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Abstract—A full-wave approach is proposed to evaluate the shielding
performance of metallic rectangular double-stage cascaded enclosures
with apertures. The analysis has been carried out by means of the
mode-matching technique and the mixed potential integral equation
solved with the Method of Moments. The effects of the dimension of
enclosures, the orientation of apertures, the polarization direction of
the incident wave, the aperture thickness and the high-order modes
propagating in enclosures are taken into account. The accuracy of
the proposed approach is validated by comparing with other methods
and numerical simulation results can derive some conclusions: the
shielding performance of cascaded enclosures is better than that of
single-stage enclosures, the shielding effectiveness can be improved
with increasing the distance between stages in the range, and the
shielding performance of the double-stage enclosure with parallel-
pattern apertures in horizontal polarization case is better than that
in vertical polarization case.

1. INTRODUCTION

In order to protect an electronic system from the interferences of
external electromagnetic waves, metallic enclosures have been often
employed to suppress its directive radiation effects. Unfortunately,
some apertures have to be opened on its wall for signal connecting,
power supply, and heat dispersion in practical applications. What
is more, these apertures create coupling paths that allow the outside
electromagnetic energy to penetrate into the enclosure and then cause
the inner field resonance and the shielding performance being degraded.
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Generally, the shielding performance of a metallic enclosure can be
described by its shielding effectiveness (SE) which is defined as the
ratio of the electromagnetic field without the present of the enclosure
to the field with the present of the enclosure at the same observation
point [1]. Many theoretical and experimental researches have been
carried out to analyze the shielding performance of metallic single-stage
enclosures with apertures irradiated by the external electromagnetic
waves [2–5]. However, it should be mentioned that, due to complicated
inner resonances of the structure, it is very difficult to achieve high
shielding performance for a metallic single-stage enclosure. Therefore,
metallic multistage cascaded enclosures could provide a better solution
for the target of achieving the high shielding performance, which is our
motivation behind this academic paper.

The shielding effectiveness of metallic rectangular cascaded
enclosure with apertures can be analyzed using the numerical or
the analytical methods. Numerical methods, such as the Method of
Moments (MoM) [6], can model enclosures with sufficient detail but
often requires large computing time and memory. In addition, the
analytical approaches based on various simplifying assumptions [7] are
also subject to many severe limitations even though providing a much
faster means.

This paper proposes a rigorous full-wave solution which combines
the mode-matching technique and the mixed potential integral
equation based on the Method of Moments to analyze the shielding
effectiveness of the metallic rectangular cascaded enclosure with
apertures. Some influence factors, such as the dimension of enclosures,
the orientation of apertures, the polarization direction of the incident
wave, the aperture thickness and the high-order modes propagating in
enclosures, are considered.

Figure 1. Geometry of rectangular double-stage cascaded enclosure
with apertures.
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2. THEORETICAL MODEL

The attention is focused on a metallic rectangular double-stage
cascaded enclosure with two rectangular apertures illuminated by the
electromagnetic wave, and its 3-D geometry is shown in Figure 1. The
metallic enclosure of dimensions a × b × c has two front walls which
are assumed perfectly conducting planes with thickness t. The outer
aperture w1 × l1 is on the first wall and the inner aperture w2 × l2 is
on the second wall. The distance between the front walls is d and the
length of the inner enclosure is h.

The problem can be separated into two problems by employing
Schelkunoff’s field equivalent principle: the interior and the exterior
problems illustrated in Figure 2. The interior problem is composed of
I, II, III and IV regions which can be regarded as some rectangular
waveguides, while the exterior problem is considered as a half free
space (V region) with an equivalent magnetic current and an incident
electromagnetic wave.

3. MATHEMATICAL FORMULATION

As shown in Figure 2, the rectangular waveguides in the interior
problem can be modeled using mode-matching technique, while the
magnetic field in the exterior problem can be expressed by a mixed
potential integral equation which is solved by the Method of Moments.

Figure 2. Equivalent model for aperture replaced by magnetic
current.
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3.1. Interior Problem

In order to solve the Maxwell’s equations conveniently, the electric
and the magnetic vector potentials are introduced whose the z-
direction component is Aez and Ahz respectively. Then the tangential
electromagnetic fields in the region i (i = I, II, III, IV ) can be
expressed as [8]:

Ei
t = −∇tA

i
hz × z +

1
jωε

∇t
∂Ai

ez

∂z
(1)

Hi
t = ∇tA

i
ez × z +

1
jωµ

∇t
∂Ai

hz

∂z
(2)

Ai
hz(x, y, z) =

N∑

q=1

Qi
hqT

i
hq

[
Ai+

hqe
−Γi

hqz + Ai−
hqe

Γi
hqz

]
(3)

Ai
ez(x, y, z) =

N∑

q=1

Qi
eqT

i
eq

[
Ai+

eq e−Γi
eqz −A−eqe

Γi
eqz

]
(4)

where ε is permittivity of free space and µ is magnetic permeability
of free space, Te and Th are the eigenfunctions of the TM (e) and TE
(h) modes, respectively. In the same way, Ae and Ah are the modal
amplitude coefficients, Γe and Γh are the propagation constants, Qe

and Qh are the normalized factors such that the power carried by each
mode is 1 Watt. q is the mode index.

On the assumption that there are N TM modes and N TE modes
propagating in the waveguides, the 2N×1 modal amplitude coefficients
matrices of the positive and the negative z-direction modes in the
waveguide i — Ai+ and Ai− can be described as:
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In terms of the tangential electric field and the tangential magnetic
field components matching at the boundary between region I and
region II respectively, the coupling matrices M whose size is 2N ×2N
is obtained in [9]. Then the S parameter matrix is derived as:

S|Z=0 =
[ −M U

U MT

]−1 [
M −U
U MT

]
(6)

U is the 2N × 2N unit matrix; MT is the transpose of M . Similarly,
the S parameter matrix of the waveguides junction Z = Z2 is denoted
by:

S|Z=Z2
=

[
S11 S12

S21 S22

]
(7)
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The generalized scattering matrix is independent of the coordinates,
therefore we can obtain:

S|Z=Z1
=

[
S22 S21

S12 S11

]
(8)

On account of the waveguides i is equivalent to the finite transmission
lines, the S parameter matrix of the waveguide i is educed:

S|i region =
[

0 D
D 0

]
(9)

where D|i region = diag{exp(−Γi
qd

i)}, di is the length of the waveguide
i, i = II, III.

The total S parameter matrix Stot of the complicated structure
between the region I and region IV can be analyzed by cascading
the aforementioned S parameter matrices. And then from the
Equation (10) the total coupling matrix Mtot is obtained.

MT
tot = Stot21(U − Stot11)−1 (10)

Therefore, the relationship of the modal amplitude coefficients in the
region I and the region IV can be shown:

AI+ + AI− = Mtot(AIV + + AIV−) (11)

MT
tot(A

I+ −AI−) = AIV + −AIV− (12)

On account of the end of the waveguide I is considered as a short
circuit, the propagating waves along −z direction can be reflected
completely, then the relationship of the modal amplitude coefficients
in region I is described as:

AI+ = −LIAI− (13)

where LI = diag{e−2ΓI
j h}, j = e, h. Substituting (13) into (11)

and (12) gives a matrix equation describing the relationship of the
modal amplitude coefficients in region IV :

AIV + = ρAIV− (14)

where

ρ = (U + P )−1(U − P )

P = MT
tot(L

I + U)(U − LI)−1MT
tot

Substituting (13) and (14) into (11) and (12) gives a matrix
equation:

AI− = (U − LI)−1MT
tot(ρ + U)AIV− (15)
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3.2. Exterior Problem

In Figure 2, the plane Z = Z0 is considered as an infinite conductive
plane. According to the equivalence principle, the aperture whose area
is Sa on the plane Z = Z0 can be replaced by the equivalent surface
magnetic current Ms, which is given by [10]:

Ms = −n×EIV
t (t) (16)

with n being the normal unit vector pointing outwards.
By means of image theory, the equivalent magnetic current 2Ms

substitutes as the equivalent source for the half-space. Mathematically,
the magnetic field HMs due to 2Ms in the Region V can be written as
follows:

HMS = −jωF(r)−∇φm(r) (17)

The inner product is defined by:

〈A,B〉 =
∫∫

sa
A ·BdS (18)

where the integration extends over the aperture on the plane z = t for
the 2D case. Then the electric vector potential F and the magnetic
scalar potential φm at a field point r are given by:
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free are the dyadic and the scalar Green’s function for the
free space respectively.

3.3. Operation of Matrix Equations

According to the continuity of the tangential magnetic field through
the aperture on the plane z = t, the magnetic formulation can be
accomplished by enforcing:

HMS
t + 2Hinc

t = HII
t (t) (21)

The Equation (21) can be solved by MoM, and then the equivalent
magnetic current Ms is expanded by a set of the vectorial basis
functions Wn with unknown coefficients Kn as:

Ms =
2N∑

n=1

Kn ·Wn (22)
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Moreover, the Galerkin procedure is applied. Setting the weighting
function W (2N × 1) equal to the basis function as:
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In terms of the orthogonality of expansion functions, the mixed
potential integral Equation (21) can be transformed into the following
matrix equation:

TK + Iinc = Z (24)

where
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And then from (14) together with (24), the unknown modal coefficients
AIV− is readily obtained if the incident plane wave has been given:

AIV− =
[(

LIV ρ− (LIV )−1
)− T

(
LIV ρ + (LIV )−1

)]−1
Iinc (25)

Finally, Substituting (25) into the matrix Equations (15) and (13),
all the modes propagating in the region I can be calculated. The field
strength at any point in the metallic rectangular double-stage cascaded
enclosure with apertures can be evaluated consequently.

4. NUMERICAL RESULTS

For the validation of the present technique, we consider a typical
rectangular enclosure with dimensions (30 cm × 12 cm × 35.3 cm)
and two parallel rectangular apertures of size (10 cm × 0.5 cm) with
thickness t = 1.5mm located at the center of the front walls with
distance d = 5 cm as shown in Figure 1. The incident plane wave is
propagating along negative z-direction and its polarization is vertical
polarization (the direction of the electric field is parallel to the short
edge of the apertures). The observation point is located at the center
of the inner enclosure whose length is 30 cm.

The shielding effectiveness of the double-stage enclosure obtained
using the present method is compared with those from FDTD
method [6], and the agreement between them is observed from the
Figure 3. It should be mentioned that 62 TM modes and 62 TE modes
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Figure 3. SE of single and double stage enclosure with 10× 0.5 cm2

apertures.

are employed in this model. Furthermore, the shielding effectiveness of
the single stage enclosure of dimensions 30 cm × 12 cm × 30 cm (inner
face) with the same rectangular aperture located at the center of the
front wall [9] is introduced in the Figure 3. It can be seen that the dips
in the shielding effectiveness are corresponding to the first resonant
frequency (near 700 MHz) predicted at which TE101 mode is excited
in the inner shielding enclosures, and the shielding performance of the
double-stage enclosure is better than that of the single-stage enclosure.

In order to analyze the effect of varying the distance between
the front walls on the shielding performance of metallic rectangular
double-stage cascaded enclosure with apertures, different values of the
distance d are considered, while the other parameters of this model
are not changed. The results obtained for various distances are shown
in Figure 4. It is found that with increasing the distance d of front
walls in the range, the shielding effectiveness can be improved, mainly
contributed by the attenuation of the high order modes propagating in
the model.

From Figure 5, it should be pointed out that in the case of the
normal incidence wave with the vertical polarization, the shielding
performance of the double stage enclosure depends on the orientation
of apertures on the front walls. Except for parallel-pattern apertures,
two apertures could be arranged in a cross-pattern, namely the 10 cm
× 0.5 cm aperture on the first wall and the 0.5 cm × 10 cm aperture
on the second wall, and the distance of the front walls is kept as 5 cm.
It is obvious that the value of SE for the cross-pattern aperture case
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is larger than that for the parallel-pattern aperture case.
The investigation is also extended to the effect of the different

polarization directions of the incident wave on the shielding
performance of the metallic rectangular cascaded enclosure with
apertures. The incident plane wave with the horizontal polarization
(the direction of the electric field is parallel to the long edge of the
outer aperture) is introduced, while the other parameters of this
model are hold. It is observed that the value of SE for the cross-
pattern aperture case is smaller than that of the parallel-pattern
aperture case in Figure 6. In addition, it should be noted that

Figure 4. SE of double stage enclosure with various distances between
front walls.

Figure 5. SE of double stage enclosure with different aperture
arrangement in vertical polarization case.
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Figure 6. SE of double stage enclosure with different aperture
arrangement in horizontal polarization case.

the shielding performance of the double-stage enclosure with parallel-
pattern apertures in horizontal polarization case is better than that
in vertical polarization case from Figures 5 and 6, but the similar
conclusion of shielding performance with cross-pattern apertures is
not obvious, because of the sensitivity of SE to the polarization of
the incident wave.

5. CONCLUSION

In this paper, the shielding performance of metallic rectangular double-
stage cascaded enclosures with apertures illuminated by external
electromagnetic waves is investigated numerically. The mathematical
methodology adopts the mode-matching technique and the mixed
potential integral equation based on the Method of Moments, where
unknown amplitude coefficients of the propagating modes in the model
are solved by a set of matrix equations. This study not only gives an
appropriate electromagnetic model in the development of multistage
cascaded shielding structures without some uncertain approximations,
but also can be further implemented in the design of electromagnetic
protection for certain electronic and communication systems in the
presence of high-power electromagnetic interferences.
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