Finally, a
generalization of the class of P-media is briefly discussed. It is shown
that the dispersion equation of a plane wave in the generalized P-
medium is decomposed into two conditions, each of which corresponds
to a certain polarization condition. This occurrence resembles the
behavior of the generalized Q-medium.
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1. INTRODUCTION

The most general linear electromagnetic medium (bi-anisotropic
medium) can be expressed in terms of four medium dyadics in the
three-dimensional Gibbsian vector representation as [1–3]

(
Dg

Bg

)
=

(
εg ξg

ζg µg

)
·
(

Eg

Hg

)
, (1)

whence the maximum number of free parameters is 4 × 9 = 36. The
Gibbsian quantities are denoted by the subscript ()g to distinguish
them from quantities involving differential forms. In this study the
parameter dyadics are assumed to be constant (no dependence on space
or time).

The Gibbsian vector and dyadic algebra is inherently limited to
three-dimensional representation while the differential-form formalism
is best applied in four-dimensional form. In fact, the Maxwell equations
can be compactly expressed as [4–6]

d ∧Ψ = γ, d ∧Φ = 0, (2)

where the electromagnetic two-forms Ψ,Φ, elements of the space F2,
can be interpreted in terms of 3D (spatial) two-forms D,B and one-
forms E, H as

Φ = B + E ∧ ε4, Ψ = D−H ∧ ε4, (3)

and ε4 equals the temporal basis-one-form. Definitions and operational
rules for differential forms, multivectors and dyadics as applied in this
study have been summarized in the Appendices of [7, 8] and, more
extensively, in the book [6].

The constitutive Equation (1) can be represented by a medium
dyadic M ∈ F2E2 mapping two-forms to two-forms as

Ψ = M|Φ, (4)

or, in terms of a modified medium dyadic Mg ∈ E2E2 mapping two-
forms to bivectors,

eNbΨ = Mg|Φ. (5)

Here, eN = e1234 ∈ E4 denotes the quadrivector in the basis of vectors
ei ∈ E1 and b denotes the contraction operation. The reciprocal basis
one-forms εj ∈ F1 satisfying ei|εj = δij define the basis four-form
εN = ε1234.

Four-dimensional formalism allows simple definition of important
classes of electromagnetic media [8]. For example, if the modified



Progress In Electromagnetics Research B, Vol. 28, 2011 145

medium dyadic Mg can be expressed in terms of some dyadic Q ∈ E1E1

mapping one-forms to vectors as [6, 9]

Mg =
1
2
Q ∧∧Q = Q (2), (6)

it is called a Q-medium. Because Q-media have the property of
being non-birefringent to propagating waves, they can be conceived
as generalizations of isotropic media (in the Gibbsian sense) [6].

A more general medium class was called that of generalized Q-
media and defined by medium dyadics of the form

Mg = Q (2) + AB, (7)
where A, B ∈ E2 are two bivectors. Such a medium was shown
to generalize a medium in which any fields can be decomposed in
noncoupled TE and TM components [10].

2. THE P-MEDIUM

Let us consider a class of media which is similar to that of Q-media
in definition although not in properties. We assume that the medium
dyadic M can be expressed in terms of some dyadic P ∈ F1E1 in the
form

M = P (2). (8)

While it is known that any dyadic M mapping two-forms to two-forms
in 3D space can be represented in the form (8) [6] p. 132, this is not
the case in 4D, and the representation (8) defines a certain restricted
class of electromagnetic media which will be called that of P-media for
brevity.

To have an idea of a medium so defined, let us expand P in its
spatial and temporal components as

P = Ps + πe4 + ε4p + pε4e4, (9)

where the dyadic Ps, vector p and one-form π are 3D spatial quantities,
i.e., they are orthogonal to the temporal vector e4 or one-form ε4 as

e4|Ps = Ps|ε4 = 0, p|ε4 = 0, π|e4 = 0, (10)
while p is a scalar. Inserting in (8) we obtain

M = P (2)
s + Ps

∧∧(ε4p + πe4) +
(
pPs − πp

)
∧∧ε4e4. (11)

Comparing with the 3D expansion [6]

M = α + ε
′ ∧ e4 + ε4 ∧ µ−1 + ε4 ∧ β ∧ e4, (12)
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in terms of which the medium Equation (4) can be expressed as
(

D
H

)
=

(
α ε ′

µ−1 β

)
|
(

B
E

)
, (13)

the 3D medium dyadics can be identified as

α = P (2)
s ∈ F2E2, (14)

ε
′ = −π ∧ Ps ∈ F2E1, (15)

µ−1 = −Ps ∧ p ∈ F1E2, (16)

β = πp− p = Ps ∈ F1E1. (17)

One can easily derive the following relation between the four parameter
dyadics,

3β (3) = p2
(
α ∧∧β + ε

′ ∧∧µ−1
)

. (18)

Taking the trace operation on both sides of (18), an equivalent scalar
condition is obtained.

The Gibbsian counterparts of the medium dyadics (14)–(17) can
be formed applying the rules in the Appendix and the spatial metric
dyadic Gs = e1e1 + e2e2 + e3e3. First, we define the Gibbsian vectors

πg = Gs|π, pg = p, (19)

and Gibbsian dyadics

P sg = Gs|Ps, P (2)
sg = Gs

(2)|P (2)
s . (20)

The medium dyadics take the form

αg = P (2)
sg , (21)

ε
′
g = −e123b

(
π ∧ Ps

)
= −πg × Psg, (22)

µ−1
g = −Gs|

(
Ps ∧ p

)
cε123|Gs = −Psg × p, (23)

βg = πgp− pPsg. (24)

These expressions show that, since µ−1
g is an antisymmetric dyadic,

there does not exist a dyadic µg. Thus, it is not possible to express
the P-medium in terms of the “engineering” form (1). Also, it appears
that the magnetoelectric parameter β is essential for the P-medium.
In fact, β = 0, p 6= 0 implies pP = (π + pε4)(p + pe4) whence M = 0.

One can observe a certain similarity between the 3D dyadic
expressions (14)–(17) and those of the Q-medium given in [9],
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Eqs. (5.66)–(5.69). Actually, any P-medium dyadic MP can be
transformed to a Q-medium dyadic MQ by means of Hodge duality [11]
as

MQ = εNbG (2)|MP , (25)

where G = Gs − e4e4 is the Minkowskian metric dyadic. In fact, we
immediately obtain

MQ = εNbG (2)|P (2) = εNbQ (2), Q = G|P. (26)

The 3D dyadic expressions for the Q-medium are related to those of
(14)–(17) as

αQ = −ε123bGs|
(
Ps ∧ p

)
= ε123bGs|µ−1

P , (27)

ε ′Q = −ε123bGs|
(
pPs − πp

)
= ε123bGs|βP , (28)

µ−1
Q = −ε123b

(
Gs|Ps

)(2)
= −ε123bG (2)

s |αP , (29)

βQ = ε123bG (2)
s |

(
π ∧ Ps

)
= −ε123bG (2)

s |ε ′P . (30)

These expressions show us that µ−1 and ε ′ are respectively mapped
to α and β, and conversely, in the Hodge duality.

3. DECOMPOSITION OF MEDIUM DYADIC

3.1. Hehl-Obukhov Decomposition

The medium dyadic M can be decomposed as based on the
eigenproblem

I (4)bbM = eNεNbbM = λM T , (31)

whose eigenvalues are λ± = ±1 so that any medium dyadic can be
expressed in terms of the corresponding eigendyadics M± as

M = M+ + M−, M± =
1
2

(
M± εNeNbbM T

)
. (32)

This means that the four 3D medium dyadics can also be expanded as
α = α+ + α− etc.

A related expansion for the medium dyadic was introduced by
Hehl and Obukhov, and has the form [5]

M = Mpr + Msk + Max, (33)
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where the components Mpr, Msk and Max are respectively called as
the principal, skewon and axion parts of M. They have the following
connection to the eigendyadics:

M+ = Mpr + Max, M− = Msk. (34)

The axion part is of the form Max = αI (2)T while the other two parts
are trace free, trMpr = trMsk = 0. Let us briefly summarize the
properties of the three parts of the medium dyadic M.

• The axion part can be extracted as

Max =
1
6
trM I (2)T , (35)

since trI (2)T = 6. Obviously, any medium consisting only of its
axion part, also called the PEMC medium [12], is a special case
of a P-medium.

• The skewon part is obtained as Msk = M− from (32). It can be
expressed in the form [13]

Msk =
(
I ∧∧Bo

)T
, trBo = 0, (36)

in terms of some trace-free dyadic Bo ∈ E1F1. Conversely, the
dyadic Bo can be obtained from Msk as

Bo =
1
2

(
MskbbI

)T
. (37)

• Finally, the principal part satisfies

MprbbI = 0, (38)

which implies trMpr = 0. If the medium dyadic satisfies MbbI = 0,
it has no axion or skewon parts. The principal part encompasses
as special cases the free space relation as well as most standard
linear media [14].

3.2. Skewonless P-medium

As an example let us consider the skewonless P-medium which
corresponds to the eigendyadic M = M+ of (31). In this case the
P dyadic must satisfy

I (4)bbP (2) = P (2)T . (39)
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In the general case the skewonless medium is composed of an axion
component and a principal component.

Applying the identity

I (4)bbM =
(
trM

)
I (2) −

(
M T bbI T

)
∧∧I + M T , (40)

valid for any dyadic M ∈ F2E2, (39) is reduced to
(
trP (2)

)
I (2)−

(
P (2)T bbI T

)
∧∧I=

(
1
2

(
trP (2)

)
I− P (2)T bbI T

)
∧∧I = 0.

(41)
This is possible only if the bracketed dyadic vanishes, which is
equivalent to

1
4

((
trP

)2
− trP 2

)
I−

(
trP

)
P T + P 2T = 0, (42)

or (
P− αI T

)2
= β2I T , α =

1
2
trP, β =

1
2

√
trP 2. (43)

The dyadic in brackets is a unipotent dyadic multiplied by β.
The results (A16), (A17) and (A18) given in the Appendix give the
following respective candidates for the dyadic P:

P = γI T , P = γI T + δε1e1, P = γI T + δ (ε1e1 + ε2e2) , (44)

with γ = α− β, δ = −2β.
The expressions (44) are more general than the actual solutions

of (39). Restricting conditions are obtained by enforcing (39) explicitly.
The first possibility in (44) corresponds to a pure axion medium
satisfying (39). The second possibility corresponds to to the medium
dyadic

M = P (2) = γ2I (2)T + γδ
(
I ∧∧e1ε1

)T
, (45)

whose last term has a skewon component of the form (36). Requiring
that it vanish yields δ = 0, whence also this case leads to a pure axion
medium.

The third case corresponds to

M = γ2I (2)T + γδ
(
I ∧∧ (e1ε1 + e2ε2)

)T
+ δ2ε12e12. (46)

Let us consider the last term. Decomposing

ε12e12 = B+ + B−, (47)
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with
B± =

1
2
(ε12e12 ± ε34e34)∓ 1

6
I (2)T , (48)

we can easily check that the dyadic B− can be written in the form

B− = I T ∧∧C, C =
1
2
(ε1e1 + ε2e2)− 1

6
I T . (49)

Since this is of the skewon-axion form, it can be added to the middle
term of (46). Finally, the dyadic B+ can be shown to be a principal
dyadic, because it satisfies (38):

B+bbI =
1
2
(ε3e3 + ε4e4 + ε1e1 + ε2e2)− 1

6
3I T = 0. (50)

When requiring vanishing of the total skewon component of M we
arrive at δ = 0 or, again, the skewonless P-medium is a pure axion
medium.

Thus, in conclusion, the principal part of any principal-axion P-
medium vanishes. This also implies that a pure principal P-medium
does not exist. In the general case, the principal part of a P-medium
does not vanish, as will be seen from the example of the following
Section.

4. UNIAXIAL P-MEDIUM

As a nontrivial example of a P-medium, let us assume that the spatial
components are of the form

Ps = Pt(ε1e1 + ε2e2) + P3ε3e3, (51)

P (2)
s = P 2

t ε12e12 + PtP3(ε23e23 + ε31e31), (52)
π = π3ε3, p = p3e3. (53)

Since the basis vector e3 and one-form ε3 take a special position in the
medium dyadic, we may call such a medium uniaxial. The 3D medium
dyadics can then be expressed as

α = αt(ε23e23 + ε31e31) + α3ε12e12, (54)

ε
′ = ε3

(
ε3 ∧ I T

s

)
, (55)

µ−1 = µ−1
3

(
I T

s ∧ e3

)
, (56)

β = βt (ε1e1 + ε2e2) + β3ε3e3, (57)
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with
αt = PtP3, α3 = P 2

t , ε3 = −π3Pt, (58)
µ−1

3 = −p3Pt, βt = −pPt, β3 = π3p3 − pP3. (59)
Since the six parameters αt . . . β3 are defined in terms of five parameters
Pt . . . p, they are related by a condition which can be written as

α3β3 − αtβt = ε3µ
−1
3 . (60)

Actually, this equals the condition (18).
The corresponding Gibbsian dyadics (elements of the space E1E1)

justifying the uniaxial property of the medium are (see the Appendix)

αg =
(
e123ε123bbα

) |Gs = αt(e1e1 + e2e2) + α3e3e3, (61)

ε
′
g = e123bε′ = ε3e3 ×Gs, (62)

µ−1
g = Gs|

(
µ−1cε123

) |Gs = µ−1
3 e3 ×Gs, (63)

βg = Gs|β = βt(e1e1 + e2e2) + β3e3e3. (64)

Here, the spatial metric dyadic Gs serves as the Gibbsian unit dyadic.
It is noteworthy that the dyadics ε

′
g and µ−1

g are multiples of the same

antisymmetric dyadic e3 ×Gs, while αg and βg are uniaxial Gibbsian
dyadics.

The medium equations can be expressed in Gibbsian form as
Dg = ε3e3 ×Eg + α3e3Bg3 + αtBgt, (65)

Hg = µ−1
3 e3 ×Bgt + β3e3Eg3 + βtEgt, (66)

where ag = e3ag3 +agt denotes the decomposition of a Gibbsian vector
ag in its axial and transverse components.

It is interesting to note that the Gibbsian medium equations
of the uniaxial P-medium, (65), (66), actually have one-to-one
correspondence to those of a uniaxial skewon-axion medium (also
termed as IB-medium) given in [15], Equation (67), with the obvious
change in notation e1 → ux, e2 → uy, e3 → uz. This raises a question
on the relation between the two media, uniaxial P-medium on one hand
and uniaxial skewon-axion medium on the other. After some algebraic
juggling, the medium dyadic of the uniaxial P-medium can be written
in the form

M = I T ∧∧A + Aε34e34, (67)
with

A =
1
2
P 2

t I T + Pt(P3 − Pt)ε3e3 + Ptπ3ε3e4 + Ptp3ε4e3

+Pt(p− Pt)ε4e4, (68)
A = (Pt − P3)(Pt − p)− π3p3. (69)
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The first term of (67) appears to be of the skewon-axion form. If the
second term is decomposed as in (47),

Aε34e34 = A
(
B+ + B−

)
, (70)

with the definition

B± =
1
2
(ε34e34 ± ε12e12)∓ 1

6
I (2)T , (71)

we attain the same outcome as in the previous section, with B−
corresponding the skewon part, and B+ the principal part, of ε34e34.

In conclusion, the principal part of the uniaxial P-medium dyadic
M, as represented by the term AB+, does not vanish, in general. Thus,
the uniaxial P-medium equals a uniaxial skewon-axion medium only
when the coefficient A vanishes, i.e., for

(Pt − P3)(Pt − p)− π3p3 = 0. (72)

In terms of the 3D medium coefficients in (54)–(57) this reads

αt − α3 = βt − β3. (73)

Actually, (73) equals the condition (18) in [15] which, despite the title
of the paper, considers a more general six-parameter medium (65), (66)
in which the skewon-axion condition (73) need not be valid. Thus,
the problem of wave reflection from and transmission though a planar
interface of a uniaxial half space applies to the six-parameter medium
of which the uniaxial skewon-axion medium and P-medium are special
cases. So, the main result of [15] is valid to both of these media.

The result can be stated as follows: independently of the values of
the six medium parameters, the planar interface of the uniaxial medium
can be interpreted as a boundary defined by the conditions [15–17],

n ·D = 0, n ·B = 0. (74)

Here, the normal vector n coincides with the axial vector e3 = uz of the
medium. This result is not valid in the special case when the medium
parameters satisfy a condition which in the present terminology takes
the form

(α3 + βt)(α3 − αt) = ε3µ
−1
3 . (75)

For example, this condition excludes the pure axion medium with
α3 = αt, ε3 = 0, µ−1

3 = 0. Thus, the uniaxial P-medium half
space offers another possibility for the realization of the DB boundary.
Interestingly, while the boundary defined by (74) was introduced
already half a decade ago [18], it has only recently found applications
in the study of electromagnetic cloaking [19–21].
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5. PLANE WAVE IN P-MEDIUM

Let us consider the plane-wave solution
Φ(x) = Φ exp(ν|x), (76)

where ν is the wave one-form. In a homogeneous linear medium we
have

Ψ(x) = M|Φ(x) = Ψ exp(ν|x), (77)

and the Maxwell equations become
ν ∧Φ = 0, ν ∧Ψ = 0, (78)

whence the field two-forms can be expressed in terms of potential one-
forms

Φ = ν ∧ φ, Ψ = ν ∧ψ. (79)

The potential φ satisfies the equation

ν ∧Ψ = ν ∧M|(ν ∧ φ) = 0. (80)
In the P-medium, this can be written as

ν ∧ P (2)| (ν ∧ φ) = ν ∧
(
P|ν

)
∧

(
P|φ

)
= 0. (81)

Assuming that ν is not an eigen-one-form of the dyadic P, we have
ν∧(P|ν) 6= 0, whence P|φ must be a linear combination of the linearly
independent one-forms ν and P|ν:

P|φ = Aν + BP|ν, φ = AP−1|ν + Bν. (82)
The field two-forms then become

Φ = ν ∧ φ = Aν ∧ P−1|ν, (83)

Ψ = P (2)|Φ = A(P|ν) ∧ ν, (84)
There is no restricting equation for the wave one-form ν. In fact,

any one-form ν can be used to define a plane wave in the P-medium and
the field two-forms are obtained from (83), (84). Similar property was
found to be connected to the skewon-axion medium (IB-medium) [13].
In the application of plane-wave reflection from a uniaxial skewon-
axion medium half-space [15] it was shown that the plane-wave fields
in the skewon-axion medium become uniquely determined through the
conditions at the interface.

The strange free-choice property of the wave one-form ν in the
P-medium can be considered from a more general point of view as
follows. Expressing (80) in the form

D(ν)|φ = 0, D(ν) = −eNb
(
ν ∧Mbν

)
∈ E1E1, (85)
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the dispersion dyadic D(ν) satisfies for any medium [22]

D (3)(ν) = (eNeNbbνν) D(ν), (86)

where the scalar dispersion function D(ν) depends on the medium
dyadic. Because of

D (3)bφ =
(
D|φ

)
∧D (2) = 0, (87)

the dispersion equation can be presented as

D(ν) = 0. (88)

One can now easily show that for a P-medium the dispersion function
is identically zero, so it does not limit the choice of the one-form ν. In
fact, expanding

D(ν) = −eNb
(
ν ∧ P (2)bν

)
= −eNb

(
ν ∧

(
P|ν

)
∧ P

)
= FbP, (89)

with the bivector
F(ν) = eNb

(
ν ∧

(
P|ν

))
, (90)

we have
D (3)(ν) = −

(
FbI T

)(3)
|P (3). (91)

Now from

F · F = F| (εNbF) =
(
eNb

(
ν ∧

(
P|ν

)))
|
(
ν ∧

(
P|ν

))

= eN |
(
ν ∧

(
P|ν

)
∧ ν ∧

(
P|ν

))
= 0, (92)

F is a simple bivector, i.e., of the form a ∧ b, and it satisfies
(
FbI T

)(2)
= FF,

(
FbI T

)(3)
= 0. (93)

Thus, (91) does not give rise to a dispersion function D(ν) as in (86)
to limit the choice of the wave one-form ν.

6. GENERALIZED P-MEDIUM

6.1. Medium Conditions

In analogy with the generalization of the Q-medium, the medium
dyadic of the P-medium can be extended by adding a term of the
form

M = P (2) + εNbDC, (94)
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or
Mg = eNbP (2) + DC, (95)

where D,C ∈ E2 are two bivectors. A medium defined in this way can
be called a generalized P-medium. Since the Hodge dual of a bivector
again yields a bivector, generalized P-media are related to generalized
Q-media of (7) by means of the Hodge duality operation (25). Let us
now briefly consider some properties of the generalized P-media.

Expanding the bivectors as

D = d1 ∧ d2 + d3 ∧ e4, C = c1 ∧ c2 + c3 ∧ e4, (96)

where the vectors ci,di are all spatial, we have

εNbDC = (−ε4 ∧ (ε123b(d1 ∧d2)) + ε123bd3)(c1 ∧ c2 + c3 ∧ e4), (97)

whence the 3D P-medium parameter dyadics can be generalized from
those expressed by (14)–(17) to

α = P (2)
s + (ε123bd3)(c1 ∧ c2), (98)

ε ′ = −π ∧ Ps + (ε123bd3)c3, (99)

µ−1 = −Ps ∧ p− ε123b(d1 ∧ d2)(c1 ∧ c2), (100)

β = (πp− pPs)− ε123b(d1 ∧ d2))c3. (101)

The generalization makes it possible for the dyadics ε ′ and µ−1 to have
inverses.

6.2. Plane Wave

Considering a plane wave in a generalized P-medium, the dispersion
dyadic (85) becomes

D(ν) = −eNb
(
ν ∧

(
P|ν

)
∧ P

)
− (Dbν)(Cbν). (102)

Applying again the bivector F(ν) defined by (90), the dispersion dyadic
has the form

D(ν) =
(
F(ν)bI T

)
|P + (Dbν) (Cbν) . (103)

With (93), we can write

D (2)(ν) = FF|P (2) +
((

FbI T
)
|P

)
∧∧(Dbν)(Cbν), (104)

D (3)(ν) =
(
FF|P (2)

)
∧∧ (Dbν) (Cbν)

= (F ∧ (Dbν))
(
F|P (2) ∧ (Cbν)

)
. (105)
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Invoking the identity [6]

F ∧ (Dbν) + D ∧ (Fbν) = (F ∧D)bν = εN |(F ∧D)(eNbν), (106)

from Fbν = 0, we can further write

D (3)(ν) = εN |(F ∧D) (eNbν)
(
F|P (2) ∧ (Cbν)

)
. (107)

Substituted in (87) we finally obtain

εN |(F ∧D)
(
F|P (2) ∧ (Cbν)

)
bφ = 0. (108)

This condition, satisfied by the one-form φ, yields two possible
dispersion equations. In the first case the scalar factor vanishes,

εN |(F ∧D) =
(
ν ∧

(
P|ν

))
|D = 0, ⇒ ν|

(
DbP

)
|ν = 0, (109)

which is a second-order scalar equation for ν. For the second possibility
we first expand

F|P (2) = eN |
(
ν ∧

(
P|ν

)
∧ P (2)

)
= eN |

(
ν ∧ P (3)bν

)

= ν|
(
eNbP (3))bν

)
= ∆P

((
P−1|ν

)
ceN

)
bν, (110)

when applying the inverse rule [6]

P−1 = εNeNbbP (3)T /∆P , ∆P = eNεN ||P (4). (111)

The second condition arising from (108) becomes(
F|P (2) ∧ (Cbν)

)
bφ = ∆P

(((
P−1|ν

)
ceN

)
bν

)
∧ (Cbν))bφ

= ∆P

((
P−1|ν

)
ceN

)
∧ (Cbν) b(ν ∧ φ)

= ∆P

(
(Cbν) |P−1|ν

)
eNbΦ = 0, ⇒ ν|

(
CbP−1

)
|ν = 0,(112)

assuming ∆P = eNεN ||P (4) 6= 0.
As a conclusion, for the generalized P-medium the wave one-form

ν must satisfy either of the two dispersion equations(
DbP

)
||νν = 0, (113)

(
CbP−1

)
||νν = 0. (114)

For P (4) = 0, we must replace P−1 in (114) by εNeNbbP (3)T . For
P (3) = 0 (114) does not exist. In the case of basic P-medium,
C = D = 0, neither of the dispersion Equations (113), (114) limits
the choice of the one-form ν.
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6.3. Field Conditions

Defining the dot product for two two-forms Φ,Ψ as

Φ ·Ψ = Φ|(eNbΨ) = eN |(Φ ∧Ψ) = Ψ ·Φ, (115)

the fields of any plane wave in any linear medium satisfy the
orthogonality conditions Ψ · Ψ = 0 and Φ · Φ = 0. For the field
two-form Φ of a plane wave in a generalized P-medium we obtain the
condition

Ψ ·Ψ−∆PΦ ·Φ = Φ|
(
M T |eNbM−∆PeNbI (2)T

)
|Φ

= Φ|
(
P (2)T |eNbP (2) −∆PeNbI (2)T + 2CD|P (2) + (D ·D)CC

)
|Φ

= (Φ|C)
((

2D|P (2) + (D ·D)C
)
|Φ

)
= 0, (116)

since P (2)T |eNbP (2) − ∆PeNbI (2)T = 0. From this we conclude that
the field of a plane wave in a generalized P-medium must satisfy either
of the two conditions:

C|Φ = 0, (117)(
2D|P (2) + (D ·D)C

)
|Φ = 0. (118)

In 3D expansions these conditions have the respective form

(c1 ∧ c2) |B + c3|E = 0, (119)(
(d1 ∧ d2) |P (2)

s + d3|Ps ∧ p + ∆Dc1 ∧ c2

)
|B

−
(
((d1 ∧ d2) bπ − pd3) |Ps + (d3|π)p−∆Dc3

)
|E = 0, (120)

∆D =
1
2
D ·D =

1
2
ε123| (d1 ∧ d2 ∧ d3) . (121)

Obviously, (117) and (118) are associated to the two dispersion
Equations (113), (114). The question remains which one corresponds
to which one. Let us consider the wave associated to (117). Because
in this case, the generalized P-medium can be replaced by the un-
generalized P-medium, the field two-form must be of the form (83).
Requiring (117) to be satisfied,

C|Φ = AC|
(
ν ∧ P−1|ν

)
= −Aν|

(
CbP−1

)
|ν = 0, (122)

we arrive at (114). Since (114) corresponds to (117), (113) must
correspond to (118).
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7. CONCLUSION

In this paper, a class of media is considered whose constitutive relation
resembles that of the class of Q-media studied a few years ago. Because
of its definition in four-dimensional formalism is so simple, the medium
class deserves attention. Applying three-dimensional expansions, it is
demonstrated that the medium equations cannot be expressed with
Gibbsian vectors and dyadics as D and B in terms of E and H,
because the dyadic µ−1

g has no inverse. As a special case, P-media
with no skewon component are considered. It is shown that, in such a
case, there cannot be any principal component. Equivalently, a pure
principal P-medium does not exist, contrary to what is known for Q-
media. As another example, the special case of uniaxial P-media is
considered in relation to uniaxial skewon-axion (or IB)-media. The half
space of uniaxial P-media can be used to realize the recently studied
DB boundary condition requiring vanishing normal components of D
and B. As another property for the P-medium it is shown that there
is no restricting condition (dispersion equation) for the wave one-
form of a plane wave, which property is shared with the skewon-axion
medium. Finally, a generalization to P-media, similar to that of Q-
media, is introduced and the corresponding plane-wave properties are
briefly studied. It is shown that, for the generalized P-medium, the
dispersion equation is factorized in two simpler ones the solutions of
which correspond to certain polarization properties of the plane wave.

APPENDIX A. PROPERTIES OF SOME DYADICS

A.1. Gibbsian Dyadics

Because spatial vectors, bivectors, one-forms and two-forms have three
components, they can be represented by Gibbsian vectors, elements of
E1. The same applies to various 3D dyadics. Let us consider the
different cases.

The Gibbsian representation depends on a chosen spatial metric
dyadic Gs ∈ E1E1

Gs =
3∑

1

eiei = Γs
−1, Γs =

3∑

1

εiεi, (A1)

the one-form fields E,H can be transformed to Gibbsian vectors as

Eg = Gs|E, Hg = Gs|H. (A2)
The two-form fields D,B are transformed by

Dg = e123bD, Bg = e123bB. (A3)
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A 3D bivector A is first transformed to a one-form ε123bA:

Ag = Gs|(ε123bA). (A4)

The Gibbsian counterparts of the spatial medium dyadics are
defined by

αg = e123bαcε123|Gs, ε
′
g = e123bε′, (A5)

µ−1
g = Gs|µ−1cε123|Gs, βg = Gs|β, ∈ E1E1. (A6)

The dot and cross products between two Gibbsian quantities are
defined by

βg ·Eg = βg|Γs|Eg = Gs|β|Γs|
(
Gs|E

)
= Gs|β|E, (A7)

ag × bg = e123b
((

Γs|ag

)
∧

(
Γs|bg

))
. (A8)

A.2. Unipotent Dyadics

Dyadics D ∈ E1F1 satisfying

D 2 = I, (A9)

are called unipotent. A unipotent dyadic has an inverse which equals
the dyadic itself. Expressing the condition (A9) as

(
D− I

)
|
(
D + I

)
= 0, (A10)

and considering solutions in the form

D = I− 2Π, (A11)

we see that the dyadic Π satisfies

Π 2 = Π. (A12)

This means that Π must be a projection dyadic. The complementary
projection dyadic

Π
′
= I−Π, (A13)

can be shown to satisfy the same Equation (A12) and the conditions

Π|Π′ = 0, Π + Π
′
= I. (A14)

The unipotent dyadic can be expressed in various forms as

D = Π
′ −Π = I− 2Π = −

(
I− 2Π

′)
. (A15)
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Any projection dyadic Π maps vectors of the four-dimensional
vector space into a subspace of dimension p and acts as a unit dyadic
for vectors in that subspace. Correspondingly, Π

′
maps any vector in

the complementary subspace of dimension 4 − p and acts as a unit
dyadic in that subspace. We can choose a vector basis {ei} and the
reciprocal basis of one-forms {εi} in a suitable manner so that vectors
e1 . . . ep and ep+1 . . . e4 belong to the corresponding subspaces. In this,
we can separate five different cases,

(i) p = 0, ⇒ Π = 0 Π
′
= e1ε1 + e2ε2 + e3ε3 + e4ε4 = I,

(ii) p = 1, ⇒ Π = e1ε1, Π
′
= e2ε2 + e3ε3 + e4ε4,

(iii) p = 2, ⇒ Π = e1ε1 + e2ε2, Π
′
= e3ε3 + e4ε4,

(iv) p = 3, ⇒ Π = e1ε1 + e2ε2 + e3ε3, Π
′
= e4ε4,

(v) p = 4, ⇒ Π = e1ε1 + e2ε2 + e3ε3 + e4ε4 = I, Π
′
= 0

From the previous it follows that there are three different types of
solutions to (A9). The cases 1 and 5 correspond to the solutions

D = ±I, (A16)

while the cases 2 and 4 lead to

D = ±(I− 2e1ε1), (A17)

and the case 3 yields

D = ±
(
I− 2(e1ε1 + e2ε2)

)
. (A18)

It is easy to check that all these expressions satisfy (A9).
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