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Abstract—In this paper, we analyze the electromagnetic response of a
metamaterial slab in the case of normal incidence using the point-dipole
interaction model and an expansion of polarization by eigenmodes.
The problem is simplified by assuming that the lattice dimensions
are smaller than a half wavelength and invoking the nearest neighbor
approximation. In this manner, we find the structure supports three
modes: an ordinary mode and two extraordinary modes. A systematic
method is presented to find the scattering from the slab, and the results
are confirmed by full wave simulation using Ansoft HFSS.

1. INTRODUCTION

The metamaterial slab, which is finite in the direction normal to
the surface and infinite (or electrically very large) in the transverse
directions, is an important structure to study with a number of
applications. Perhaps one of the most well-known and referenced
applications is the “perfect lens” [1], which is a slab with µr ,eff

= εr ,eff = −1 that can theoretically achieve perfect imaging by
reproducing both the propagating and evanescent waves associated
with a flat object. While such a perfect lens has inevitably been shown
to be impossible to reach in practice, a real slab can certainly approach
the theoretical limit [2–6]. For microwave applications, a metamaterial
slab with a near-zero index of refraction neff = √

εr ,eff µr ,eff ≈ 0 can
be used to increase the directivity of an antenna by blocking obliquely
incident waves [7–10]. Metamaterial slabs have also been proposed

Received 10 January 2011, Accepted 24 March 2011, Scheduled 13 April 2011
Corresponding author: Aaron D. Scher (aaronsky12@gmail.com).



2 Scher and Kuester

as a means of miniaturizing resonant cavities [11–13] and for making
small resonant absorbers [14]. Another major application is material
characterization, in which the measured scattering from a metamaterial
slab under test is used to infer the effective medium parameters of the
composite itself [15–18].

Of course, a metamaterial slab is not really an ideal continuum
with well-defined boundaries, but a number of planar arrays of
scatterers cascaded along the array axis. Treating such a structure
as an effective medium requires careful consideration. For one, the
effective thickness ts of the slab is seemingly ambiguous, even though
a common and intuitive choice is to simply assume the effective
thickness is ts = d × N , where d is the lattice constant along
the array axis and N is the number of lattice planes. Also, due
to the inherent structural asymmetry at particle positions near the
surface, the local electromagnetic fields and currents at these positions
naturally differ from those in the bulk of the medium. Consequently,
the polarization distribution of the discrete scatterers can vary rapidly
and even oscillate within a thin transition layer near the surface [19–
23]. Various models for the air-metamaterial interface have been
proposed to account for surface effects, such as a thin effective Drude
transition layer [16] and a pair of electric and magnetic effective
surface susceptibilities, which lead to the generalized sheet transition
conditions [24].

Besides the surface effects, there still seems to be no clear
consensus on how to properly assign the effective parameters µr ,eff

and εr ,eff to the bulk itself. In the long-wavelength limit, the classic
Clausius-Mossotti relations relate the polarizabilities of the scatterers
to the effective medium parameters. However, at higher frequencies in
which the inhomogenieties become sizable compared to the wavelength
inside the medium, the simple Clausius-Mossotti approximation can
break down, and a nonlocal (i.e., spatially dispersive) characterization
of the bulk response may be required. For such a case, a variety of
homogenization schemes have been proposed (e.g., see Refs. [16, 25–
27]).

It is therefore important to examine the electromagnetic response
of a metamaterial slab in an analytical way that is independent
of the effective medium description altogether. Analytic solutions
are useful as a benchmark to compare with the myriad of effective
medium and surface models proposed in the literature. For design
purposes they promote a better understanding and insight into the
scattering problem. In this paper, we formulate an analytic solution
by employing the point-interaction model in which each individual
scatterer is considered as a simple responding point-dipole. This model
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(also sometimes called the “microscopic model”) has been a useful
and popular tool for analyzing scattering problems for decades. For
example, Ewald employed the model in is his pioneering work on X-
ray diffraction [28] and Sivukhin used it to systematically study the
properties of clean crystalline surfaces [23].

The point-dipole interaction model was also utilized in an
influential 1969 paper by Mahan and Obermair [29], in which the
reflectivity of a crystalline half-space in the case of normal incidence
was solved for by expressing the discrete polarization distribution as
a superposition of the infinite crystal polarization eigenmodes. Later,
Philpott extended this work to the case of oblique incidence for both
semi-infinite crystals [30, 31] and slabs of finite thickness [32]. In
more recent years, the eigenmode approach has been expanded and
adapted to the analysis of artificial crystals and metamaterials (e.g.,
see Refs. [16, 25, 33–42]).

In this paper, we apply the eigenmode approach to the specific
problem of scattering from a metamaterial slab in the case of normal
incidence. In some sense, this can be considered as an expansion of
Philpott’s work on purely-dielectric slabs [32] to the more general
case of a magnetodielectric slab. In our analysis, we consider only
nearest-neighbor near-field interactions, which offers a good balance
between numerical accuracy and simplicity. With this, we shall find
that the dispersion relation contains three roots, which characterize
the propagation of an ordinary mode and two extraordinary modes.
More recently Simovski et al. derived the dispersion relation for a
magnetodielectric crystal (akin to what we are considering here) in
two alternative equivalent forms [16, 40]. However, in these works the
authors ignore all near-field interactions between neighboring planes.
While this is adequate for investigating bulk properties, we include
nearest-neighbor interactions, because, as Berman demonstrated for
the purely-dielectric case [22], such near-field interactions are crucial
for accurately capturing the detailed surface effects.

2. PROBLEM FORMULATION

Consider a transverse electromagnetic (TEMz) plane wave with wave
vector k = k0âz normally incident from free-space upon a metamaterial
slab composed of a periodic arrangement of scatterers arranged in the
nodes an a×b×d orthorhombic lattice, as shown in Fig. 1. The lattice
is of infinite extent along the x- and y-directions but contains a finite
number of periods N along the z-direction. The sites of the lattice are
taken to be

Ras,bl,dn = âxas + âybl + âzdn (1)
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(a)                                                  (b) 

Figure 1. Metamaterial slab excited by a normally incident plane
wave. Shown here are views of the (a) xz-plane cross section and (b)
one point perspective in the transverse plane.

where s, l = 0,±1,±2, . . ., and n = 0, 1, 2, . . . , N − 1. Since we are
interested in the structure’s response at frequencies below the Bragg
diffraction regime, we restrict the dimensions of the lattice to be smaller
than a wavelength in free-space, i.e., k0 max (a, b, d) < 2π. Note that in
the more general case of oblique incidence (not considered here), which
my involve angles of incidence approach grazing, the dimensions of the
lattice would have to be smaller than a half wavelength in free-space
to avoid Bragg diffraction.

In the point-dipole approximation the response of a given scatterer
is characterized solely by its electric and magnetic polarizability
dyadics, denoted ↔

αE (ω) and ↔
αM (ω), respectively. In this work, we

focus on biaxially anisotropic particles exhibiting no magnetoelectric
coupling, which corresponds to polarizability dyadics with non-zero
elements exclusively along the diagonal, i.e., ↔αE = âxâxαxx

E +âyâyα
yy
E +

âzâzα
zz
E and ↔

αM = âxâxαxx
M + âyâyα

yy
M + âzâzα

zz
M . These polarizability

dyadics characterize scatterers with geometries exhibiting mirror
symmetries about the three principle planes (i.e., the xy-, xz -, and yz -
planes). The consideration of more complicated particles such as split-
ring resonators which exhibit cross-polarization and magnetoelectric
coupling are beyond the scope of this work. In Ref. [15], we showed how
to extract the elements of the polarizability dyadics from the measured
or simulated scattering parameters of a single planar array of such
scatterers.

With no further loss in generality, let us assume that the incident
plane wave is polarized along the x-axis, such that the incident electric
field Einc and incident magnetic field Hinc take the form:

Einc = âxEinc,xe−jk0z (2)
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Hinc = ây
Einc,x

η0
e−jk0z (3)

where Einc,x is the amplitude of the incident electric field and η0 =√
µ0/ε0 is the wave impedance of free space. In the point-dipole

approximation, the incident wave excites a distribution of oscillating
point-electric and point-magnetic dipole moments situated at the nodes
of the lattice, denoted ps,l,n ≡ p(as,bl,dn) and ms,l,n≡ m(as,bl,dn),
respectively. Because the system obeys translational invariance in the
xy-plane, the electric and magnetic dipole distributions take the form
ps,l,n = pn and ms,l,n = mn, where pn ≡ pn,0,0 and mn ≡ mn,0,0

denote the electric and magnetic dipole moments of the particle located
at the origin of lattice plane z = dn, respectively.

To find the distributions {pn} and {mn}, we take the local-field
approach and write the following system of equations, which govern
the response for each scatterer positioned along the z-axis:

pn′ = ε0
↔
αE ·Eloc,n′ , ∀ n′ = 0, 1, 2, . . . , N − 1 (4)

mn′ = µ−1
0

↔
αM ·Bloc,n′ , ∀ n′ = 0, 1, 2, . . . , N − 1, (5)

where Eloc,n′ and Bloc,n′ denote the local electric and magnetic fields
acting on the scatterer at site (0, 0, n′); this site corresponds to the
origin of the a×b array in plane z = dn′. The local electric field Eloc,n′
is found by superposing the incident electric field at site (0, 0, n′) and
the induced electric fields at that site produced by all other scatters
with indices (s, l, n) 6= (0, 0, n′); a dual statement holds for the local
magnetic field Bloc,n′ . Taking a planewise summation approach (akin
to that taken in Refs. [29–32, 39, 43]), the above statements can be
expressed as the following:

Eloc,n′=
1

(ab)3/2 ε0

(
N−1∑

n=0

↔
C

TEMz

n−n′ ·pn−
1
c0

N−1∑

n=0

↔
D

TEMz

n−n′ ·mn

)
+Einc,n′ (6)

Bloc,n′=
µ0

(ab)3/2

(
c0

N−1∑

n=0

↔
D

TEMz

n−n′ ·pn+
N−1∑

n=0

↔
C

TEMz

n−n′ ·mn

)
+Binc,n′ (7)

where c0 is the speed of light in vacuum, Einc,n′ ≡ Einc (0, 0, dn′),

Binc,n′ ≡ Binc (0, 0, dn′), and
↔
C

TEMz

n−n′ and
↔
D

TEMz

n−n′ denote the co-
field and cross-field planar interaction dyadics, respectively. By

definition, the co-field planar interaction dyadic
↔
C

TEMz

n−n′ quantifies
the contribution to the local electric (magnetic) field at site (0, 0, n′)
produced by an a × b array of electric (magnetic) dipoles located in
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plane z = dn:

↔
C

TEMz

n−n′ ≡





(ab)3/2
∞∑

s=−∞

∞∑
l=−∞

↔
G

(1) (
Ras,bl,d(n−n′)

)
, n 6= n′

(ab)3/2 ∑
(s,l) 6=(0,0)

↔
G

(1)
(Ras,bl,0), n = n′

(8)

where the symbol
∑

(s,l)6=(0,0)

(·) denotes a double infinite sum over all

indices (s, l) 6= (0, 0); and
↔
G

(1)
(Rx,y,z) is the normalized dyadic

Green’s function of free space describing the electric (magnetic) field
evaluated at position Rx,y,z = âxx+ âyy + âzz as produced by a single
electric (magnetic) dipole located at the coordinate origin:

↔
G

(1)
(Rx,y,z) =

1
4π

(
k2

0

↔
I + ∇∇

) e−jk0|Rx,y,z |

|Rx,y,z| (9)

where
↔
I ≡ âxâx + âyây + âzâz. In our notation, the terms

↔
G

(1)
(Ras,bl,d(n−n′)) and

↔
G

(1)
(Ras,bl,0), which appear in Eq. (8), imply

that the differential operation given by Eq. (9) is performed before
the specified change of variables; (x, y, z) = (as, bl, dn− dn′) and
(x, y, z) = (as, bl, 0), respectively. The cross-field planar interaction

dyadic
↔
D

TEMz

n−n′ quantifies the contribution to the local magnetic
(electric) field at site (0, 0, n′) produced by an a × b array of electric
(magnetic) dipoles located in plane z = dn:

↔
D

TEMz

n−n′ ≡





(ab)3/2
∞∑

s=−∞

∞∑
l=−∞

↔
G

(2) (
Ras,bl,d(n−n′)

)
, n 6= n′

(ab)3/2 ∑
(s,l)6=(0,0)

↔
G

(2)
(Ras,bl,0), n = n′

(10)

where
↔
G

(2)
(Rx,y,z) is the normalized dyadic Green’s functions of free

space describing the magnetic (electric) field evaluated at position
Rx,y,z = âxx + âyy + âzz as produced by a single electric (magnetic)
dipole located at the coordinate origin:

↔
G

(2)
(Rx,y,z) =

−jk0

4π

(
∇× ↔

I
) e−jk0|Rx,y,z |

|Rx,y,z| (11)

By definition, both
↔
C

TEMz

n−n′ and
↔
D

TEMz

n−n′ are dimensionless quantities.
The multiplying factors, (ab)−3/2 ε−1

0 and (ab)−3/2 µ0, on the right sides
of Eqs. (6) and (7), respectively, serve as normalization factors.
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In matrix form, the planar interaction dyadics can be written in
terms of their components:

↔
C

TEMz

n−n′ =




CTEMz ,xx
n−n′ CTEMz ,xy

n−n′ CTEMz ,xz
n−n′

CTEMz ,yx
n−n′ CTEMz ,yy

n−n′ CTEMz ,yz
n−n′

CTEMz ,zx
n−n′ CTEMz ,zy

n−n′ CTEMz ,zz
n−n′


 (12)

↔
D

TEMz

n−n′ =




DTEMz ,xx
n−n′ DTEMz ,xy

n−n′ DTEMz ,xz
n−n′

DTEMz ,yx
n−n′ DTEMz ,yy

n−n′ DTEMz ,yz
n−n′

DTEMz ,zx
n−n′ DTEMz ,zy

n−n′ DTEMz ,zz
n−n′


 (13)

where,

CTEMz ,uv
n−n′ (k0, a, b, d)

=





(ab)3/2 âu ·
∞∑

s=−∞

∞∑
l=−∞

↔
G

(1) (
Ras,bl,d(n−n′)

) · âv, n 6= n′

(ab)3/2 âu ·
∑

(s,l) 6=(0,0)

↔
G

(1)
(Ras,bl,0) · âv, n = n′

(14)

DTEMz ,uv
n−n′ (k0, a, b, d)

=





(ab)3/2 âu ·
∞∑

s=−∞

∞∑
l=−∞

↔
G

(2) (
Ras,bl,d(n−n′)

) · âv, n 6= n′

(ab)3/2 âu ·
∑

(s,l) 6=(0,0)

↔
G

(2)
(Ras,bl,0) · âv, n = n′

(15)

for u, v = x, y, or z. Using Eq. (14), we find that out of the

nine components of
↔
C

TEz

n−n′ which appear in the right-hand side of
Eq. (12), the following six components are equal to zero: CTEMz ,xy

n−n′ =
CTEMz ,yx

n−n′ = CTEMz ,zy
n−n′ = CTEMz ,yz

n−n′ = CTEMz ,xz
n−n′ = CTEMz ,zx

n−n′ = 0.

We can therefore rewrite
↔
C

TEMz

n−n′ as the following symmetric matrix in
terms of only CTEMz ,xx

n−n′ , CTEMz ,yy
n−n′ and CTEMz ,zz

n−n′ :

↔
C

TEMz

n−n′ =




CTEMz ,xx
n−n′ 0 0

0 CTEMz ,yy
n−n′ 0

0 0 CTEMz ,zz
n−n′


 (16)

We leave the details of CTEMz ,xx
n−n′ and CTEMz ,yy

n−n′ to the next section
(CTEMz ,zz

n−n′ is not needed for our purposes, since, as will be shown, the
polarization distribution has no z-component). Using Eq. (15), we find
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that out of the nine components of
↔
D

TEMz

n−n′ which appear on the right-
hand side of Eq. (13), the following seven components are equal to
zero: DTEMz ,xx

n−n′ = DTEMz ,zz
n−n′ = DTEMz ,yy

n−n′ = DTEMz ,zx
n−n′ = DTEMz ,xz

n−n′ =
DTEMz ,yz

n−n′ = DTEMz ,zy
n−n′ = 0. From the remaining two components,

only one is independent; allowing us to rewrite
↔
D

TEz

n−n′ as the following
skew-symmetric matrix in terms of only DTEMz ,yx

n−n′ :

↔
D

TEMz

n−n′ =




0 −DTEMz ,yx
n−n′ 0

DTEMz ,yx
n−n′ 0 0

0 0 0


 (17)

We leave the details of DTEMz ,yx
n−n′ to the next section.

By substituting Eqs. (6), (7), (16), and (17), into Eqs. (4) and (5),
we find that the only non-zero vector components of pn and mn are
those that lie along the same directions as the incident field vectors,
Einc,n′ and Binc,n′ , respectively. Hence, we may write pn = âxp

(x)
n

and mn = âym
(y)
n . Consequently, it follows from Eqs. (6) and (7) that

the local electric and magnetic fields, Eloc,n′ and Bloc,n′ , must also be
polarized along the same directions as the incident field vectors Einc,n′

and Binc,n′ , respectively, i.e. Eloc,n′ = âxE
(x)
loc,n and Bloc,n′ = âyB

(y)
loc,n.

Substituting Eqs. (2), (3), (6), (7), and (16)–(17) into Eqs. (4) and (5)
yields the following set of 2N coupled local-field equations, which are
to be solved for the 2N unknowns, p

(x)
n and m

(y)
n ; n = 0, 1, 2, . . . , N−1:

p
(x)
n′ =

αxx
E

(ab)3/2

[
N−1∑

n=0

p(x)
n CTEMz ,xx

n−n′ +
1
c0

N−1∑

n=0

m(y)
n DTEMz ,yx

n−n′

]

+αxx
E ε0Einc,xe−jk0dn′ , ∀ n′ = 0, 1, 2, . . . , N − 1 (18)

m
(y)
n′ =

αyy
M

(ab)3/2

[
c0

N−1∑

n=0

p(x)
n DTEMz ,yx

n−n′ +
N−1∑

n=0

m(y)
n CTEMz ,yy

n−n′

]

+αyy
M

Einc,x

η0
e−jk0dn′ , ∀ n′ = 0, 1, 2, . . . , N − 1 (19)

3. THE PLANAR INTERACTION CONSTANTS

A key to solving Eqs. (18) and (19) resides in calculating CTEMz ,xx
n−n′ ,

CTEMz ,yy
n−n′ and DTEMz ,xy

n−n′ . In Section 4 of Ref. [44], we examined a
metamaterial of infinite extent (as opposed to a slab of finite extent
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in one direction, as we are doing here), which involved considering
the same interaction terms. In this reference, it was found to be
useful to expand these interaction terms into their short-range (SR)
and long-range (LR) components. For instance, the term CTEMz ,xx

n−n′
can be expanded as:

CTEMz ,xx
n−n′ (k0, a, b, d) ≡ CTEMz ,xx

n−n′,SR (k0, a, b, d) + CTEMz ,xx
n−n′,LR (k0, a, b, d)

(20)
where the respective SR and LR components of CTEMz ,xx

n−n′ are given by:

CTEMz ,xx
n−n′,LR (k0, a, b, d) = −j

k0 (ab)1/2

2
e−j|n−n′|k0d (21)

CTEMz ,xx
n−n′,SR (k0, a, b, d)

=





∑
(s,l)6=(0,0)

(ab)1/2[k2
0−(2πs/a)2]

2
√

( 2πs
a )2

+( 2πl
b )2−k2

0

e−|n
′−n′|d

√
( 2πs

a )2
+( 2πl

b )2−k2
0 , n 6= n′

Re
{

CTEMz ,xx
0

}
+ j (ab)3/2 k3

0
6π , n = n′

(22)

The double sum in Eq. (22) for n 6= n′ (describing short-
range interplanar coupling) is rapidly convergent and convenient for
numerical calculation. Assuming that k0 max (a, b) > 2π, this sum
quickly decays to zero with increasing interplanar distance |n− n′| d.
Physically, the terms in this sum are associated with the cut-off
(evanescent) free-space modes produced by a planar array of oscillating
dipoles that exist only in the near-field. For large interplanar distances
|n− n′| d, the long-range term given by Eq. (21) is dominant. The
intraplaner term CTEMz ,xx

0 in the second expression in Eq. (22) can be
numerically calculated using the series given by Eq. (13) in Ref. [44].

By the symmetry of the problem, CTEMz ,yy
n−n′ is related to CTEMz ,xx

n−n′
by interchanging the variables a and b:

CTEMz ,yy
n−n′ (k0, a, b, d) = CTEMz ,xx

n−n′ (k0, b, a, d) (23)

Hence, we may also expand CTEMz ,yy
n−n′ as a sum of two components, de-

scribing separately short-range (SR) and long-range (LR) interactions:

CTEMz ,yy
n−n′ (k0, a, b, d) ≡ CTEMz ,yy

n−n′,SR (k0, a, b, d) + CTEMz ,yy
n−n′,LR (k0, a, b, d)

= CTEMz ,xx
n−n′,SR (k0, b, a, d) + CTEMz ,xx

n−n′,LR (k0, b, a, d) (24)

From Eq. (21), we see that the long-range component of CTEMz ,xx
n−n′

is invariant with respect to the interchange of variables a and b, i.e.,
CTEMz ,xx

n−n′,LR (k0, a, b, d) = CTEMz ,xx
n−n′,LR (k0, b, a, d). Hence, the long-range
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components of CTEMz ,yy
n−n′ and CTEMz ,xx

n−n′ are equal, i.e. CTEMz ,yy
n−n′,LR =

CTEMz ,xx
n−n′,LR . From Eqs. (22) and (24), we see that the short range

components of CTEMz ,yy
n−n′ and CTEMz ,xx

n−n′ are only equal in the case of a
square lattice (a = b).

Finally, we expand DTEMz ,yx
n−n′ as a sum of two components, de-

scribing separately short-range (SR) and long-range (LR) interactions:

DTEMz ,yx
n−n′ (k0, a, b, d) ≡ DTEMz ,yx

n−n′,SR (k0, a, b, d) + DTEMz ,yx
n−n′,LR (k0, a, b, d)

(25)
where the respective SR and LR components of DTEMz ,yx

n−n′ are given
by [44]:

DTEMz ,yx
n−n′,LR (k0, a, b, d) = sgn

(
n− n′

) jk0 (ab)1/2

2
e−j|n−n′|k0d (26)

DTEMz ,yx
n−n′,SR (k0, a, b, d)

= sgn
(
n− n′

) jk0 (ab)1/2

2

∑

(s,l)6=(0,0)

e−|n
′−n′|d

√
( 2πs

a )2
+( 2πl

b )2−k2
0 (27)

where sgn(x) denotes the signum function (sgn(x) = 1 for x > 1,
sgn(x) = −1 for x < 1, and sgn(x) = 0 for x = 0).

In general, the short-range terms, CTEMz ,xx
n−n′,SR , CTEMz ,yy

n−n′,SR and

DTEMz ,yx
n−n′,SR , decrease rapidly in magnitude as a function of increasing

separation distance |n− n′| d, while the long range terms, CTEMz ,xx
n−n′,LR ,

CTEMz ,yy
n−n′,LR and DTEMz ,yx

n−n′,LR , simply change phase. Guided by the results
and discussion of Section 4 in Ref. [44], we find that to a good
approximation, the SR co-field terms, CTEMz ,xx

n−n′,SR and CTEMz ,yy
n−n′,SR , are

negligible and can be set equal to zero for |n− n′| ≥ 2. This
nearest-neighbor approximation drastically simplifies our problem at
the expensive of only a small loss in accuracy, and is independent on
the exact nature of the scatterer. Additionally, the SR cross-field term,
DTEMz ,yx

n−n′,SR , is negligible compared to
∣∣∣DTEMz ,yx

n−n′,LR

∣∣∣ for all planar indices,
and can thus be set to zero altogether. In general, we find that these
approximations hold valid so long as the lattice period along the normal
is equal to or larger than the period along the transverse directions (i.e.,
d ≥ max(a, b)). This condition is assumed throughout the rest of the
paper. Applying these approximations to Eqs. (18) and (19) results in
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the following form of the local-field equations:

p
(x)
n′ =

αxx
E

(ab)3/2

[
N−1∑

n=0

p(x)
n CTEMz ,xx

n−n′,LR +
n′+1∑

n=n′−1

p(x)
n CTEMz ,xx

n−n′,SR

+
1
c0

N−1∑

n=0

m(y)
n DTEMz ,yx

n−n′,LR

]
+ αxx

E ε0Einc,xe−jk0dn′ ,

∀n′ = 0, 1, 2, . . . , N − 1 (28)

m
(y)
n′ =

αyy
M

(ab)3/2

[
c0

N−1∑

n=0

p(x)
n DTEMz ,yx

n−n′,LR +
N−1∑

n=0

m(y)
n CTEMz ,xx

n−n′,LR

+
n′+1∑

n=n′−1

m(y)
n CTEMz ,yy

n−n′,SR

]
+ αyy

M

Einc,x

η0
e−jk0dn′ ,

∀ n′ = 0, 1, 2, . . . , N − 1 (29)

where in writing Eq. (29) we substituted CTEMz ,yy
n−n′,LR = CTEMz ,xx

n−n′,LR .

4. EIGENMODE EXPANSION

Equations (28) and (29) constitute a linear system of 2Nequations
for the 2N unknowns: p

(x)
n and m

(y)
n ; n = 0, 1, 2, . . . , N − 1. One

way to solve this set of equations is simply by direct numerical
computation, which involves numerically inverting the corresponding
2N × 2N matrix of the coefficient of variables. Such an approach
was taken by Berman [22] for the all-dielectric case and Shore and
Yaghjian [45] for the case of magnetodielectric spherical particles. Here
we take an alternative approach and solve the system of equations using
the following expansion of polarization by eigenmodes:

p(x)
n =

∑

i

P+
x,ie

−jqz,idn + P−
x,ie

+jqz,idn (30)

m(y)
n =

∑

i

M+
y,ie

−jqz,idn + M−
y,ie

+jqz,idn, (31)

where P+
x,i and M+

y,i are the amplitudes of the eigenmodes traveling
in the +z-direction with wavenumbers qz,i; P−

x,i and M−
y,i are the

amplitudes of the eigenmodes traveling in the −z-direction with
wavenumbers −qz,i; and i = 1, 2, . . . , I, where I is the number of
modes as determined by the number of roots of the dispersion relation.
Each eigenmode (or Floquet wave) constitutes a “natural” solution
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which can independently propagate through the corresponding infinite
periodic structure with wavenumber ±qz,i.

Substituting Eqs. (30) and (31) into Eqs. (28) and (29) yields:
∑

i

(
P+

x,ie
−jqz,ian′ + P−

x,ie
+jqz,ian′

)

=
αxx

E

(ab)3/2

{∑

i

P+
x,i

(
N−1∑

n=0

e−jqz,idnCTEMz ,xx
n−n′,LR +

n′+1∑

n=n′−1

e−jqz,idnCTEMz ,xx
n−n′,SR

)

+
∑

i

P−
x,i

(
N−1∑

n=0

e+jqz,idnCTEMz ,xx
n−n′,LR +

n′+1∑

n=n′−1

e+jqz,idnCTEMz ,xx
n−n′,SR

)

+
1
c0

∑

i

M+
y,i

(
N−1∑

n=0

e−jqz,idnDTEMz ,yx
n−n′,LR

)

+
1
c0

∑

i

M−
y,i

(
N−1∑

n=0

e+jqz,idnDTEMz ,yx
n−n′,LR

)}

+ε0α
xx
E Einc,xe−jk0dn′ , ∀ n′ = 0, 1, 2, . . . , N − 1 (32)

∑

i

(
M+

y,ie
−jqz,ian′ + M−

y,ie
+jqz,ian′

)

=
αyy

M

(ab)3/2

{
c0

∑

i

P+
x,i

(
N−1∑

n=0

e−jqz,idnDTEMz ,yx
n−n′,LR

)

+c0

∑

i

P−
x,i

(
N−1∑

n=0

e+jqz,idnDTEMz ,yx
n−n′,LR

)

+
∑

i

M+
y,i

(
N−1∑

n=0

e−jqz,idnCTEMz ,xx
n−n′,LR +

n′+1∑

n=n′−1

e−jqz,idnCTEMz ,yy
n−n′,SR

)

+
∑

i

M−
y,i

(
N−1∑

n=0

e+jqz,idnCTEMz ,xx
n−n′,LR +

n′+1∑

n=n′−1

e−jqz,idnCTEMz ,yy
n−n′,SR

)}

+αxx
M

Einc,xe−jk0dn′

η0
, ∀ n′ = 0, 1, 2, . . . , N − 1 (33)

We proceed next by evaluating one-by-one in closed-form the finite
planewise sums over n which appear in Eqs. (32) and (33). First, let
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us expand the sums involving short-range interactions:
n′+1∑

n=n′−1

e±jqz,idnCTEMz ,xx
n−n′,SR

= e±jqz,idn′
{

C̃TEMz ,xx
0,SR +2CTEMz ,xx

1,SR cos (qz,id)−δn′0C
TEMz ,xx
1,SR e∓jqz,id

−δn′(N−1)C
TEMz ,xx
1,SR e∓jqz,id

}
+ j (ab)3/2 k3

0

6π
e±jqz,idn′ (34)

n′+1∑

n=n′−1

e±jqz,idnCTEMz ,yy
n−n′,SR

= e±jqz,idn′
{

C̃TEMz ,yy
0,SR +2CTEMz ,yy

1,SR cos (qz,id)−δn′0C
TEMz ,yy
1,SR e∓jqz,id

−δn′(N−1)C
TEMz ,yy
1,SR e∓jqz,id

}
+ j (ab)3/2 k3

0

6π
e±jqz,idn′ (35)

where δij is the Kronecker delta function (δij = 1 for i = j and
δij = 0 for i 6= j) and C̃TEMz ,xx

0,SR and C̃TEMz ,yy
0,SR are defined to be the

respective interaction constants minus the radiation damping term:

C̃TEMz ,xx
0,SR ≡ CTEMz ,xx

0,SR − j (ab)3/2 k3
0

/
6π = Re

(
CTEMz ,xx

0

)
(36)

C̃TEMz ,yy
0,SR ≡ CTEMz ,yy

0,SR − j (ab)3/2 k3
0

/
6π = Re

(
CTEMz ,yy

0

)
. (37)

Next, let us evaluate the planewise sums over n that appear in
Eqs. (32) and (33) involving the long-range component CTEMz ,xx

n−n′,LR :

N−1∑

n=0

e±jqz,idnCTEMz ,xx
n−n′,LR = −j

k0 (ab)1/2

2

N−1∑

n=0

e±jqz,idne−j|n−n′|k0d

=−j
k0 (ab)1/2

2

{
e−jk0dn′

[
1

1− ej(±qz,i+k0)dn

]

+e±jqz,idn′
[

j sin (k0d)
cos (k0d)− cos (qz,id)

]
−e+jk0dn′

[
e−j(k0−(±)qz,i)Nd

1− ej(±qz,i−k0)d

]}
(38)

where we substituted Eq. (21) for CTEMz ,xx
n−n′,LR . Note that the final

expression has been purposely expressed as a sum of terms proportional
to e−jk0dn′ , e+jk0dn′ , and e±jqzdn′ .

Next, let us evaluate the planewise sums over n that appear in
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Eqs. (32) and (33) involving the long-range component DTEMz ,yx
n−n′,LR :

N−1∑

n=0

e±jqz,idnDTEMz ,yx
n−n′,LR

=
jk0 (ab)1/2

2

N−1∑

n=0

sgn
(
n− n′

)
e±jqz,idne−j|n−n′|k0d

=
jk0 (ab)1/2

2

{
±e±jqz,idn′

[
j sin (qz,id)

cos (k0d)− cos (qz,id)

]

−e−jk0dn′
[

1
1− ej(±qz,i+k0)dn

]
−e+jk0dn′

[
ej(±qz,i−k0)Nd

1−ej(±qz,i−k0)d

]}
(39)

where we substituted Eq. (26) for DTEMz ,yx
n−n′,LR , and, as in Eq. (38), the

final expression has been expressed as a sum of terms proportional to
e−jk0dn′ , e+jk0dn′ , and e±jqzdn′ .

Substituting Eqs. (34), (35), (38), and (39) into Eqs. (32) and (33)
yields a rather cumbersome set of local-field equations (not shown)
governing the response of each plane in the system. In general, each
equation involves a superposition of terms proportional to e−jk0dn′ ,
e+jk0dn′ , e−jqzdn′ , and e+jqzdn′ . Since both qz,i and k0 are independent
of both the planar index n′ and the number of planes N , each of these
terms in the equations must separately equal zero. Performing this
grouping leads to the following “decoupled” set of equations which, all
together, completely characterize the slab’s electromagnetic response:

P+
x,i

{
C̃TEMz ,xx

0,SR + 2CTEMz ,xx
1,SR cos (qz,id)−

(
α
′xx
E

)−1
(ab)3/2

+

(
k0 (ab)1/2

2

) (
sin (k0d)

cos (k0d)− cos (qz,id)

)}

+M+
y,i

{
1
c0

(
k0 (ab)1/2

2

)(
sin (qz,id)

cos (k0d)− cos (qz,id)

)}
= 0 (40)

P+
x,i

{
c0

(
k0 (ab)1/2

2

)(
sin (qz,id)

cos (k0d)− cos (qz,id)

)}

+M+
y,i

{
C̃TEMz ,yy

0,SR + 2CTEMz ,yy
1,SR cos (qz,id)−

(
α
′yy
M

)−1
(ab)3/2

+

(
k0 (ab)1/2

2

) (
sin (k0d)

cos (k0d)− cos (qz,id)

)}
= 0 (41)
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P−
x,i

{
C̃TEMz ,xx

0,SR + 2CTEMz ,xx
1,SR cos (qz,id)−

(
α
′xx
E

)−1
(ab)3/2

+

(
k0 (ab)1/2

2

) (
sin (k0d)

cos (k0a)− cos (qz,id)

)}

−M−
y,i

{
1
c0

(
k0 (ab)1/2

2

)(
sin (qz,id)

cos (k0d)− cos (qz,id)

)}
= 0 (42)

−P−
x,i

{
c0

(
k0 (ab)1/2

2

)(
sin (qz,id)

cos (k0d)− cos (qz,id)

)}

+M−
y,i

{
C̃TEMz ,yy

0,SR + 2CTEMz ,yy
1,SR cos (qz,id)−

(
α
′yy
M

)−1
(ab)3/2

+

(
k0 (ab)1/2

2

) (
sin (k0d)

cos (k0d)− cos (qz,id)

)}
= 0 (43)

∑

i

P+
x,ie

+jqz,id + P−
x,ie

−jqz,id = 0 (44)

∑

i

P+
x,ie

−jqz,idN + P−
x,ie

+jqz,idN = 0 (45)

∑

i

M+
x,ie

+jqz,id + M−
x,ie

−jqz,id = 0 (46)

∑

i

M+
x,ie

−jqz,idN + M−
x,ie

+jqz,idN = 0 (47)

∑

i

(
P+

x,i + M+
y,i

/
c0

)(
1

1− e−j(qz,i−k0)d

)

+
(
P−

x,i + M−
y,i

/
c0

)(
1

1− e−j(−qz,i−k0)d

)
=
−j2abε0Einc,x

k0
(48)

∑

i

(
P+

x,i −M+
y,i

/
c0

)(
e−j(k0+qz,i)Nd

1− e−j(qz,i+k0)d

)

+
(
P−

x,i −M−
y,i

/
c0

)(
e−j(k0−qz,i)Nd

1− ej(qz,i−k0)d

)
= 0 (49)

where, in Eqs. (40) – (43), we have defined
(
α
′xx
E

)−1
≡ (αxx

E )−1 − jk3
0

/
6π (50)

(
α
′yy
M

)−1
≡ (

αyy
E

)−1 − jk3
0

/
6π, (51)
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Independent of whether the scatterers are lossy or not, the imaginary
parts of (αxx

E )−1 and (αxx
M )−1 each contain the radiation damping term

+jk3
0

/
6π [15, 24, 46]. In our definitions of

(
α
′xx
E

)−1
and

(
α
′yy
M

)−1

given by Eqs. (50) and (51), this radiation damping term is exactly
canceled with its negative. Hence, α

′xx
E and α

′yy
M are recognized to be

the polarizations computed without radiation damping.
Equations (40)–(43) describe the natural response of the structure

and yield both the dispersion relation and the particular magnetic-
to-electric amplitude ratios, M+

y,i/(c0P
+
x,i) and M−

y,i/(c0P
−
x,i), for each

mode (see Section 5). As an alternative, we could have derived these
same four homogeneous equations by analyzing the natural oscillations
of a corresponding crystal of infinite extent using the Bloch-Floquet
theory. Eqs. (44)–(47) are recognized to be the boundary conditions,
and indicate that both the total electric and magnetic dipole moment
distributions equal zero at two “fictitious” planes in the air-regions
adjacent to the two boundaries of the slab (corresponding to fictitious
planar indices n = −1 and n = N). This perhaps hints at a “natural”
effective thickness to the equivalent continuous medium slab. Eqs. (48)
and (49) constitute the forced response, and result by grouping terms
proportional to e−jk0an′ and e+jk0an′ equal to zero in Eqs. (32) and (33).
As such, Eqs. (48) and (49) can be regarded as the discrete analogs of
the Ewald-Oseen extinction theorem for a magnetodielectric material
slab. Eq. (48) tells us that in discrete space each eigenmode produces a
field traveling plane-to-plane in the +z direction with wavenumber k0

such that the sum total over all such eigenmodes exactly cancels out the
incident field, which also travels in the +z direction with wavenumber
k0. Eq. (49) tells us that that each eigenmode also produces a field
traveling in the −z direction with wavenumber −k0 such that the
sum total over all such eigenmodes exactly cancels to zero (there is
no incident field traveling in the −z direction to be canceled out).

5. THE DISPERSION RELATION

Equations (40) and (41) constitute a 2×2 set of linear equations for the
unknown amplitudes P+

x,i and M+
y,i, while Eqs. (42) and (43) constitute

a 2 × 2 set of linear equations for P−
x,i and M−

y,i. So that a nontrivial
solution exists, the matrix of the coefficient of variables for both sets of
equations must each have a determinant equal to zero. By performing
this operation and simplifying, we find that both sets of equations lead
to the same dispersion relation as the infinite crystal (see Sections 6 in
Ref. [44]) as expected. This dispersion relation can be written in the
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form of a cubic equation with variable cos (qz,ia):

Q3w
3 + Q2w

2 + Q1w + Q0 = 0; w = cos (qz,id) (52)

where the terms Q1, Q2, Q2, and Q0 are given by Eqs. (46)–(49) in
Ref. [44]. By taking the inverse cosine of the roots of Eq. (52), the
eigenvalues qz,i are found within a plus or minus sign. For the lossy
case we choose the sign of qz,i corresponding to a negative imaginary
component (Im [qz,i] < 0). In this manner, the eigenmodes decay
as they travel along the z-axis. For the lossless case, we choose the
sign corresponding to positive energy transfer, such that ∂qz,i/∂ω > 0.
The dispersion relation given by Eq. (52) has precisely three roots
because we included only nearest-neighbor near-field interactions in
the analysis. In general, for magnetodielectric crystals in the case
of normal incidence, including L neighboring near-field interactions
results in a polynomial of degree 1 + 2L. This is in contrast to an
all-dielectric or all-magnetic structure in which the number of roots is
1 + L [29].

Each eigenmode has a set of fixed electric-to-magnetic ampli-
tude ratios, denoted B

TEMz(+)
yx,i ≡M+

y,i/(c0P
+
x,i) and B

TEMz(−)
yx,i ≡M−

y,i

/(c0P
−
x,i). Eq. (40) yields the following expression for B

TEMz(+)
yx,i :

B
TEMz(+)
yx,i =

C̃TEMz ,xx
0,SR +2CTEMz ,xx

1,SR cos(qz,id)

−
(
α
′xx
E

)−1
(ab)3/2+(k0/2)(ab)1/2 sin(k0d)

cos(k0d)−cos(qz,id)(
k0(ab)1/2

2

)(
sin(qz,id)

cos(qz,id)−cos(k0d)

) (53)

Eq. (41) yields an alternative equivalent expression for B
TEMz(+)
yx,i .

Additionally, from Eq. (42) and/or Eq. (43), we find:

B
TEMz(−)
yx,i = −B

TEMz(+)
yx,i (54)

6. THE SCATTERING PARAMETERS

After substituting M+
y,i = c0P

+
x,iB

TEMz(+)
yx,i and M−

y,i = −c0P
−
x,iB

TEMz(−)
yx,i

into Eqs. (46)–(49), we find that Eqs. (44)–(49) form a complete set of
six linear equations, which can be solved for the six unknown ampli-
tudes, P+

x,i and P−
x,i; i = 1, 2, 3. For clarity, let us rewrite Eqs. (44)–(49)

in the matrix form [A][x]=[b], where

[b] =
[
0, 0, 0, 0, 0, Ẽinc,x

]T
(55)
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[x]=
[
P+

x,1, P
+
x,2, P

+
x,3, P

−
x,1, P

−
x,2, P

−
x,3

]T
(56)

[A]=




ejqz,1d ejqz,2d ejqz,3d e−jqz,1d e−jqz,2d e−jqz,3d

e−jqz,1dN e−jqz,2dN e−jqz,3dN ejqz,1dN ejqz,2dN ejqz,3dN

F+
1 F+

2 F+
3 F−

1 F−
2 F−

3

G+
1 G+

2 G+
3 G−

1 G−
2 G−

3

H+
1 H+

2 H+
2 H−

1 H−
2 H−

3

U+
1 U+

2 U+
3 U−

1 U−
2 U−

3




(57)

where, for compactness in notation, we have defined:

Ẽinc,x ≡ −j2abε0Einc,x

k0
(58)

F±
i ≡ ±BTEMz

yx,i e±jqz,id (59)

G±
i ≡ ±BTEMz

yx,i e−(±jqz,iNd) (60)

U±
i ≡

(
BTEMz

yx,i ± 1
) (

1
1− e−j(±qz,i−k0)d

)
(61)

H±
i ≡ −

(
BTEMz

yx,i ± 1
) (

e−j(k0±qz,i)Nd

1− e−j(±qz,i+k0)d

)
(62)

In practice, the matrix equation [A][x] = [b] can be solved by
numerically inverting the 6 × 6 matrix of the coefficient of variables,
[A], which is given by Eq. (57). For N > 3, this is a much more efficient
calculation than directly solving for the plane-to-plane distributions,
p
(x)
n and m

(y)
n ; n = 0, 1, 2, . . . , N − 1, via numerically inverting the

original 2N × 2N matrix described by Eqs. (28) and (29). The exact
difference in computational time and memory is dependent on N and
the user’s particular numerical inversion scheme.

The total scattered electric field in the first air region (z < 0)
is a superposition of a reflected plane wave, which we denote Er =
âxS11Einc,xe−jk0|z|, and a combination of scattered evanescent waves
produced by the lattice. For observation points a sufficient distance
away (generally three lattice constants from the surface is adequate),
the evanescent fields are negligible and the total scattered field is simply
equal to that of the reflected plane wave Er. The reflection coefficient,
S11, is found by summing the contribution from each discrete scatterer
in the array to the electric field amplitude of the scattered plane wave,
and normalizing the field by Einc,x. Taking a planewise summation



Progress In Electromagnetics Research B, Vol. 30, 2011 19

approach, the above statement can be expressed as follows:

S11 =
1

Einc,x (ab)3/2 ε0

N−1∑

n=0

p(x)
n CTEMz ,xx

n,LR − 1
c0

m(y)
n DTEMz ,yx

n,LR

=
k0

jEinc,xε02ab

3∑

i=1

N−1∑

n=0

P+
x,ie

−j(qz,i+k0)dn
(
1−BTEMz

yx,i

)

+P−
x,ie

−j(−qz,i+k0)dn
(
1 + BTEMz

yx,i

)

=
−1

Ẽinc,x

3∑

i=1

P+
x,i

(
1− e−jdN(qz,i+k0)

) (
1−BTEMz

yx,i

)

1− e−j(qz,i+k0)d

+P−
x,i

(
1− e−jdN(−qz,i+k0)

) (
1 + BTEMz

yx,i

)

1− e−j(−qz,i+k0)d
(63)

The total scattered electric field in the second air region (z > dN− d)
is a superposition of a transmitted plane wave, which we denote
Et = âxS21Einc,xe−jk0|z|, and a combination of scattered evanescent
waves produced by the lattice, all of which decay rapidly to zero with
increasing distance from the structure. Taking a planewise summation
approach, we calculate the transmission coefficient, S21, as follows:

S21 =
1

Einc,x

[
Einc,xe−jdk0(N−1) +

1

(ab)3/2 ε0

N−1∑

n=0

p(x)
n CTEMz ,xx

n−(N−1),LR

− 1
c0

m(y)
n DTEMz ,yx

n−(N−1),LR

]

= e−jdk0(N−1)

[
1+

k0

jEinc,xε02ab

3∑

i=1

N−1∑

n=0

P+
x,ie

−j(qz,i−k0)dn
(
1+BTEMz

yx,i

)

+P−
x,ie

+j(qz,i+k0)dn
(
1−BTEMz

yx,i

)]

= e−jdk0(N−1)


1+

−1
Ẽinc,x

3∑

i=1

P+
x,i

(
1− e−jdN(qz,i−k0)

)(
1+BTEMz

yx,i

)

1− e−j(qz,i−k0)d

+P−
x,i

(
1− e+jdN(qz,i+k0)

) (
1−BTEMz

yx,i

)

1− e+j(qz,i+k0)d


 (64)
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7. HFSS SIMULATION AND COMPARISON

In this section, we compare the reflection coefficient, S11. and
transmission coefficient, S21, of a metamaterial slab calculated using
the method presented in this paper with that obtained by full-wave
simulation using Ansoft HFSS. Consider a metamaterial composed of
a cubic lattice of magnetodielectric cubes. The lattice period d = 1 cm
and the edge length of the cube is 0.76 cm. As a hypothetical material,
we choose the relative permittivity εr and relative permeability µr of
the magnetodielectric cube to be Re(εr) = 65 and Re(µr) = 40 with
loss tangents of tan δE = tan δM = 5E− 4. Fig. 2 shows the geometric
model and boundaries of the HFSS simulation for a single planar array
of such cubes. Perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) boundaries are placed at appropriate symmetry
planes such that the quarter-cube and its infinite number of images are
equivalent to a d × d square array of whole cubes with an excitation
corresponding to a normally incident plane wave. A stack of N arrays
is built by cascading N unit cells along the z-axis. For large N , such
a simulation can require a considerable amount of computation time
and memory requirements. In contrast, our analytical approach is
much more efficient, because it requires only the electric and magnetic
polarizabilities; both of which can be found using the retrieval method
of Ref. [15] involving the simulated response of just a single planar
array.
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Figure 2. (a) xy-cross section and (b) xz-cross section of the
HFSS model used to simulate the response of a planar array of
magnetodielectric cubes to a normally incident plane wave. A
metamaterial slab is modeled by cascading unit cells along the z-axis.

Figure 3 shows the extracted electric and magnetic polarizability
densities for the structure using the method of Ref. [15] in the frequency
range: 0.8 GHz–1GHz. As can be seen, the first resonance is magnetic
and occurs around 0.905GHz. The second resonance is electric and
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Figure 3. (a) Real and (b) imaginary polarization densities for a
metamaterial composed of a cubic array of magnetodielectric cubes
found via simulating a single array with HFSS and applying the
scattering parameters to the retrieval method presented in Ref. [15].
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Figure 4. (a) Magnitude and (b) phase of S11 for a slab composed
of seven layers (N = 7). The polarizability densities utilized in the
calculations are shown in Figure 3.

occurs around 0.912 GHz. Fig. 4 compares S11 for N = 7 as determined
using our method to that obtained by simulating the full seven-
layered structure in HFSS. As can be seen, our method agrees very
well with the HFSS results; similarly, we also find good agreement
for S21 (not shown). This case demonstrates the accuracy of our
method, and validates the use of the point-dipole interaction model
and nearest-neighbor approximation. This example demonstrated the
major benefit of our theory, which is to accurately calculate the S11 and
S21 response of a multi-layered slab (the particular number of layers
is arbitrary) by simply knowing the polarizabilites of the individual
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inclusions. If the polarizablities are unknown then they can be found
first using an electromagnetic solver like HFSS in conjunction with a
numerical extraction technique such as that presented in reference [15].
In general, extracting the polarizabilities of an individual scatterer uses
much less memory and computation time than simulating a full multi-
layered slab.

8. SUMMARY AND CONCLUSIONS

In this work, we solved for the electromagnetic response of a
metamaterial slab in the case of normal incidence using the point-dipole
interaction model and an expansion of polarization by eigenmodes.
The problem was simplified considerably by assuming the lattice
dimensions to be smaller than a wavelength and invoking the nearest
neighbor approximation. In the future, we intend on expanding on
these results to the case of oblique incidence. For ease of reference,
below we summarize the steps developed in this paper for computing
the reflection coefficient, S11, and transmission coefficient, S21, given
the driving frequency, and the lattice dimensions, a, b, and d:

1. Compute the interaction constants C̃TEMz ,xx
0,SR (k0, a, b) and

C̃TEMz ,yy
0,SR (k0, a, b) = C̃TEMz ,xx

0,SR (k0, b, a) using Eq. (36) in conjunction

with Eq. (13) given in Ref. [44]. Compute CTEMz ,xx
1,SR (k0, a, b, d) and

CTEMz ,yy
1,SR (k0, a, b, d) = CTEMz ,xx

1,SR (k0, b, a, d) using Eq. (22). For high
accuracy, it is recommended to take at least twenty terms in each
series.

2. Compute the frequency-dependent polarizability dyadics of the
individual inclusions (↔αE and ↔

αM ). If a closed form expressions for the
polarizabilities don’t exist, an electromagnetic solver like HFSS can be
used in conjunction with a numerical extraction technique, such as the
extraction technique presented in Ref. [15].

3. Solve the dispersion relation Eq. (52) for the eigenvalues,
qz,i; i = 1, 2, 3, and compute the electric-to-magnetic amplitude
ratios, B

TEMz(+)
yx,i and B

TEMz(−)
yx,i ; i = 1, 2, 3, using Eqs. (53) and (54),

respectively.
4. Find the amplitudes, P+

x,i and P−
x,i; i = 1, 2, 3, by solving the

6 × 6 matrix equation [A][x] = [b] described by Eqs. (55–(57). For
convenience, set Ẽinc,x = 1.

5. Evaluate Eq. (63) for S11 and Eq. (64) for S21.
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