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Abstract—This paper is devoted to a laser-based diagnostic technique
described as a method for solving an applied inverse problem in
turbulent media using laser beam propagation. This problem consists
of extracting local information about temperature fluctuations inside
a hot turbulent jet of air, from the luminous photodiode trace
produced by a laser beam, after having traversed the jet. A genetic
algorithm is implemented in order to calculate the optimized laser
beam directions corresponding to the whole luminous trace. An
approximated ray equation which is proved from the geometrical optics
is solved numerically by using those directions and enables to determine
the variance of temperature fluctuations along the whole path of the
laser beam. A good agreement coming from the comparison between
the results obtained and the published experimental data proves the
validity of the method.

1. INTRODUCTION

Complex problems faced in the study of turbulent flows are caused
mainly by the fact that the pressure, velocity and temperature are
3-dimensional random fields, which are governed by nonlinear and
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coupled partial differential equations (Navier-Stokes equations) whose
difficulties to finding analytical solutions are well known. In addition,
from the physical point of view, the mechanism of turbulence is
particularly complex because of two factors: the vortex dynamic effects
and the existence of intensive nonlinear interactions between turbulent
structures of velocity, pressure, and temperature, highly irregular,
covering a wide range of spatial and temporal scales, and then, creating
an enormous amount of disorder.

Turbulence is a longstanding problem in fluid mechanics and many
publications have already been devoted to its study [1–4]. But, there is
no analytical or numerical solution, apart from a small number of cases
which are always in need of models and simulations. Consequently,
the experimental methods are inevitable and many scientists are
making increasing use of optical techniques. The most effective optical
methods are ones for which no measuring probe is introduced into
the flow. In these optical techniques called diagnostic techniques, an
electromagnetic wave usually characterized by a laser beam is sent
into the turbulent flow studied, where fluctuations in temperature,
pressure or density create random variations of the refractive index
called optical turbulence. Under these circumstances, any attempt to
solve the problem requires an understanding of the physics of optical
wave propagation phenomenon through a turbulent medium.

Mastery of phenomena related to the propagation of a laser beam
in an optical and thermal turbulence is also essential when trying to
respond to the concerns encountered in a large number of technological
applications based on the laser, such as medical diagnostic with
laser [5], laser radar [6], laser probing of atmospheric properties [7],
laser satellite communication and Earth-to-space communications [8],
submarine detection [9], monitoring and remote sensing [10], laser
weapons and laser defence missiles [11]. . . etc. Despite the great
complexity of the fundamental problem which consists of analyzing the
behavior of the light wave during its propagation through a random
medium, various contributions have already been published.

Concerning theoretical studies, the general theory of propagation
of a light wave in a turbulent medium is well explained by many
authors [12–16], and numerical simulations coupled with models are
also studied [17, 18].

With regard to experimental investigations, two goals are usually
sought. The first is to develop techniques for measuring the effects
caused by the turbulent environment on the optical characteristics of
the laser beam during its spread [19–23]. The second objective which
is an inverse problem of the previous one, involves design techniques
for extracting local or global information on turbulence from the
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Figure 1. Experimental set-up [26, 29].

measurement of the statistical properties of the laser beam propagation
in the medium [24–28]. The solution of the inverse problem explained
in this work belongs to these laser beam diagnostic techniques, and the
turbulent medium studied is a hot turbulent jet of air derived from the
nozzle aperture of a wind tunnel.

This paper represents a continuation of our previous works [26–
30]. About experiments, we consider the experimental set-up shown
in Figure 1 and already used in our previous papers [26, 29]. A light
beam (wavelength λ0 = 6328 Å, initial diameter a0 = 0.8mm) created
from a 1 mW He-Ne laser, is passed through a heated plane air stream
issued from a rectangular nozzle, before reaching a photoelectric cell
placed outside the jet at a distance d = 500 mm from the jet border.
Since the experimental results obtained by Gagnaire and Tailland [25]
for the rms of temperature fluctuations, are used in order to validate
the diagnostic technique that we have achieved in this paper, we
need to carry out experiments by assuming Gagnaire’s experimental
conditions. So, the laser beam is placed in the zx1 plane, at a distance
x1 = 200mm from the plane of the nozzle aperture which has the
same dimensions (200 mm × 47mm) as in [25]. At this position and
along the whole path traversed by the laser ray, we have the same
conditions as in [25], that is, the mean speed (U = 8 m/s) of the flow,
the mean temperature (T = 50 ◦C), and the rms of the temperature
fluctuations (

√
θ2 = 2.75 ◦C) remain constants except in a short area

at both borders of the stream. (See Section 6)
The theoretical part of this work is done under geometrical optics

approximation; this holds if the conditions detailed in [27] are satisfied.
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Since the incident radiation wavelength is λ0 = 6328 Å, and the
measurements [25] of the inner and outer scales of turbulence in the
jet under study are l0 = 1 mm and L0 = 10 mm, it is proved in our
previous works [26–29] done with the same jet, that those conditions
which allow the applicability of the geometrical optics approximation
are satisfied.

The three Cartesian coordinates (z, x1, x2) are chosen such that
the unperturbed direction of the laser beam is taken to be the z axis
and the (x1, x2) plane is the cell plane. We use the measurements
we have obtained for the probability density W (x1, x2) of the position
(x1, x2) of the laser beam impact centre on the photocell. It is useful to
indicate that the measurements of these probabilities require to cross-
rule the cell plane in 1600 small squares of the same size c, such that
the discretized values of x1 and x2 are given by [26, 29]:

x1(i) = x10 + i · c, i = 0, 1, . . . , 40 (1a)
x2(j) = x20 + j · c, j = 0, 1, . . . , 40 (1b)

c = 5× 10−3 cm (1c)
x10 = −0.15 cm + 7c (1d)
x20 = −0.15 cm + 12c (1e)

Although the results derived in [26–29] are satisfactory in terms
of the order of magnitude of the values obtained, these measurements
contain shortcomings that highlight a central issue. The problem
resides in the fact that no local information about the turbulence of
the jet studied can directly be deducted from these results. More
specifically, the fundamental question that the analysis of these
measurements leads to is: how the parameters of the light signal
produced by the laser beam and collected on the photoelectric cell
outside the jet, can be exploited to determine a local information about
the thermal turbulence in the jet?

The objective of this work is to solve this inverse problem which
consists of extracting local information about temperature fluctuations
inside the heated turbulent jet, from the luminous photodiode trace
produced by the laser beam, without introducing any measuring probe
into the flow. Local variance of refractive index fluctuations which
lead to local variance of temperature fluctuations are computed from
an approximated laser beam equation, suitable for the problem under
study. This equation is derived from the geometrical optics and enables
to determine the local refractive index fluctuations if the directions of
the laser beam are known. In order to calculate these directions, we
consider and justify specific realisations of the optical turbulence in
the jet, and a powerful optimization technique which includes a genetic
algorithm is implemented.
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For a better understanding of this work, this paper is organized as
follows: Section 2 is devoted to the obtaining of an approximated ray
equation for the problem under study. In Section 3, specific realisations
of the optical turbulence in the jet are considered and justified. A
spectral expansion for the directions of the laser beam is described
in Section 4. In Section 5, the process of determining the directions
of the laser beam by applying a genetic algorithm is explained in
detail and the calculation method for the local variance of temperature
fluctuations is presented. A rigorous measurement of the jet width
for accurate numerical results is described in Section 6. Section 7 is
devoted to practical considerations and to the results we have obtained.
Conclusion is given in Section 8.

2. THE OBTAINING OF AN APPROXIMATED RAY
EQUATION

The variance of the refractive index fluctuations is calculated from the
integration of the following ray equation provided by the geometrical
optics approximation:

gradn =
dn

dσ
τ +

n

R(σ)
v (2)

The quantity n represents the refractive index, τ and v are the unit
vectors tangent and normal to the ray trajectory, connected by the
well-known relation: dτ/dσ = v/R(σ), in which R(σ) is the curvature
radius of the ray trajectory and σ the arc length of the ray curve.
Usually, the above equation is used to determine the path of any light
ray in a medium if the refractive index of this medium is known. In this
paper, we are concerned with the inverse objective, that is, we consider
laser beam paths and we seek the values of the refractive index along
those paths, from the beam directions defined on the paths considered.

Since it is well known that the gradient component of the refractive
index along the τ axis is defined as dn/dσ, the relation (2) shows that
the main result given by the geometrical optics approximation is that
the gradient component of the refractive index along the unit vector
normal to the laser ray trajectory is equal to the quantity: n/R(σ).
Hence, we have to take only the projection of relation (2) along the v
axis. Using the definition of the local incidence angle of the ray (see
Figure 2), this gives the following equation:

|gradn| cos(π/2− i) = |gradn| sin i =
n

R(σ)
(3)

where i represents the local incidence angle of the ray, defined as i=
angle (τ,gradn) .
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Figure 2. Local incidence angle i of the beam and refractive
index gradient at any point M of the laser beam trajectory. α =
angle (τ0, gradn) = angle(Oz, gradn) ≈ i.

Let τ0, τ1, and τ2 be the Cartesian components of the vector τ
along the directions (z, x1, x2). For the laser beam deviating very
slightly from its initial incident direction Oz, the curvature radius is
great at any point of the beam trajectory. Hence, the derivatives
∂n/∂x1 and ∂n/∂x2 are very small compared to ∂n/∂z, and the
transversal components τ1 and τ2 are very small compared to the
longitudinal component τ0.

It is possible to approximate the sine of the local incidence angle
of the laser ray in order to exploit Equation (3). For this, let us write
the equality between both forms of the scalar product τ · gradn, that
is: (

∂n

∂z

)
τ0 +

(
∂n

∂x1

)
τ1 +

(
∂n

∂x2

)
τ2 = |gradn| cos i (4)

Using the approximation: |gradn| ≈ |∂n/∂z|, relation (4) leads to
the approximated result: (∂n

∂z )τ0 ≈ |∂n
∂z | cos i, which gives: cos i ≈ ±τ0;

that is: sin i ≈
√

1− τ2
0 . By replacing in relation (3), we obtain the

following equation: ∣∣∣∣
∂n

∂z

∣∣∣∣ =
1√

1− τ2
0

n

R(σ)
(5)

Knowing that the laser beam trajectory can be parameterized by
the relations: (z = z(σ), x1 = x1(σ), x2 = x2(σ)), with τi =
τi(z(σ), x1(σ), x2(σ)), (for i = 0, 1, 2), we replace in relation (5), the
laser beam curvature R−1(σ) by the following definition:

1
R(σ)

=

((
dτ0

dσ

)2

+
(

dτ1

dσ

)2

+
(

dτ2

dσ

)2
)1/2

(6a)
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in which the derivative dτi/dσ is given by:
dτi

dσ
= τ0

(
∂τi

∂z

)
+ τ1

(
∂τi

∂x1

)
+ τ2

(
∂τi

∂x2

)
(for i = 0, 1, 2) (6b)

By applying the approximations ∂/∂x1 ¿ ∂/∂z and ∂/∂x2 ¿ ∂/∂z,
the formula of the laser beam curvature deriving from relations (6) can
be simplified. Hence, relation (5) leads to the following equation:

∣∣∣∣
∂N

∂z

∣∣∣∣ =
1√

1− τ2
0

((
τ0

∂τ0

∂z

)2

+
(

τ0
∂τ1

∂z

)2

+
(

τ0
∂τ2

∂z

)2
)1/2

(7)

with : N = Log (n)
For solving the above equation, one needs to calculate the laser

beam curvature C(z, x1, x2) defined as the right hand side of this
equation. If the azimuthal and polar angles (θ, φ) of the laser beam
direction are known from any suitable modelling (see Section 3),
the quantity C(z, x1, x2) can be computed by applying the following
relations:

τ0 = sin θ cosφ (8a)
τ1 = sin θ sinφ (8b)
τ2 = cos θ (8c)

and:
∂τ0

∂z
=

(
∂θ

∂z

)
cos θ cosφ−

(
∂φ

∂z

)
sin θ sinφ (9a)

∂τ1

∂z
=

(
∂θ

∂z

)
cos θ sinφ +

(
∂φ

∂z

)
sin θ cosφ (9b)

∂τ2

∂z
= −

(
∂θ

∂z

)
sin θ (9c)

This gives the following equivalent form for the Equation (7):
∣∣∣∣
∂(Log n)

∂z

∣∣∣∣ =
sin θ cosφ√

1− sin2 θ cos2 φ

((
∂θ

∂z

)2

+ sin2 θ

(
∂φ

∂z

)2
)1/2

(10)

Relation (10) is the approximated ray equation we have obtained for
the problem under study.

3. A SIMPLIFIED NUMERICAL MODELLING FOR
SOLVING THE APPROXIMATED RAY EQUATION

The problem stated by the determination of the refractive index n from
Equation (10) can be solved as a Cauchy problem which normally



332 Pemha and Ngo Nyobe

needs only a given initial condition at the entering plane z = 0.
But, this solution must also verify the boundary condition at the
outlet plane z = L. Hence, the fact that the first-order partial
differential Equation (10) satisfies two dynamical conditions (that is
more than one condition) leads to conclusion that the refractive index
field should satisfy unknown mathematical conditions which do not
depend on Equation (10). For this, we have to join to this equation a
consistent numerical modeling which governs this field in the turbulent
jet considered.

Since the temperature in the ambient medium is less than the
temperature of the jet at the entrance of the laser beam, we can
conclude, from the Dale-Gladstone law [13] that the refractive index
decreases after entering the jet. That is, the gradient of the refractive
index is negative in the vicinity of this border. In addition, we
must take into account the fact that the thermodynamic conditions
(temperature, pressure, specific mass, . . . ) are nearly identical in both
ambient media located on both sides of the two plane jet borders z = 0
and z = L. This leads to conclusion that the boundary conditions for
the refractive index are symmetrical with respect to the median jet
plane z = L/2, that is:

N(z = 0, x1, x2) = N(z = L, x1, x2) (11)

This condition is equivalent to the following relation:
∫ L

0

∂N

∂z
dz = 0 (12)

From relation (12), we conclude that for all realisations of the
turbulence in the jet, the gradient of the refractive index logarithm
∂N/∂z cancels in the interval [0, L].

For simplifying the problem, let us consider the realisations of the
jet turbulence for which the quantity ∂N/∂z cancels only at the point
(z = L/2, x1, x2), that is, it undergoes a negative symmetry at that
point for any couple (x1, x2). Hence, we assume that the sign of the
refractive index gradient remains unchanged in each regions of the jet
limited as follows: 0 ≤ z ≤ L/2 and L/2 ≤ z ≤ L. Consequently,
from the above considerations, we can conclude that the gradient of
the refractive index logarithm and the laser beam curvature C, satisfy
the following relations:

∂N

∂z
= −C(z, x1, x2) if 0 < z ≤ L/2 (13a)

∂N

∂z
(z, x1, x2) = −∂N

∂z
(L−z, x1, x2) if L/2≤z<L (13b)
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∂N

∂z

(
z =

L

2
, x1, x2

)
= 0 (13c)

C

(
z =

L

2
, x1, x2

)
= 0 (13d)

with:

C(z, x1, x2) =
sin θ cosφ√

1− sin2 θ cos2 φ

((
∂θ

∂z

)2

+ sin2 θ

(
∂φ

∂z

)2
)1/2

(14)

4. SPECTRAL EXPANSION FOR THE PROPAGATION
DIRECTION OF THE LASER BEAM IN THE
TURBULENT JET

In our previous works [26, 27, 29], it has been assumed that the random
values of φ and θ depend only on the position of the laser beam impact
centre on the photoelectric cell. This hypothesis is not realistic because
it describes the laser beam diffusion process in the jet as a cone-shaped-
diffusion-process in which the vertex is the laser beam entering point
into the jet and the base being the laser beam luminous trace on the
cell.

More recently [27], we have proposed laws in which the angles
(θ, φ) of the laser beam direction vary as the spectral Fourier series
expansion judiciously defined in terms of the propagation distance
≈ z. In order to be suitable and realistic, these laws need to take
into account the unperturbed direction (θ = π/2, φ = 0) of the laser
beam and some reference directions (φL(x1, x2), θL(x1, x2)) suitably
defined. We have written these laws as follows [27]:

φ(z, x1, x2)=φL(x1, x2)

[
1−α

N∑

n=0

(
an sin

(
2nπ

z

L

)
+bn cos

(
2nπ

z

L

))]
(15a)

θ(z, x1, x2)=
π

2
+

(
θL(x1, x2)− π

2

)[
1−α

N∑

n=0

(
cn sin

(
2nπ

z

L

)

+dn cos
(
2nπ

z

L

))]
(15b)

The role of the shape parameter α is explained in [27] and a reference
direction is defined as the direction of the straight line connecting
the laser beam entering point and the laser beam impact on the
photocell situated at a distance d from the jet border. Hence, any
given reference direction corresponds to the specific group of random
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laser beam trajectories which connect the laser beam entry point and
a given impact of the laser beam on the photocell. In addition, the
deflection angle of the laser beam being small, the angles φ and θ
of the beam direction at any point of its trajectory are nearly equal
to the corresponding angles of the position vector at the same point.
Under these circumstances, the discretized coordinates defined by the
relations (1) are needed and the reference directions are defined by the
following equations:

φL(x1, x2) ≈ φL(x1(i), x2(j)) = tan−1

(
x1(i)
L + d

)
(16a)

θL(x1, x2) ≈ θL(x1(i), x2(j)) = cot−1

(
x2(j)√

x1(i)2+(L+d)2

)
(16b)

i = 0, 1, . . . , 40 and j = 0, 1, . . . , 40.

The Fourier coefficients defined in the relations (15) verify the following
constraints:

N∑

n=0

bn cos(2nπ) =
N∑

n=0

dn cos(2nπ) = 0 (17)

deduced from the boundary conditions on the outlet plane z = L, that
is:

φ(z = L, x1, x2) = φL(x1, x2) (18a)
θ(z = L, x1, x2) = θL(x1, x2) (18b)

In this paper, additional constraints for the spectral Fourier coefficients
are found and added to the conditions (17) previously mentioned
in [27]. In fact, by applying the condition (13d) proved from the
simplified modelling in Section 3, relation (14) gives the following
conditions:

∂φ

∂z
(z = L/2, x1, x2) =

∂θ

∂z
(z = L/2, x1, x2) = 0 (19)

Since the derivatives ∂φ/∂z and ∂θ/∂z can be derived from
relations (15) as follows:

∂φ

∂z
= −2πα

L
φL(x1, x2)

N∑

n=0

n
(
an cos

(
2nπ

z

L

)
−bn sin

(
2nπ

z

L

))
(20a)

∂θ

∂z
=−2πα

L

(
θL(x1, x2)−π

2

) N∑

n=0

n
(
cn cos

(
2nπ

z

L

)
−dn sin

(
2nπ

z

L

))
(20b)
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condition (19) leads to the following additional constraints for the
spectral Fourier coefficients:

N∑

n=0

nan cos(nπ) =
N∑

n=0

ncn cos(nπ) =0 (21)

5. DETERMINATION OF THE LASER BEAM DIRE-
CTIONS BY APPLYING A GENETIC ALGORITHM
OPTIMIZATION AND CALCULATION OF LOCAL
TEMPERATURE FLUCTUATIONS

Let us consider the quantity P (z, x1, x2) which denotes the theoretical
probability density for the point (z, x1, x2) to be situated on the
random laser beam trajectory in the turbulent jet. Since the laser beam
deflections remain very small, this probability density is approximately
equal to the probability density Q(z, φ, θ) of the laser beam to have the
direction (φ, θ) after going a distance σ ≈ z in the turbulent jet. By
assuming the hypothesis of the Markov model process for the direction
(φ, θ) of the laser beam, Alim et al. [30] have found that the analytical
expression of Q(z, φ, θ) is a series expansion of spherical harmonics
Y mc

k (θ, φ) = Pm
k (cos θ) cos(mφ), written as follows:

Q(z, φ, θ) =
∞∑

k=1

k∑

m = 1
m=odd

1
4π

(2k+1)
(k−m)!
(k+m)!

Pm
k (0)

exp[−k(k + 1)Dµz]Y mc
k (θ, φ) (22)

where Pm
k are the associated Legendre functions (k = 1, 2, 3, . . . and

m = 1, 3, 5, . . . with m ≤ k) and Dµ is the diffusion coefficient of the
hot turbulent jet defined in [12, 26, 27].

After having found that the convergence of the series defined in
Equation (22) is ensured for k ≥ 185, the probabilities Q(z = L, φ, θ) ≈
P (z = L, x1, x2) are computed from this equation, for the values of φ
and θ given by the spectral expansion in Equations (15). These results,
which depend on the parameter α, the diffusion coefficient Dµ, and the
Fourier coefficients, must be compared to the measurements W (x1, x2)
of the same probabilities performed by means of the experimental setup
in Figure 1. For this, we define a cost function J which measures the
quadratic difference between the two sets of values, that is:

J =
∫∫

[P (z = L, x1, x2)−W (x1, x2)]
2 dx1dx2 (23)

and the aim we seek is the minimization of J .
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The convergence of the two Fourier series defined in the
relations (15) being ensured if the integer N is very great, we have
to solve an optimization problem which includes a great number of
parameters. This problem is well known as an inverse problem of the
parameter estimation type [31]. The value of the diffusion coefficient
of the jet considered, the optimized value α*, and the optimized
values (a∗n), (b∗n), (c∗n), (d∗n) of the spectral coefficients which lead to
the optimized laser beam directions according to the relations (15),
form the global minimum of the cost function. For minimizing J , we
propose to use a genetic algorithm (GA). The GA approach is strongly
recommended for solving this problem because the cost function J
depends on a lot of parameters which are of different types (α, diffusion
coefficient and Fourier spectral coefficients), and are related to J by
an unknown link in which differentiability can not be assumed.

Algorithms based on genetic ideas with stochastic approach
were first introduced by Holland [32] and then widely developed
by Goldberg [33] and Deb [34]. They have successfully been
applied in engineering electromagnetics [35–38], in mechanical
engineering [39, 40], and been coupled with turbulent flows in earlier
papers, notably in metallurgy and manufacturing processes [41–43]. A
GA works with a population of candidate solutions which are called
individuals. It initializes a sample population and this population
changes over generations with an unchanged number of individuals.
Each individual is represented by a code defined by a single string of
characters called chromosomes. A positive fitness function F whose
definition does not depend on generation enables to calculate at each
generation, the fitness of the current individuals. Based on the genetic
of the human beings evolution, that is, the evolution via the survival
of the fittest, a new generation of new individuals is generated after
the three genetic operators: selection, crossover and mutation [44, 45].
The new population is thus created and the whole process repeats. In
the course of the process, crossovers and mutations are authorized to
be performed into an individual string at given probabilities PC and
PM respectively. Since mutation plays a secondary role in a simple
GA, the condition PM ¿ PC must be satisfied.

We have implemented the GA for a great maximum number of
generations which is arbitrarily chosen, and we expect that the GA
convergence will be obtained before reaching the last generation. In
this case, the GA then gives the best individual which is defined to be
the global optimum of the problem. Decoding this optimum enables
to find the value of the diffusion coefficient of the jet and to obtain the
optimized directions of the laser beam. These directions are used for
solving the approximated ray Equation (10) which leads to the values



Progress In Electromagnetics Research B, Vol. 28, 2011 337

of the local temperature fluctuations.
Let us explain the calculation method which enables to compute

the local variance of temperature fluctuations. Any observation plane
(z = constant) situated in the jet is cross-ruled according to the
discretized coordinates defined in Equations (1). From Equation (10),
the refractive index values are calculated at the points of the region
located at the vicinity of the laser beam trajectory. The fluctuations
µ of the refractive index can then be deduced for any discretized point
situated in this region, using the following definition:

µ(z, x1(i), x2(j)) = n(z, x1(i), x2(j))− n(z) (24)
where n(z, x1(i), x2(j)) are the values of the refractive index
representing the solution of the approximate ray equation with the
simplified numerical modeling explained in Section 3, and n(z) denotes
the mean value of the refractive index. Assuming that the jet air may
be considered as a perfect gas, and using the Dale-Gladstone law, the
n(z) values are calculated as follows:

n(z) = 1 +
aP0

T (z)
(25)

where P0 = 1000 mb is the air pressure, T (z) represents the mean
temperature and a is a parameter defined as: a = G(λ)/r; G(λ) is the
Dale-Gladstone constant depending on the radiation wavelength λ, r
is a specific constant of the perfect gas. For the incident wavelength
of the laser beam we have used (λ0 = 6328 Å), the value of a is
79× 10−6 K·mb−1.

After having computed the probabilities P (z, x1(i), x2(j)) of the
laser beam to reach the point (z, x1(i), x2(j)), the above values of µ
are then used and enable to obtain the values of the variance of the
refractive index fluctuations as follows:

µ2(z) =
40∑

l=0

40∑

m=0

µ2(z, x1(i), x2(j))P (z, x1(i), x2(j)) (26)

The values of the variance of the temperature fluctuations θ are
then computed, using the following relation derived from the Dale-
Gladstone law for perfect gas:

θ2(z) =

(
T

2(z)
aP0

)2

µ2(z) (27)

The above relation holds if the pressure fluctuations are neglected
in the turbulent jet considered. In the course of experiments, we
have verified that the laser beam trajectory remains rectilinear before
heating the jet. This leads to conclusion that pressure fluctuations
have no considerable effects in the jet under study.
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6. DEFINITION OF THE INITIAL CONDITION FOR
THE APPROXIMATED RAY EQUATION AND MEA-
SUREMENT OF THE JET WIDTH FOR ACCURATE
NUMERICAL CALCULATIONS

About the initial condition for solving Equation (10), we mention that
the ambient temperature is equal to 20◦C and the ambient medium is
at rest in the course of experiments; therefore, the ambient medium
does not contain any refractive index fluctuations. Then, assuming
that the entering jet border is approximated by the plane z = 0, and
using the Dale-Gladstone law for the mean value of the refractive index,
which is then equal to the local refractive index, we obtain the initial
refractive index condition:

n(z = 0, x1, x2) = 1 +
aP0

T0
= n(z = 0, x1, x2) = n0 (28)

where T0 represents the temperature at the jet borders.
Since the ambient medium is at rest, and since the planes z = 0

and z = L represent the separation planes between the jet and the
ambient medium, it follows that the jet borders are defined as the
jet planes for which temperature fluctuations and refractive index
fluctuations remain equal to zero. The jet width L which is the distance
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Figure 3. Definition of the jet
width L = 300mm as the distance
between the planes z = 0 and z = L
such that U(z = 0) = U(z =
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between those borders must be carefully determined before solving
Equation (10), in order to obtain accurate results. In our previous
works [26–29], we have assumed, for simplicity, that L is equal to the
width of the nozzle aperture = 200 mm. Since the inverse problem
stated in this paper needs a rigorous determination of the jet width,
we have to measure the mean speed U and the mean temperature
T along the whole laser beam path. These measurements presented
in Figure 3 enable to determine with more accuracy the positions of
the planes z = 0 and z = L, and to deduce that the jet width L
is equal to 300 mm. Figure 3 also shows that, along the whole path
of the laser beam, the mean speed U and the mean temperature T
remain constant and are equal to 8m/s and 50 ◦C respectively, except
at both borders of the heated jet. These results are the same as those
obtained by Gagnaire and Tailland [25] along the same direction Oz
in the turbulent jet.

7. PRACTICAL CONSIDERATIONS AND RESULTS

7.1. Practical Considerations Related to the Genetic
Algorithm We Have Used

Some calculation tests made with the values of parameters properly
chosen have shown that the order of magnitude of J is equal to 10−4.
We have then defined the fitness function F as: F = 1.0 − 10J .
This definition ensures that F remains positive and the scaling factor
applied to J makes significant discrepancies between the values of
the function F . The selection technique we have used is tournament
selection [44] with shuffling like in domino games. To improve
convergence, we have applied the elitist strategy [45] which requires the
fittest individual of each generation to survive into the next generation.
In the course of GA calculation, one fittest individual was copied into
the next generation.

The process of minimization of the function J includes a
fundamental constraint due to the fact that the values of all optimized
parameters must be chosen so that the computed probabilities remain
situated between 0 and 1, for all planes of observation. For treating this
constraint, a small value (10−6) and a great value (100) are respectively
assigned to the fitness function and the cost function, for any individual
who violates this constraint. In order to make the process more
efficient, an additional constraint is added to the problem: it is to
ensure that the optimal values of the parameters may not correspond
to the cases for which the laser beam undergoes a back-diffusion in the
turbulent jet. For this, the component τ0 of the unit vector tangent to
the laser beam trajectory must remain positive. In the GA used, this
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constraint is treated by assigning other arbitrary values to F and J ,
for individuals who violate this second constraint.

The area for the exploration of the optimized parameters should
be properly chosen and large enough to avoid a priori exclusion of
potential solutions. Moreover, it is desirable to work with large
exploration areas which could include some “bad individuals” in
order to create a diverse population; this helps to avoid premature
convergence of the GA. In this regard, we find that it is sufficient to
obtain at least one acceptable individual for a particular generation
so that the GA subsequently produces acceptable individuals whose
number is growing across generations. For the Fourier coefficients
we have selected the same exploration area equal to A1 =] − 1, +1[.
Concerning the parameter α, two requirements are met: on the one
hand, the choice of small values for α could lead to a non realistic
case corresponding to canceling the role of the Fourier series in
Equations (15). On the other side, great values of α give values of
φ and θ which could not be in the vicinity of the reference values φL

and θL, and then, increase the risk of violating the constraints. After
many tests, we have found that a suitable exploration area for the
parameter α is the interval A2 =] − 0.6, 0.6[. Concerning the positive
parameter Dµ, previous measurements [26, 27] suggest taking its order
of magnitude equal to 10−9 m−1. So, the exploration area we have
taken for Dµ is the interval A3 = [1.0× 10−9 m−1, 10.0× 10−9 m−1].

For optimizing a given parameter r, we have used a binary code
which needs to define discretized values of this parameter such that:
ri = rl + i(∆r) with: i = 0, . . . , Nr and ∆r = (ru − rl)/Nr, rl and
ru being the lower and upper values of r . So, there is a unique
correspondence between each value ri of a given parameter r and
the discretization integer i such that coding ri means coding i. For
simplicity, we have adjusted the number of discretization values to a
power of 2; this number is equal to 1024 = 210, that is, 10 chromosomes
per parameter. Since the total number of parameters which we have
to optimize is equal to 406 (4 × 101 Fourier coefficients, α, Dµ) this
gives a total number of chromosomes equal to 4060. By applying
the constraint conditions found in Equations (17) and (21), the total
number of Fourier coefficients is reduced to 404− 4 = 400 coefficients.
So, we have coded each individual as a string of 4020 chromosomes.

The maximal number of generations arbitrarily defined is equal
to 300 for any run. Initially, the number K of observation planes
perpendicular to the x axis is chosen very large (K = 800) and the
genetic algorithm is then implemented using random-site crossovers
(rate = 0.70), genotypic mutations (rate = 0.02) and phenotypic
mutations (rate = 0.04). In Figure 4, the convergence history of the
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GA optimization is presented for three values of the population size
(50, 75, 100). From the initial values J = 12.56× 10−4, 15.58× 10−4,
13.98×10−4, respectively used for these populations, the cost function
is reduced to the minimum J = 4.51 × 10−4. For the population
size = 100, the GA begins to converge after 252 generations, when
the best individual for all subsequent generations, is obtained for the
first time. The final results we have presented are obtained for the
population size = 100. Altering the GA parameters according to
Goldberg’s recommendations [33] (Example: crossover rate = 0.60,
rate of genotypic mutations = 0.03, rate of phenotypic mutations =
0.04), other groups of GA parameters have properly been taken for
additional runs and we have found that the convergence process of the
GA does not considerably change and that the best individual remains
unchanged.

After having decoded the best individual given by the GA, we find
that the value of the diffusion coefficient Dµ of the turbulent jet is Dµ =
2.18×10−9 m−1. Since the experimental value of Dµ deduced from the
measurements of Gagnaire and Tailland [25] is Dµ = 2.20× 10−9 m−1,
we conclude that the value we have obtained in this work is more
accurate than our previous result Dµ = 2.30 × 10−9 m−1 obtained by
means of a GA and published in [27]. We also obtained from the
decoded best individual the optimized values a∗n, b∗n, c∗n and d∗n of the
Fourier coefficients. These values enable to compute the values of the
non-dimensional angle functions Fφ and Fθ defined from relations (15)
as follows:

Fφ(z, x1, x2) =
φL(x1, x2)− φ(z, x1, x2)

φL(x1, x2)
(29a)

Fθ(z, x1, x2) =
(θL(x1, x2)− π/2)− (θ(z, x1, x2)− π/2)

θL(x1, x2)− π/2
(29b)

In Figures 5 and 6, these values are plotted as function of the
propagation distance z for a given (x1, x2). These curves show the
irregular variations of the laser beam direction depending on the
propagation distance, according to the simplified modelling we have
described for the gradient of the refractive index logarithm.

7.2. Values of Probabilities of the Laser Beam Direction
Computed from Equation (22) by Applying the Spectral
Expansion of the Laser Beam Directions

For convergence requirements, the number N of data groups on the
basis of which is made the spectral Fourier decomposition of the
turbulent laser beam directions, is assumed to be equal to 100. The
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40

Figure 7. Probabilities of the laser beam impact positions on
the photoelectric cell. (a) Numerical values obtained from the GA
approach coupled with the Markovian model. (b) Experimental
values [26, 29].

probabilities P (z = L, x1, x2) of the beam impact positions on the
cell are thus calculated from Equation (22) by using relations (15),
when all the parameters of the problem take their optimal values.
By comparing these probabilities plotted in Figure 7(a), with the
experimental probabilities plotted in Figure 7(b), we find that the two
results are in agreement. The match between the two sets of results
appears much more when we compare the modeled and experimental
forms of the same luminous trace produced by the laser beam on the
photoelectric cell (Figure 8(a) and Figure 8(b)). This consistency
is also reflected in Figures 9 and 10, which represent the marginal
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probabilities (modelled and experimental) for the coordinates x1 and
x2 of the beam impact position on the cell. By superimposing these
marginal probability curves, we find an almost complete coincidence
between modelled and experimental results.

(a) (b)

Figure 8. Luminous trace produced by the laser beam on the
photoelectric cell. (a) Numerical values obtained from the GA
approach coupled with the Markovian model. (b) Results derived from
the experimental values [26, 29].
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7.3. Calculation of the Refractive Index Gradient, Laser
Beam Curvature, and rms of Temperature Fluctuations, by
Using the Optimized Laser Beam Directions Derived from
the Genetic Algorithm

After the above process, the GA parameters are retained constant
and the optimized values of the Fourier coefficients are used for the
calculation of the refractive index values, from the integration of
Equation (10). For this, we have applied the well-known Simpson
integration algorithm. So, let Kz be the number of discretized points
situated along the z axis, in the interval [0, L]. Calculations are initially
performed by using a great value of Kz (Kz = 700). We then study the
effects of decreasing the number Kz in order to verify the convergence
of the Simpson algorithm. These convergence tests enable us to find
that convergence is ensured for the values of Kz greater than 265. By
setting Kz = 280, the rest of our work is done.

The values we have then obtained for the non-dimensional
refractive index gradient L(∂n/∂z) are plotted in Figure 11, for a given
(x1, x2). Figure 12 shows the non-dimensional values of the laser beam
curvature, calculated according to the simplified numerical model.
The refractive index values thus computed are used for determining
the variance of refractive index fluctuations and that of temperature
fluctuations, by applying the formulas (26) and (27). In Figure 13,
the rms values of computed temperature fluctuations are compared to
those measured by Gagnaire and Tailland [25], by means of a cold wire
anemometer technique. We find a very satisfactory agreement which
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is observed along the whole propagation distance of the laser beam.
In a very small area bounding the two borders of the jet, that is,

the area defined as the influence zone of mixing between the ambient air
and the hot turbulent jet, a slight difference between the above groups
of results can be observed. More precisely, our calculation method is
not able to highlight the two local maximums of the rms of temperature
fluctuations observed in the experimental measurements [25], at both
borders of the jet.

8. CONCLUSION

The importance of this work lies in one of the major challenges
facing the scientific community of turbulence which is the design of
techniques for turbulence diagnostics, that is, techniques which enable
to extract local information about turbulence, without introducing any
measurement probe into the turbulent medium. These techniques are
the basis of many laser-based systems such as: medical diagnostic
with laser, laser probing of atmospheric properties, laser satellite
communication, Earth-to-space laser communications, laser radar,
submarine detection, monitoring and remote sensing, laser weapons
and laser defence missiles. . . etc.

In this paper, we have developed a robust method for solving an
inverse problem which consists of determining the local temperature
fluctuations in a hot turbulent jet of air, from the luminous trace
produced by a laser beam on a photoelectric cell, after having traversed
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the jet. The calculation procedure we have described shows that
the above problem can be stated as an optimization problem of the
parameter estimation type. The great number of parameters required
by the problem recommends the use of a genetic algorithm which
enables to determine the optimized laser beam directions.

An approximated ray equation governing the inverse problem is
obtained and proved. Solving this equation is not easy because it
appears to be a Cauchy problem which normally needs an initial
condition, but it behaves in reality as a two-point-boundary-value-
problem. This leads to conceive a consistent modeling for the behavior
of the local refractive index gradient in the jet studied. The integration
of that equation using the optimized laser beam directions enables to
determine the rms of temperature fluctuations along the laser beam
trajectory in the turbulent jet.

The good agreement between the results we have achieved and
the published data obtained by means of the cold-wire anemometer
technique proves the validity of the laser beam diagnostic technique
explained in this paper. This suggests the possibility of using the
above technique for the diagnostic of thermal turbulence in other flows,
in particular those including combustion phenomena.
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