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Abstract—The fields inside a rectangular waveguide with an internal
coating of chiral nihility metamaterial are determined. These fields
are then fractionalized utilizing the fractional curl operator to find the
fields for the intermediate geometries which are also termed as the
fractional order geometries. It is noted that no electric field exists
inside the chiral nihility coating backed by perfect electric conductor
(PEC) surface. The fractional order geometries are related through
the principle of duality. The behavior of the fields with respect to the
fractional parameter, α is analyzed.

1. INTRODUCTION

Chiral medium have attracted many researchers and scientists in the
recent years [1–4]. Chiral nihility is a special kind of chiral medium,
for which the permittivity and permeability are simultaneously zero
and the chirality parameter is nonzero at certain frequency called the
nihility frequency [5–7]. Wave propagation and energy transfer in chiral
nihility have been discussed in [5]. Chiral media are characterized by
two intrinsic eigenwaves with left-handed and right-handed circular
polarizations [3–4], and both of them have different phase velocities
and refraction indices. The two eigenwaves in chiral nihility are
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circularly polarized but one of them is a backward wave, whose phase
velocity has antiparallel direction to that of the corresponding Poynting
vector [6]. In order to overcome the strict conditions of permittivity
and permeability equals to zero for the chiral nihility material, Qiu has
also proposed the nonreciprocity route for the realization of backward
waves and negative refractions [8], and that the backward waves can
be produced using the gyrotropic parameters and permittivity and
permeability very small [9]. On this topic a number of research articles
have been contributed by different authors [10–16].

Fractional calculus is a branch of Mathematics that deals with
the operators of general order that covers integer order, real non-
integer order and complex order such as fractional derivatives and
fractional integrals [17]. Fractional operator may be utilize to find the
intermediate solutions between a given solution and dual of the given
solution [18, 19]. The fractional duality in electromagnetics states that
if (Ē, ηH̄) is one set of solutions to the Maxwell’s equations, then
(ηH̄,−Ē) is the dual solution of the same equations, where η is the
impedance of medium. Engheta introduced the fractional curl operator
in electromagnetics [20]. Naqvi extended the work to operators having
higher and complex order [21]. Mathematical recipe to fractionalize
the curl operator is discussed in [20]. The application of fractional curl
operator to different problems are addressed in [22–27]. Naqvi modeled
the transmission through chiral nihility slab in terms of fractional curl
operator [28].

In this paper, the fractional dual fields inside a rectangular
waveguide internally coated with chiral nihility material are obtained.
It is shown that the electric field inside the chiral nihility coating is zero
and therefor all the electromagnetic energy is propagated through the
air region. The variation in the fields according to α is also discussed.

2. FIELDS INSIDE A CHIRAL NIHILITY COATED
RECTANGULAR WAVEGUIDE

The problem geometry which is under consideration is shown in
Figure 1. Where the rectangular waveguide, with internal coating
of chiral nihility material is shown. This structure is assumed to be
uniform and infinitely long in the x -direction. The time dependency
is of the form exp(−jωt), which is suppressed through out the text.
The waveguide is divided into two regions. Region 0 is between
(−d1 < z < d1) and (−b1 < y < b1) which is occupied by air with
the permittivity ε0 and permeability µ0. Region 1 (−d2 ≤ z < −d1),
(d1 < z ≤ d2) and (−b2 ≤ y < −b1), (b1 < y ≤ b2) is covered with the
chiral nihility material which is characterized by (ε = 0, µ = 0, κ 6= 0).
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Figure 1. Rectangular waveguide internally coated with chiral nihility
material.

The constitutive relations of an isotropic, reciprocal and lossless
chiral medium are [3],

D̄ = εĒ + jκ
√

ε0µ0H̄ (1)
B̄ = µH̄ − jκ

√
ε0µ0Ē (2)

where, ε, µ and κ are permittivity, permeability and the chirality
parameter of the chiral medium, respectively. As the chiral nihility
is a special case of chiral medium for which (ε = 0, µ = 0, κ 6= 0), so
the constitutive relations of the chiral nihility material becomes as,

D̄ = jκ
√

ε0µ0H̄ (3)
B̄ = −jκ

√
ε0µ0Ē (4)

The PEC boundaries are located at z = ±d2 and y = ±b2.
The wave equation in free space inside the rectangular waveguide

is, (∇2 + k2
0

)
Ē = 0 (5)(∇2 + k2

0

)
H̄ = 0 (6)

where k0 = ω
√

µ0/ε0 and inside the chiral nihility material the wave
equation becomes as: (∇2 + k±2

)
Ē = 0 (7)(∇2 + k±2

)
H̄ = 0 (8)

where, k± = ±ωκ are the two wavenumbers for the left circularly
polarized (LCP) and right circularly polarized (RCP) waves in the
chiral nihility material at nihility frequency.

The general solution of the reduced wave equation for the
transverse magnetic (TM) mode in simple rectangular waveguide
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containing free space only, is given by [29].

Ēx =
−j

2
Aejkyy+jkzz +

1
2
Bejkyy−jkzz +

1
2
Ce−jkyy+jkzz +

j

2
De−jkyy−jkzz

(9)
Now, exciting the rectangular waveguide internally coated with

the chiral nihility material by the field expression (7), we work out
the expressions for the electric and magnetic fields inside the Region 0
(free space) and Region 1 (the chiral nihility material) as [30, 31]

Ē0 = − j

2
ejk0yy+jk0zzx̂− j

2
A+N̄+

R ejk0yy+jk0zz − j

2
B+N̄+

L ejk0yy+jk0zz

+
1
2
ejk0yy−jk0zzx̂ +

1
2
A−N̄−

R ejk0yy−jk0zz +
1
2
B−N̄−

L ejk0yy−jk0zz

+
j

2
e−jk0yy−jk0zzx̂ +

j

2
C+N̄+

R e−jk0yy−jk0zz +
j

2
D+N̄+

L e−jk0yy−jk0zz

+
1
2
e−jk0yy+jk0zzx̂+

1
2
C−N̄−

R e−jk0yy+jk0zz+
1
2
D−N̄−

L e−jk0yy+jk0zz (10)

H̄0 =
1

2η0

[
k0z

k0

(
jejk0yy+jk0zz+ejk0yy−jk0zz−e−jk0yy+jk0zz+je−jk0yy−jk0zz

)
ŷ

+
k0y

k0

(
−jejk0yy+jk0zz+ejk0yy−jk0zz−e−jk0yy+jk0zz−je−jk0yy−jk0zz

)
ẑ

+A+N̄+
R ejk0yy+jk0zz −B+N̄+

L ejk0yy+jk0zz + jA−N̄−
R ejk0yy−jk0zz

−jB−N̄−
L ejk0yy−jk0zz + C+N̄+

R e−jk0yy−jk0zz −D+N̄+
L e−jk0yy−jk0zz

−jC−N̄−
R e−jk0yy+jk0zz + jD−N̄−

L e−jk0yy+jk0zz
]

(11)

Ē1 = − j

2
E+M̄+

R ejk+
y y+jk+

z z − j

2
F+M̄+

L ejk−y y+jk−z z

+
1
2
E−M̄−

R ejk+
y y−jk+

z z +
1
2
F−M̄−

L ejk−y y−jk−z z

+
j

2
G+M̄+

R e−jk+
y y−jk+

z z +
j

2
H+M̄+

L e−jk−y y−jk−z z

+
1
2
G−M̄−

R e−jk+
y y+jk+

z z +
1
2
H−M̄−

L e−jk−y y+jk−z z (12)

H̄1 =
1
2η

[
E+M̄+

R ejk+
y y+jk+

z z−F+M̄+
L ejk−y y+jk−z z+jE−M̄−

R ejk+
y y−jk+

z z

−jF−M̄−
L ejk−y y−jk−z z + G+M̄+

R e−jk+
y y−jk+

z z −H+M̄+
L e−jk−y y−jk−z z

−jG−M̄−
R e−jk+

y y+jk+
z z + jH−M̄−

L e−jk−y y+jk−z z
]

(13)

where, Ē0 and H̄0 are the electric and magnetic fields in the free space
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and Ē1 and H̄1 are the electric and magnetic fields in the chiral nihility
region respectively. A±, B±, C±, D±, E±, F±, G± and H± are the
unknown coefficients for the RCP and LCP waves inside the air and
chiral nihility regions of the rectangular waveguide and

N̄±
R = x̂± j

k0z

k0
ŷ − j

k0y

k0
ẑ (14a)

N̄±
L = x̂∓ j

k0z

k0
ŷ + j

k0y

k0
ẑ (14b)

M̄±
R = x̂± j

k±z
k±

ŷ − j
k±y
k±

ẑ (14c)

M̄±
L = x̂∓ j

k±z
k±

ŷ − j
k±y
k±

ẑ (14d)

Superscript ± in Equation (17) represents the eigenwaves propagating
in the ±z and ±y directions. η0 =

√
µ0/ε0 and η =

√
µ/ε is the

impedance of free space and chiral nihility medium respectively. The
subscript R and L refer to the RCP and LCP eigenwaves satisfying the
dispersion relation

(k±y )2 + (k±z )2 = (k±)2 (15)
k0z and k0y satisfy the dispersion relation

k2
0y + k2

0z = k2
0 (16)

The relation between the normal components of wave vectors in chiral
nihility medium is k+

z = −k−z [32]. The unknown coefficients may
be obtained by applying the boundary conditions. According to the
boundary conditions at z = ±d2 and y = ±b2, i.e., at the PEC surfaces
the tangential components of the electric field Ē1 must be zero and
the tangential components of the electric and magnetic fields across
the achiral-chiral interface located at z = ±d1 and y = ±b1 must
be continuous. After solving the boundary problems, we obtain the
coefficients as

A+ = A− = B+ = B− = C+ = C− = D+ = D− =
−1
2

(17)

jE+ = jF+ = jG+ = jH+ = E− = F− = −G− = −H− (18)
When we substitute Equations (20) and (21) in Equation (15), we get
Ē1 = 0. The electric field inside the chiral nihility coating comes to
be zero and all the electric field is localized in the air region. The
reason for the disappearance of electric field inside the chiral nihility
is discussed in [6].

It is obvious from above expressions that the Ē1 = 0, that is
the electric field inside the Region 1 becomes zero. So the energy is
only confined to the non-nihility regions of the waveguide as shown in
Figure 2.
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Figure 2. Amplitude of the electric field along the guide.

3. FRACTIONAL DUAL FIELDS INSIDE A CHIRAL
NIHILITY COATED RECTANGULAR WAVEGUIDE

The fractional dual electric (Ēfd) and magnetic (H̄fd) fields may be
obtained using the following relations [20]:

Ēfd =
1

(jk)α
(∇×)αĒ (19)

ηH̄fd =
1

(jk)α
(∇×)αηH̄ (20)

where 1
jk∇× is equivalent to the cross product operator (ki×). Using

this concept of fractional curl operator (ki×)α [20], the Maxwell
equations for the ejωt time harmonic fields can be written as:

(k̂×)Ē0fd = η0H̄0fd (21a)

(k̂×)η0H̄0fd = −Ē0fd (21b)

(k̂±×)Ē1fd = ηH̄1fd (21c)

(k̂±×)ηH̄1fd = −Ē1fd (21d)

Fractional dual fields inside the air and chiral nihility coating may be
obtained as [28]:

Ē0fd = (k̂×)αη0H̄0 (22a)

η0H̄0fd = (k̂×)αĒ0 (22b)
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Ē1fd = (k̂±×)αηH̄1 (22c)

ηH̄1fd = (k̂±×)αĒ1 (22d)

We may express the fields in the waveguide as a superposition of four
waves, i.e.,

Ēi = Ē1
i + Ē2

i + Ē3
i + Ē4

i

ηH̄i = ηH̄1
i + ηH̄2

i + ηH̄3
i + ηH̄4

i

where, i = 0, 1. The electric and magnetic fields associated with i = 0
waves i.e., fields inside the free space are written as:

Ē1
0 =− j

2
ejk0yy+jk0zzx̂− j

2
A+N̄+

R ejk0yy+jk0zz − j

2
B+N̄+

L ejk0yy+jk0zz (23)

Ē2
0 =

1
2
ejk0yy−jk0zzx̂+

1
2
A−N̄−

R ejk0yy−jk0zz +
1
2
B−N̄−

L ejk0yy−jk0zz (24)

Ē3
0 =

j

2
e−jk0yy−jk0zzx̂+

j

2
C+N̄+

R e−jk0yy−jk0zz+
j

2
D+N̄+

L e−jk0yy−jk0zz(25)

Ē4
0 =

1
2
e−jk0yy+jk0zzx̂ +

1
2
C−N̄−

R e−jk0yy+jk0zz

+
1
2
D−N̄−

L e−jk0yy+jk0zz (26)

η0H̄
1
0 =

1
2

[
k0z

k0
jejk0yy+jk0zz ŷ − k0y

k0
jejk0yy+jk0zz ẑ

+A+N̄+
R ejk0yy+jk0zz −B+N̄+

L ejk0yy+jk0zz

]
(27)

η0H̄
2
0 =

1
2

[
k0z

k0
ejk0yy−jk0zz ŷ +

k0y

k0
ejk0yy−jk0zz ẑ

+jA−N̄−
R ejk0yy−jk0zz − jB−N̄−

L ejk0yy−jk0zz

]
(28)

η0H̄
3
0 =

1
2

[
k0z

k0
je−jk0yy−jk0zz ŷ − k0y

k0
je−jk0yy−jk0zz ẑ

+C+N̄+
R e−jk0yy−jk0zz −D+N̄+

L e−jk0yy−jk0zz

]
(29)

η0H̄
4
0 =

1
2

[
− k0z

k0
e−jk0yy+jk0zz ŷ − k0y

k0
e−jk0yy+jk0zz ẑ

−jC−N̄−
R e−jk0yy+jk0zz + jD−N̄−

L e−jk0yy+jk0zz

]
(30)
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For the above waves the k̂i× operators are defined

k̂1× = − 1
k0

(k0yŷ + k0z ẑ)×

k̂2× = − 1
k0

(k0yŷ − k0z ẑ)×

k̂3× = − 1
k0

(−k0yŷ − k0z ẑ)×

k̂4× = − 1
k0

(−k0yŷ + k0z ẑ)×

To determine the fractional dual solutions (Ē0fd, ηH̄0fd), the
eigenvalues and the eigenvectors of the cross product operator k̂i×
are required. Eigenvalues and the eigenvectors of the operator (k̂1×)
are

A11 =
1√
2

(
x̂ + j

k0z

k0
ŷ − j

k0y

k0
ẑ

)
= N̄+

R , a11 = +j

A12 =
1√
2

(
x̂− j

k0z

k0
ŷ + j

k0y

k0
ẑ

)
= N̄+

L , a12 = −j

A13 = −j
k0y

k0
ŷ − j

k0z

k0
ẑ, a13 = 0

Eigenvalues and the eigenvectors of the operator (k̂2×) are

A21 =
1√
2

(
x̂− j

k0z

k0
ŷ − j

k0y

k0
ẑ

)
= N̄−

R , a21 = +j

A22 =
1√
2

(
x̂ + j

k0z

k0
ŷ + j

k0y

k0
ẑ

)
= N̄−

L , a22 = −j

A23 = −j
k0y

k0
ŷ + j

k0z

k0
ẑ, a23 = 0

Eigenvalues and the eigenvectors of the operator (k̂3×) are

A31 =
1√
2

(
x̂ + j

k0z

k0
ŷ − j

k0y

k0
ẑ

)
= N̄+

R , a31 = −j

A32 =
1√
2

(
x̂− j

k0z

k0
ŷ + j

k0y

k0
ẑ

)
= N̄+

L , a32 = +j

A33 = j
k0y

k0
ŷ + j

k0z

k0
ẑ, a33 = 0
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Eigenvalues and the eigenvectors of the operator (k̂4×) are

A41 =
1√
2

(
x̂− j

k0z

k0
ŷ − j

k0y

k0
ẑ

)
= N̄−

R , a41 = −j

A42 =
1√
2

(
x̂ + j

k0z

k0
ŷ + j

k0y

k0
ẑ

)
= N̄−

L , a42 = +j

A43 = j
k0y

k0
ŷ − j

k0z

k0
ẑ, a43 = 0

The fractional dual fields associated with the corresponding operators
are

Ē1
0fd =− j

2

[(
cos

(απ

2

)
x̂− k0z

k0
sin

(απ

2

)
ŷ+

k0y

k0
sin

(απ

2

)
ẑ

)
ejk0yy+jk0zz

+ (j)α A+N̄+
R ejk0yy+jk0zz + (−j)α B+N̄+

L ejk0yy+jk0zz

]
(31)

Ē2
0fd =

1
2

[(
cos

(απ

2

)
x̂+

k0z

k0
sin

(απ

2

)
ŷ+

k0y

k0
sin

(απ

2

)
ẑ

)
ejk0yy−jk0zz

+ (j)α A−N̄−
R ejk0yy−jk0zz + (−j)α B−N̄−

L ejk0yy−jk0zz

]
(32)

Ē3
0fd =

j

2

[(
cos

(απ

2

)
x̂+

k0z

k0
sin

(απ

2

)
ŷ− k0y

k0
sin

(απ

2

)
ẑ

)
e−jk0yy−jk0zz

+(−j)α C+N̄+
R e−jk0yy−jk0zz+(j)α D+N̄+

L e−jk0yy−jk0zz

]
(33)

Ē4
0fd =

1
2

[(
cos

(απ

2

)
x̂− k0z

k0
sin

(απ

2

)
ŷ− k0y

k0
sin

(απ

2

)
ẑ

)
e−jk0yy+jk0zz

+(−j)α C−N̄−
R e−jk0yy+jk0zz+(j)α D−N̄−

L e−jk0yy+jk0zz

]
(34)

η0H̄
1
0fd =

1
2

[
j

(
sin

(απ

2

)
x̂+

k0z

k0
cos

(απ

2

)
ŷ− k0y

k0
cos

(απ

2

)
ẑ

)
ejk0yy+jk0zz

+(j)α A+N̄+
R ejk0yy+jk0zz−(−j)α B+N̄+

L ejk0yy+jk0zz

]
(35)

η0H̄
2
0fd =

1
2

[(
−sin

(απ

2

)
x̂+

k0z

k0
cos

(απ

2

)
ŷ+

k0y

k0
cos

(απ

2

)
ẑ

)
ejk0yy−jk0zz

+j (j)α A−N̄−
R ejk0yy−jk0zz−j (−j)α B−N̄−

L ejk0yy−jk0zz

]
(36)
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η0H̄
3
0fd =

1
2

[
j

(
−sin

(απ

2

)
x̂+

k0z

k0
cos

(απ

2

)
ŷ− k0y

k0
cos

(απ

2

)
ẑ

)
e−jk0yy−jk0zz

+ (−j)α C+N̄+
R e−jk0yy−jk0zz−(j)α D+N̄+

L e−jk0yy−jk0zz

]
(37)

η0H̄
4
0fd =

1
2

[(
−sin

(απ

2

)
x̂− k0z

k0
cos

(απ

2

)
ŷ− k0y

k0
cos

(απ

2

)
ẑ

)
e−jk0yy+jk0zz

−j(−j)αC−N̄−
R e−jk0yy+jk0zz+j (j)αD−N̄−

L e−jk0yy+jk0zz

]
(38)

The total fractional dual electric and magnetic fields in the free space
region may be written as:

Ē0fd = Ē1
0fd + Ē2

0fd + Ē3
0fd + Ē4

0fd (39)

η0H̄0fd = η0H̄
1
0fd + η0H̄

2
0fd + η0H̄

3
0fd + η0H̄

4
0fd (40)

Similarly the electric and magnetic fields associated with i = 1, i.e.,
fields inside the chiral nihility coating may be written as as sum of four
plan waves for convenience:

Ē1
1 = − j

2
E+M̄+

R ejk+
y y+jk+

z z − j

2
F+M̄+

L ejk−y y+jk−z z (41)

Ē2
1 =

1
2
E−M̄−

R ejk+
y y−jk+

z z +
1
2
F−M̄−

L ejk−y y−jk−z z (42)

Ē3
1 =

j

2
G+M̄+

R e−jk+
y y−jk+

z z +
j

2
H+M̄+

L e−jk−y y−jk−z z (43)

Ē4
1 =

1
2
G−M̄−

R e−jk+
y y+jk+

z z +
1
2
H−M̄−

L e−jk−y y+jk−z z (44)

ηH̄1
1 =

1
2
E+M̄+

R ejk+
y y+jk+

z z − 1
2
F+M̄+

L ejk−y y+jk−z z (45)

ηH̄2
1 =

j

2
E−M̄−

R ejk+
y y−jk+

z z − j

2
F−M̄−

L ejk−y y−jk−z z (46)

ηH̄3
1 =

1
2
G+M̄+

R e−jk+
y y−jk+

z z − 1
2
H+M̄+

L e−jk−y y−jk−z z (47)

ηH̄4
1 = − j

2
G−M̄−

R e−jk+
y y+jk+

z z +
j

2
H−M̄−

L e−jk−y y+jk−z z (48)

The (k̂i×) operators are defined for the fractionalization of fields in the
chiral nihility regions:

k̂1
+× = − 1

k+

(
k+

y ŷ + k+
z ẑ

)

k̂2
+× = − 1

k+

(
k+

y ŷ − k+
z ẑ

)
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k̂3
+× = − 1

k+

(−k+
y ŷ − k+

z ẑ
)

k̂4
+× = − 1

k+

(−k+
y ŷ + k+

z ẑ
)

Eigenvalues and the eigenvectors of the operator (k̂+
1 ×) are

A+
11 =

1√
2

(
x̂ + j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄+

R , a+
11 = +j

A+
12 =

1√
2

(
x̂− j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄+

L , a+
12 = −j

A+
13 = −j

k+
y

k+
ŷ − j

k+
z

k+
ẑ, a+

13 = 0

Eigenvalues and the eigenvectors of the operator (k̂+
2 ×) are

A+
21 =

1√
2

(
x̂− j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄−

R , a+
21 = +j

A+
22 =

1√
2

(
x̂ + j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄−

L , a+
22 = −j

A+
23 = −j

k+
y

k+
ŷ + j

k+
z

k+
ẑ, a+

23 = 0

Eigenvalues and the eigenvectors of the operator (k̂+
3 ×) are

A+
31 =

1√
2

(
x̂ + j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄+

R , a+
31 = −j

A+
32 =

1√
2

(
x̂− j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄+

L , a+
32 = j

A+
33 = j

k+
y

k+
ŷ + j

k+
z

k+
ẑ, a+

33 = 0

Eigenvalues and the eigenvectors of the operator (k̂+
4 ×) are

A+
41 =

1√
2

(
x̂− j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄−

R , a+
41 = −j

A+
42 =

1√
2

(
x̂ + j

k+
z

k+
ŷ − j

k+
y

k+
ẑ

)
= M̄−

L , a+
42 = j

A+
43 = = j

k+
y

k+
ŷ − j

k+
z

k+
ẑ, a+

43 = 0
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The fractional dual fields to the corresponding operators are

Ē1
1fd=− j

2
(j)αE+M̄+

R ejk+
y y+jk+

z z − j

2
(−j)αF+M̄+

L ejk−y y+jk−z z (49)

Ē2
1fd=

1
2
(j)αE−M̄−

R ejk+
y y−jk+

z z +
1
2
(−j)αF−M̄−

L ejk−y y−jk−z z (50)

Ē3
1fd=

j

2
(−j)αG+M̄+

R e−jk+
y y−jk+

z z +
j

2
(j)αH+M̄+

L e−jk−y y−jk−z z (51)

Ē4
1fd=

1
2
(−j)αG−M̄−

R e−jk+
y y+jk+

z z +
1
2
(j)αH−M̄−

L e−jk−y y+jk−z z (52)

ηH̄1
1fd=

1
2

[
(j)αE+M̄+

R ejk+
y y+jk+

z z−(−j)αF+M̄+
L ejk−y y+jk−z z

]
(53)

ηH̄2
1fd=

j

2

[
(j)αE−M̄−

R ejk+
y y−jk+

z z−(−j)αF−M̄−
L ejk−y y−jk−z z

]
(54)

ηH̄3
1fd=

1
2

[
(−j)αG+M̄+

R e−jk+
y y−jk+

z z−(j)αH+M̄+
L e−jk−y y−jk−z z

]
(55)

ηH̄4
1fd=

j

2

[
−(−j)αG−M̄−

R e−jk+
y y+jk+

z z+(j)αH−M̄−
L e−jk−y y+jk−z z

]
(56)

The total electric and magnetic fields inside the chiral nihility coating
can be written as sum of the four fractionalized fields obtained in the
chiral nihility:

Ē1fd = Ē1
1fd + Ē2

1fd + Ē3
1fd + Ē4

1fd (57)

ηH̄1fd = ηH̄1
1fd + ηH̄2

1fd + ηH̄3
1fd + ηH̄4

1fd (58)

Changing the values of α between 0 and 1, the field behavior inside
intermediate geometries is obtained. For α = 0

Ēifd = Ēi

ηH̄ifd = ηH̄i

yields the original field solution in the PEC waveguide. For α = 1

Ēifd = ηH̄i

ηH̄ifd = −Ēi

The field for α = 1 is dual to the field for α = 0. The PEC waveguide
for α = 1 reduces to the PMC waveguide and for 0 < α < 1 the fields
may be regarded as intermediate between the original and dual to the
original solutions, and may be called as fractional dual fields. It shows
that for 0 < α < 1, behavior changes from PEC to PMC and TM
mode changes to TE mode. For α = 0, 1, 2, 3, 4 it may be shown that
fractional dual fields are periodic with respect to fractional parameter
α with period 4.
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4. CONCLUSION

In this paper, fractional dual fields for a rectangular waveguide
internally coated with chiral nihility material are obtained. It is shown
that the electric field inside the chiral nihility coating is zero. For
α = 0, the original fields (Ē, ηH̄) are obtained and for α = 1 dual to
the original fields (ηH̄,−Ē) are obtained. For 0 < α < 1 intermediate
fields called the fractional fields are obtained where the PEC waveguide
changes to PMC and TM mode changes to TE mode. It is noted that
original and dual to the original solutions are periodic with respect to
fractional parameter α with period 4.
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