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N. Voicu

Transilvania University
Brasov, Romania

Abstract—In spaces with Finslerian geometry, the metric tensor
depends on the directional variable, which leads to a dependence on
this variable of the electromagnetic tensor and of the 4-potential.
In this paper, we investigate some of the consequences of this fact,
regarding the basic notions and equations of classical electromagnetic
field theory.

1. INTRODUCTION

Finsler geometry and its generalizations have found applications to a
wide range of domains, such as: theory of anisotropic media ([7, 9]),
Lagrangian mechanics, statistical physics and thermodynamics, theory
of evolution of biological systems, theory of space-time and gravitation
and even in attempts of unifying gravity and electromagnetism.

In what concerns Finslerian space-time models (e.g., in [1, 2, 4, 5,
10, 15, 16, 19, 22]), they arose from a series of questions of modern
astrophysics. Problems like, for instance ([16]): rotation curves
of spiral galaxies, the 3D-problem for spiral galaxies (usual gravity
theory does not work in the plane of the galaxy but works in the
orthogonal direction) or the location of globular clusters (which is close
to the center of the galaxy and not at its periphery, as expected),
indicate that, though classical General Relativity properly works at
the scale of our solar system, still, for larger scales, some extra
assumptions or modifications are needed. Among other hypotheses,
Finsler geometry, as a generalization of Riemannian one, could provide
a viable framework for solving such questions.

But, passing to spaces with Finslerian geometry, we can expect
that there appear modifications in the fundamental notions and basic
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equations of electromagnetic field theory. The metric tensor depends
not only on the coordinates on the spacetime manifold M , but also
on a directional variable and more generally, the involved geometric
objects are no longer defined on M, but on the tangent bundle TM.
In the present paper, we are going to investigate some mathematical
aspects of these changes.

A first (and beautiful) model for electromagnetism in Finsler
spaces was developed starting with the late 80’s — early 90’s by Miron
and collaborators [10, 12–14]. There, the electromagnetic tensor is
regarded as arising from deflection tensors attached to a distinguished
linear connection on TM . Still, in this approach, it is not necessarily
related to a potential, which hinders the use of variational approaches
and makes interpretation of the newly appeared objects more difficult.

In 2008–2009, in two joint papers with Siparov [3, 20], we provided
a new approach (and with different results), based exclusively on
variational calculus and differential form language. Trying to extend to
Finsler spaces the idea of total action attached to the electromagnetic
field together with a system of particles

S = −
∑

mc

∫
ds−

∑ q

c

∫
Akdxk − 1

16πc

∫
FijF

ijdΩ,

we need a generalization of the notion of 4-potential A. Since Maxwell
equations involve the components gij (x, y) of the metric tensor, in the
Finslerian case, the dependence of gij on the fiber coordinates yi on TM
(i.e., on the directional variable) generally leads to solutions depending
on these. It appears as reasonable the idea that the electromagnetic
tensor and accordingly, the potential A, depend on both the base
and on the fiber coordinates. Thus, we regarded the potential as a
horizontal 1-form

A = Ai(x, y)dxi

on TM, satisfying certain restrictions, and the electromagnetic tensor,
as its exterior derivative:

F = dA.

The obtained electromagnetic tensor F is a 2-form on TM,
consisting of two blocks — a horizontal (dxi∧dxj) one, which is similar
to the usual one, and a new, mixed (dxi∧δyj̄) one, which appears in the
Maxwell equations and in the equations of motion of charged particles.

The generalized Maxwell equations we proposed on TM have a
similar form to the usual ones in pseudo-Riemannian spaces:

dF = 0, (δF )] = −4π

c
J,
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where δ denotes codifferential, ]: T ∗M → TM is the musical
isomorphism (raising indices of 1-forms) and J is a vector field
on TM, whose horizontal component is the usual 4-current (plus
a correction due to the anisotropy of the space, which reminds
the idea of bound current in a material). The vector field J has
identically vanishing divergence, which provides an analogue of the
usual continuity equation.

In this paper, we bring clarifications and improvements to these
ideas.

First of all, we relax the definition of the 4-potential in [3, 20],
namely, we only impose that its components Ai be 0-homogeneous
in the fiber coordinates, which insures that the second term in the
total action does not depend on the choice of the parameter on the
integration path.

Also, we provide new details regarding the TM -current J, such as:
its link to charge density, the relation between the continuity equation
on TM and gauge invariance.

A problem in Finsler spaces M with metrics of Lorentz signature
(−, +, +, +), is having a well-defined volume form on M . The usual
notions of volume form in Finsler spaces with positive definite metrics
— Busemann-Hausdorff volume and Holmes-Thompson volume, [17]
— would lead in our case to improper integrals (since they involve
integration on indicatrices ‖y‖ = 1 at considered points of the base
manifold, and these indicatrices are no longer compact). By using an
appropriate completion of our metric up to a metric on TM , we solve
this problem and adapt the idea of Holmes-Thompson volume to our
case. A direct application is being able to write the total charge in a
region of space as an integral of charge density.

In the last two sections, we propose a generalization of the notion
of stress-energy tensor of the electromagnetic field to Finsler spaces. In
flat (locally Minkowski) Finsler spaces, this generalization is obtained
by symmetrizing the Noether current given by the invariance of the
field Lagrangian to transformations on TM induced by spacetime
translations. We obtain a tensor consisting of two blocks

T = Tijdxi ⊗ dxj + Tij̄dxi ⊗ δyj̄ .

The obtained tensor identically satisfies a TM -analogue of the usual
energy-momentum conservation law.

In curved Finsler spaces, the horizontal block Tijdxi ⊗ dxj of the
generalized energy-momentum tensor (which corresponds to the usual
stress-energy tensor) can be obtained by varying the field Lagrangian
with respect to the metric tensor and the mixed block Tij̄dxi⊗ δyj̄ , by
varying the same Lagrangian with respect to the nonlinear connection.
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2. THE RIEMANNIAN CASE — A BRIEF OVERVIEW

In this section, we will present in brief some basic ideas and methods
in classical electromagnetic field theory. We will adopt the language
of differential forms (see [8, 26–28]), which provides elegant, concise
equations and is tightly related to variational calculus.

Let (M, g) be a Lorentzian manifold of dimension 4 (and class C∞),
regarded as spacetime manifold. We denote local coordinates on M by
x = (xi)i=0,3; the first coordinate is regarded as the time coordinate
and x = (xα)α=1,3, as spatial coordinates. By ;k, we mean Levi-Civita
covariant derivative with respect to ∂

∂xk , by ∗, the Hodge dual, by δ,
the codifferential of p-forms and by [: TM → T ∗M, ]: T ∗M → TM,
the musical isomorphisms (lowering/raising indices).

The 4-potential is described as a 1-form

A = Ai(x)dxi. (1)

The electromagnetic tensor (or Faraday 2-form) is its exterior
derivative:

F = dA =
1
2
Fjkdxj ∧ dxk, (2)

(where Fjk = Ak;j − Aj;k). In the language of differential forms,
homogeneous Maxwell equations

Fij;k + Fki;j + Fjk;i = 0 (3)

become [8],
dF = 0. (4)

If the electromagnetic tensor F is given, then (4) implies (on a
contractible domain) the existence of a 1-form A, such that F = dA.
Conversely, if one considers the potential 1-form A as a priori given
and define F as its exterior differential, then the homogeneous Maxwell
equation is obtained as an identity.

An important property of the electromagnetic field is gauge
invariance. Namely, the field strength tensor F is invariant to
transformations

A 7→ A + dψ,

where ψ : M → R is a differentiable function.
Inhomogeneous Maxwell equations and the equations of motion of

charged particles are obtained by variational methods, namely, from
the total action attached to the field and to a system of particles:

S = −
∑

mc

∫
ds

︸ ︷︷ ︸
Sp

−
∑ q

c

∫
Ak(x)dxk

︸ ︷︷ ︸
Sint

− 1
16πc

∫
FijF

ijdΩ
︸ ︷︷ ︸

Sf

, (5)
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(here, m, q, c are constants: m — the mass of a particle, q, its
charge, c, the speed of light in vacuum and the sums are taken over the
particles in the system; dΩ =

√
|g|dx is the invariant volume element

on M). The first term Sp characterizes free particles, the third one
Sf characterizes the electromagnetic field and the second one Sint, the
interaction between the field and the particles.

Variation of the action S with respect to the 4-potential A
(which actually means varying A in S1: = Sint + Sf ), leads to the
inhomogeneous Maxwell equations; by varying S (written for a single
particle) with respect to the trajectory, i.e., varying S2 := Sp + Sint,
one obtains the equations of motion of charged particles in a given
electromagnetic field.

Charge density ρ = ρ(x) is the amount of electric charge in a given
spatial volume; its integral over a certain region of space provides the
total charge situated inside that region:

q =
∫

ρdV, (6)

where dV =

√
|g|√
g00

dx is the spatial volume element [11]. Here, the

charge distribution is regarded as continuous; for a discrete distribution
of charges q1, ..., qn, the writing (6) is achieved by means of the Dirac
delta function.

Relation (6) allows us to write Sint as a volume integral

Sint = −1
c

∫
AiJ

idΩ,

where the quantities

J i :=
ρc√
g00

dxi

dx0
(7)

are the components of a vector field J , called the 4-current.
Thus, the sum S1 : = Sint +Sf can be written as a single integral:

S1 = −
∫ (

1
c
AiJ

i +
1

16πc
FijF

ij

)
dΩ,

thus leading to inhomogeneous Maxwell equations

F ij
;j = −4π

c
J i, (8)

i.e., in a coordinate-free writing [8],

(δF )] = −4π

c
J. (9)
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From (9), it follows that −4π
c δJ[ = δδF = 0, i.e., the 4-current J

identically satisfies the continuity equation (which is equivalent to the
charge conservation law):

div(J) = 0. (10)

Equations of motion of charged particles are obtained as:

Dẋi

ds
=

q

c
F i

j ẋ
j , i = 0, 3, (11)

where Dẋi

ds = dẋi

ds + γi
jkẋ

j ẋk denotes Levi-Civita covariant derivative.
Finally, let us say a few words about the stress-energy-momentum

tensor of the electromagnetic field.
A. In special relativity (where M = R4 and g =

diag(−1, 1, 1, 1) is the Minkowski metric), the energy-momentum
tensor is obtained [11], by symmetrizing the Noether current given
by the invariance of the field action Sf to spacetime translations
x 7→ x + a (where a = const.); its expression is

T = Tijdxi ⊗ dxj , T l
i =

1
4π

(
−F lkFik +

1
4
δl
iFjkF

jk

)
. (12)

The energy-momentum tensor satisfies the identities:

∂T j
i

∂xj
= −1

c
FijJ

j ↔ div(T ) =
1
c
iJF. (13)

The quantity 1
cFijJ

j provides the density of Lorentz force and the
above relation is interpreted as conservation of the total energy and
momentum of the system (field+particles).

B. In general relativity, the energy-momentum tensor T , (12),
is obtained by varying Sf with respect to the metric

δgSf =
1
2c

∫
Tikδg

ikdΩ = − 1
2c

∫
T ikδgikdΩ. (14)

In this case, the stress-energy tensor satisfies the identities:

T j
i;j = −1

c
FijJ

j . (15)

3. SOME GEOMETRIC STRUCTURES IN FINSLER
SPACES

In the following, we will present some usual notions in Finsler geometry,
such as: Ehresmann (nonlinear) connection (which provides invariant
frames on TM), linear connection (producing a covariant derivation
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law which generalizes the Levi-Civita one) and introduce a volume
form on Finslerian spacetimes.

Let now, for a 4-dimensional differentiable manifold M of class
C∞, (TM, π, M) be its tangent bundle and (x, y) = (xi, yi)i=0,3, the
coordinates in a local chart on TM. The base coordinates x = (xi) will
be called positional variables and the fiber ones y = (yi), directional
variables.

We suppose that (M,F) is a Finsler space, i.e., the function
F : TM → R has the properties:
1) F = F(x, y) is C∞-smooth for y 6= 0;
2) positive homogeneity of degree 1 in the directional variable:
F(x, λy) = λF(x, y) for all λ > 0;

3) the Finslerian metric tensor :

gij (x, y) =
1
2

∂2F2

∂yi∂yj
, (16)

is nondegenerate: det(gij (x, y)) 6= 0, ∀x ∈ M, y ∈ TxM\{0}.
In the following, we will consider that the metric has signature

(−, +, +, +)†.
In a Finsler space, the squared element of arc length along a curve

t 7→ x(t) is

ds2 = F2

(
x,

dx

dt

)
dt2 = gij (x, dx)dxidxj .

Finsler spaces are a generalization of pseudo-Riemannian
manifolds, in which the coefficients gij of the metric tensor are no
longer functions defined on M , but on the tangent bundle TM. If on
a usual Lorentzian manifold, the tangent space at each point carries
a pseudo-Euclidean metric structure, in a Finsler space, at each fixed
point x0, the “norm” F(x0, y) is generally not given by a quadratic
form.‡

The 1-homogeneity of F in the fiber coordinates insures that the
integral

∫
ds does not depend on eventual changes of the parameter

along the curve. Given a Finslerian metric tensor gij = gij (x, y),
the corresponding spatial metric is defined similarly to the pseudo-
Riemannian case: γαβ = −gαβ + g0αg0β

g00
, α, β ∈ {1, 2, 3} and its

determinant is det(γαβ) =
√
|g|√
g00

.

† Strictly speaking, it would be more rigorous to call these spaces “pseudo-Finsler”. But
since a lot of authors already use in the latter case the term Finsler, we will also adopt
this more relaxed terminology.
‡ A very interesting insight on the interrelations between a non-Euclidean (though, still
quadratic) geometry and electromagnetism, is given in [23].
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With respect to coordinate changes on the tangent bundle
TM , [6, 10]:

x̃i = x̃i(x), ỹi =
∂x̃i

∂xj
yj (17)

the quantities ∂
∂yi have a tensorial rule of transformation: ∂

∂yi =
∂x̃j

∂xi
∂

∂ỹj , while the quantities ∂
∂xi have a more complicated transforma-

tion law. Hence, if one wants to work with invariant blocks only, then
one needs Ehresmann (nonlinear) connections, i.e., adapted frames on
TM.

Let (N j̄
i) be the coefficients of a nonlinear connection TTM =

HTM ⊕ V TM, [10, 17], and by{
δi =

∂

∂xi
−N j̄

i

∂

∂yj̄
, ∂ı̄ =

∂

∂yı̄

}
,

{
dxi, δyı̄ = dyı̄ + N ı̄

jdxj
}

(18)

the elements of the corresponding adapted basis and of its dual cobasis
respectively. With respect to coordinate changes (17), δi and ∂ı̄ have
tensorial rules of transformation, i.e.,

δi =
∂x̃j

∂xi
δj , ∂ı̄ =

∂x̃j

∂xi
∂j̄ .

In the adapted basis, any vector field V on TM can be written
as V = V iδi + V ı̄∂ı̄; the component hV = V iδi is a vector field, called
the horizontal component of V, while vV = V ı̄∂ı̄ is also a vector field,
called its vertical component. Similarly, a 1-form ω on TM can be
decomposed into invariant blocks as ω = ωidxi+ωı̄δy

ı̄, with hω = ωidxi

called the horizontal component, and vω = ωı̄δy
ı̄ the vertical one [10].

Accordingly, any tensor field on TM is decomposed with respect to
the Ehresmann connection into invariant blocks.

Whenever needed to make a clear distinction, we will denote by
i, j, k, . . . indices corresponding to horizontal geometric objects, ı̄, j̄,
k̄, . . . (with bars), indices corresponding to vertical ones and by capital
letters A,B, C, . . . indices which take values corresponding to both
distributions.

In order to make sense of the notion of volume form on TM and
to be able to raise/lower indices of tensors on this space, we complete
g up to a metric (GAB) (an hv-metric, [10]) on TM :

G(x, y) = gij (x, y)dxi ⊗ dxj + vı̄j̄(x, y)δyı̄ ⊗ δyj̄ . (19)

where v is a positive definite metric tensor§.
§ Assuming that the topological space M is metrizable, then a natural choice would be,
for instance, a metric v which provides the topology of M. In the case when (M, g) is the
Minkowski space, the manifold topology of M = R4 is the Euclidean one, hence we can
choose v as the Euclidean metric.
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It appears as convenient to express the results in terms of covariant
derivatives given by the following linear connection D (inspired
from [10]):

Dδk
δj = Li

jkδi, Dδk
∂j̄ = Lı̄

j̄k∂ı̄, D∂k̄
δj = 0, D∂k̄

∂j̄ = 0. (20)

where

Li
jk =

1
2
gih (δkghj + δjghk − δhgjk) ,

Lı̄
j̄k = N ı̄

k·j̄ +
1
2
vı̄h̄

(
δkvh̄j̄ −

(
∂j̄N

l̄
k

)
vl̄h̄ −

(
∂h̄N l̄

k

)
vl̄j̄

)
.

(21)

We denote by |k covariant derivation by δk and by ·k̄, covariant
derivation by ∂k̄.

The above linear connection preserves the distributions generated
by the Ehresmann connection and it is h-metrical, i.e., gij|k = 0,
vı̄j̄|k = 0. The only nonvanishing components of its torsion tensor T
are

Rı̄
jk = δyı̄(T (δk, δj)) = δkN

ı̄
j − δjN

ı̄
k;

P ı̄
jk̄ = δyı̄(T (∂k̄, δj)) = N ı̄

j·k̄ − Lı̄
k̄j .

Having a metric structure (19) on TM, it makes sense the invariant
volume element on TM :

dΩ =
√
|G|dx ∧ dy.

where G = det(GAB). This volume element defines a volume element
dΩM on M by:

dΩM = σ(x)dx, σ(x) =
∫

Dx

√
|G|dy, (22)

where Dx = {y ∈ TxM | vij (x, y)yiyj ≤ r2} and r = 4
√

2/π2 is the
radius of a 3-sphere of volume 1 in the 4-dimensional Euclidean space.
Then, for a function on a domain ∆ ⊂ M, f : ∆ → R, we have∫

∆

f(x)dΩM =
∫

∆′

f(x)dΩ,

where ∆′ = {(x, y) ∈ TM | x ∈ ∆, y ∈ Dx}.
Similarly to ([11]), we can build the corresponding spatial volume

element

dV = σ̃(x)dx, where σ̃(x) =
∫

Dx

√
|G|√
g00

dy, dx = dx1 ∧ dx2 ∧ dx3.
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In the subsequent field theory considerations, we will integrate by
y on domains Dx as above and with respect to x, on a “large enough”
compact domain in M (assuming that far away from sources, the field
is negligible and the considered time interval is a bounded one).

The divergence of a vector field X = Xiδi + X ı̄∂ı̄ on TM, [18], is
locally expressed as

divX =
1√
|G|

[
δi

(
Xi

√
|G|

)
+ ∂ı̄

(
X ı̄

√
|G|

)]
−N j̄

i·j̄X
i

= Xi
|i + X ı̄

·̄ı −XjPj + X ı̄Cı̄, (23)

where
Pj = P ı̄

jı̄, Cı̄ = ∂ı̄

(
ln

√
|G|

)
.

The codifferential of a 2-form on TM :

ξ =
1
2
ξijdxi ∧ dxj + ξij̄dxi ∧ δyj̄ +

1
2
ξı̄j̄δy

ı̄ ∧ δyj̄

can be calculated from the relation 〈η, δξ〉 = 〈dη, ξ〉 , where 〈 , 〉 is
the inner product of p-forms on TM . We get, in terms of covariant
derivatives:

(δξ)i = ξij
|j + ξij̄

·j̄ − ξijPj + ξij̄Cj̄

(δξ)ı̄ = ξ ı̄j
|j + ξ ı̄j̄

·j̄ − ξ ı̄jPj + ξ ı̄j̄Cj̄ −
1
2
ξjkRi

jk − ξjk̄P ı̄
jk̄.

4. FARADAY 2-FORM, HOMOGENEOUS MAXWELL
EQUATIONS

Definition 1 By 4-potential, we will understand a horizontal 1-form

A = Ai(x, y)dxi (24)

on TM, with the property that the components Ai are 0-homogeneous
in y:

Ai(x, λy) = Ai(x, y), ∀λ ∈ R.

Remarks: 1) This is a more general definition than in [3, 20],
where we also required that Ai = (L1)·i for some function L1. In this
paper, this supplementary restriction will be regarded as a “gauge”
(Section 7), and not as a part of the definition.

2) Examples of anisotropic potentials (24) are given in [3].
The generalized Faraday 2-form (the electromagnetic tensor) is

then defined as in [20]:
F = dA; (25)
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in local coordinates, we get:

F =
1
2
Fijdxi ∧ dxj + Fij̄dxi ∧ δyj̄ , (26)

where
Fij = Aj|i −Ai|j , Fij̄ = −Ai·j̄ . (27)

Relation (25) leads to the generalized homogeneous Maxwell
equation:

dF = 0, (28)

or, locally:

Fij|k + Fki|j + Fjk|i = −
∑

(i,j,k)

Rh̄
jkFih̄;

Fı̄j|k + Fkı̄|j + Fjk·̄ı = P h̄
jı̄Fkh̄ − P h̄

kı̄Fjh̄, Fkı̄·j̄ + Fj̄k·̄ı = 0.

(29)

In the above, we have started from A as an a priori given object
and defined F as its exterior derivative. Conversely, on a contractible
domain in TM , if it is given a closed 2-form

F :=
1
2
Fijdxi ∧ dxj + Fij̄dxi ∧ δyj̄

then there exists, [20], a horizontal form A such that F = dA.

5. INHOMOGENEOUS MAXWELL EQUATIONS

In the following, let us see how the terms of the action (5) transform
on TM.

The interaction term of the total action becomes

Sint = −
∑ q

c

∫
Ai(x, ẋ)dxi.

We write total charge as an integral:

q =
∫

ρ(x)dV =
∫

ρ(x)√
g00

√
Gdx ∧ dy.

Then, with the notation

J i =
ρc√
g00

dxi

dx0
, (30)

Sint is written as a volume integral on a domain in TM :

−q

c

∫
Akdxk = −1

c

∫
AiJ

idΩ (31)
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and the action S1 = Sint + Sf becomes:

S1 = −1
c

∫
AiJ

i +
1

16π
FABFABdΩ. (32)

By varying it with respect to A, we get [20]:

F ij
|j + F ij̄

·j̄ − F ijPj + F ij̄Cj̄ = −4π

c
J i. (33)

Equations (33) gave the idea to generalize the inhomogeneous
Maxwell equation as

(δF )] = −4π

c
J. (34)

The above equation is formally similar to Equation (9); the difference
is that, in the Finslerian case, the involved quantities are no longer
defined on the spacetime manifold, but on its tangent bundle.

In local coordinates, this is:

F ij
|j + F ij̄

·j̄ + Qi = −4π

c
J i, F ı̄j

|j + Qı̄ = −4π

c
J ı̄, (35)

where‖

Qi = −F ijPj + F ij̄Cj̄ , Qı̄ = −F ı̄jPj − 1
2
F jkRı̄

jk − F jk̄P ı̄
jk̄. (36)

Thus, we have obtained a vector field on TM :

J = J iδi + J ı̄∂ı̄

which we will call the TM -current.

6. CONTINUITY EQUATION AND GAUGE
INVARIANCE

From (34), we have −4π
c δJ[ = δδF = 0. In other words, [20]:

Proposition 2 There holds the generalized continuity equation:

div(J) = 0. (37)

The 2-form F remains invariant under gauge transformations

A(x, y) 7→ A(x, y) + dλ(x), (38)

where λ: M → R is a scalar function. Consequently, in the general
action (5), the first term Sp and the third one Sf will also be invariant.

Proposition 3 Transformations (38) do not affect the action
Sint = −1

c

∫
AiJ

idΩ.

‖ Here is an erratum to the local expression of the inhomogeneous Maxwell equation in
[20] – namely, in the term corresponding to Qı̄.
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Proof. Let Ã = A + dλ. We have:∫
ÃiJ

idΩ =
∫

AiJ
idΩ +

∫
∂λ

∂xi
J idΩ.

Since λ = λ(x), we have ∂λ
∂xi = δiλ and

∫
∂λ

∂xi
J idΩ =

∫
δi

(
λJ i

√
|G|

)
dx ∧ dy −

∫
λδi

(
J i

√
|G|

)
dx ∧ dy.

Adding and subtracting a
∫

λJ iN j̄
i·j̄dΩ, the right hand side becomes∫

div(λJH) − λdiv(JH)dΩ. Taking into account the continuity
equation and λ = λ(x), the latter integral is actually

∫
div(λJH)+

div(λJV )dΩ =
∫

div(λJ)dΩ, i.e., it can be written as a boundary term.
When performing variations of the action (and assuming, as in the
classical case, that variations vanish on the boundary), this term will
vanish.

7. EQUATIONS OF MOTION OF CHARGED
PARTICLES

Let us consider the case of a single particle. The equations of motion
are obtained by varying the trajectory x = x(t) (where t is a parameter)
in the first two terms of (5), which in our case become:

S2 = −
∫ (

mc
√

gij (x, ẋ)ẋiẋj +
q

c
Ak(x, ẋ)ẋk

)
dt. (39)

The 0-homogeneity of A insures that the action S2 does not depend
on the choice of the parameter on the integration path, hence we can
choose this parameter according to our wish. By choosing the arclength
s as a parameter (i.e., gij ẋ

iẋj = 1), the action S2 is equivalent to the
one provided by the Lagrangian

L =
1
2
mcgij (x, y)yiyj +

q

c
Ak(x, y)yk, y =

dx

ds
. (40)

The canonical momentum of L is given by

pi =
∂L

∂yi
= mcyi +

q

c

(
Ak·iyk + Ai

)
.

A further restriction can be imposed on the y-dependence of A
in order to make all the approach more elegant and provide a simple
relation of A with the canonical 4-momentum and simple equations of
motion.

In pseudo-Riemannian spaces, where A = A(x), then there exists
only one potential 1-form providing a given interaction Lagrangian
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Lint = Ai(x)yi. But in Finsler spaces (where Ai = Ai(x, y)), Lint =
Ai(x, y)yi can be given by infinitely many functions Ai; the relation
Aiy

i = Ãiy
i is an equivalence, consequently, we can choose from each

class the representative for which satisfies the y-gradient condition:

Ak·iyk = 0. (41)

The y-gradient condition actually means:

Ai =
∂Lint

∂yi

Under this condition, the canonical 4-momentum is given by

pi =
∂L

∂yi
= mcyi +

q

c
Ai

and the Euler-Lagrange equations for (40) are [20]:

mc
Dyi

ds
=

q

c
F i

jy
j +

q

c
F i

j̄

δyj̄

ds
, yi =

dxi

ds
, (42)

where Dyi

ds = dyi

ds + Li
jky

jyk. Here, both the usual Lorentz force term

given by F i = q
cF

i
hyh and the correction given by F̃ i = q

cF
i
j̄

δyj̄

ds are

orthogonal to the velocity 4-vector y = ẋ, i.e., gijF
iyj = 0, gij F̃

iyj =
0.

8. STRESS-ENERGY TENSOR

8.1. In Flat Finsler Spaces

Let us consider, on the vector space M = R4, a flat (locally
Minkowskian [6]) Finsler metric

gij = gij (y).

Assuming that coordinate transformations are linear (as in special
relativity), we can choose the trivial Ehresmann connection N ı̄

j = 0,
hence δi = ∂

∂xi and δyı̄ = dyı̄.

Spacetime translations x̄i = xi + εi, i = 0, 3 induce the following
transformation on TM :

x̄i = xi + εi, ȳi = yi. (43)

The action
Sf = − 1

16πc

∫
FABFABdΩ, (44)
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is invariant to transformations (43) (actually, this invariance reduces
to the absence of an explicit dependence on x of the Lagrangian).

Definition 4 By generalized stress-energy-momentum tensor of
the electromagnetic field on TM , we understand the symmetrized
Noether current given by the invariance of the action (44) to
transformations (43).

Generally, for an action on TM,

S =
1
c

∫
Λ(q(k),

∂q(k)

∂xi
,
∂q(k)

∂yı̄
)dΩ, (45)

where Λ = L
√
|G| is a Lagrangian density on TM and q(k) = q(k)(x, y)

are the field variables, the Euler-Lagrange equations are:
∂

∂xi

(
∂Λ

∂q(k),i

)
+

∂

∂yı̄

(
∂Λ

∂q(k)·̄ı

)
− ∂Λ

∂q(k)
= 0. (46)

The absence of explicit dependence on xi of Λ means
∂Λ
∂xi

=
∂Λ

∂q(k)
q(k),i +

∂Λ
∂q(k),l

q(k),li +
∂Λ

∂q(k)·l̄
q(k)·l̄ ,i.

(where we understood summation over k). Substituting ∂Λ
∂q(k)

from
(46), we get

∂T̃ l
i

∂xl
+

∂T̃ l̄
i

∂y l̄
= 0,

where:

T̃ l
i =

(
q(k),i

∂Λ
∂q(k),l

− δl
iΛ

)
, T̃ l̄

i = q(k),i
∂Λ

∂q(k)·l̄
(47)

In order to “guess” the form of the generalized energy-momentum
tensor for the electromagnetic field, we assume for the beginning that
J = 0 and apply the above to :

Λ = − 1
16π

FBCFBC
√
|G|, q(k) = Ak.

We get ∂Λ
∂Ak,l

= − 1
4πF lk

√
|G|, ∂Λ

∂Ak·l̄
= − 1

4πF l̄k
√
|G| and

T̃ l
i =

1
4π

(
−F lkAk,i +

1
4
δl
iFBCFBC

) √
|G|, T̃ l̄

i = − 1
4π

F l̄kAk,i

√
|G|.

For J = 0, it follows from the inhomogeneous Maxwell equations
that the following terms
1
4π

(
F lkAi,k + F lk̄Ai·k̄

)√
|G| = 1

4π

(
F lkAi

√
|G|

)
,k

+
1
4π

(
F lk̄Ai

√
|G|

)
·k̄

1
4π

F l̄kAi,k

√
|G| =

1
4π

(
F l̄kAi

√
|G|

)
,k
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provide divergences. By adding them to T̃ l
i and T̃ l̄

i respectively and
dividing by

√
|G|, we get the symmetrized tensor

T l
i =

1
4π

(
−F lBFiB +

1
4
δl
iFBCFBC

)
, T l̄

i = − 1
4π

F l̄kFik; (48)

in the case J = 0, the divergence of T is identically 0.
This suggests the following
Definition 5 We call generalized energy-momentum tensor in the

flat Finsler space (R4,F(y)), the symmetric tensor

T = Tijdxi ⊗ dxj + Tij̄dxi ⊗ dyj̄ (49)

with local components given by (48).
If the TM -current J is arbitrary, then by using Maxwell equations,

we get:
1√
|G|

[
∂

∂xj

(
T j

i

√
|G|

)
+

∂

∂yj̄

(
T j̄

i

√
|G|

)]
=−1

c

(
FijJ

j+Fij̄J
j̄
)

. (50)

In brief, T identically satisfies the equality:

div(T ) =
1
c
h(iJF ), (51)

where h denotes projection to the horizontal distribution HTM .

8.2. In General Finsler Spaces

In general (pseudo-) Finsler spaces, we define the generalized energy-
momentum tensor of the electromagnetic field as above:

T = Tijdxi ⊗ dxj + Tij̄dxi ⊗ δyj̄ ,

TiA =
1
4π

(
−F B

A FiB +
1
4
giAFBCFBC

)
,

(52)

(where gij̄ = 0). By a direct computation, it follows that:
Proposition 6 The horizontal components Tij of the generalized

energy-momentum tensor can be obtained by varying the action Sf

with respect to the spacetime metric g (i.e., with respect to the
horizontal part of the metric (GAB)):

δgSf =
1
2c

∫
Tikδg

ikdΩ,

while the mixed components Tij̄ are obtained by varying Sf with
respect to the nonlinear connection N :

δNSf =
1
c

∫
T j

ı̄δN
ı̄
jdΩ.
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In curved Finsler spaces, the generalized energy-momentum tensor
T satisfies some more complicated identities, involving the torsion of
the linear connection D. The situation reminds the one in Riemann-
Cartan geometry [21].

9. CONCLUSION

For a 4-dimensional pseudo-Finsler space (M,F), we have generalized
the basic notions and results in classical electromagnetic field theory.
The 4-potential is defined as a horizontal 1-form A = Ai(x, y)dxi on
the tangent bundle TM, having its components Ai homogeneous of
degree 0 in y. The generalized electromagnetic tensor is the 2-form
F = dA. Maxwell’s equations on TM are then written as:

dF = 0, δF = −4π

c
J[.

The TM -current J = J iδi+J ı̄∂ı̄ is a vector field on TM satisfying
identically divJ = 0. Its horizontal component J iδi provides the usual
notion of 4-current (plus a correction term due to the anisotropy of the
space).

Further, for flat Finsler spaces (M,F(y)), the generalized energy-
momentum tensor is defined as the symmetrized Noether current
corresponding to invariance of the field Lagrangian to spacetime
translations. We obtained

T = Tijdxi ⊗ dxj + Tij̄dxi ⊗ dyj̄ , (53)

T iA =
1
4π

(
−FB

A FiB +
1
4
giAFBCFBC

)
, (54)

(where gij̄ = 0 and A, B, C take all values corresponding to
both horizontal and vertical components). The generalized energy-
momentum tensor satisfies the identity:

div(T ) =
1
c
h(iJF ),

which is a generalization to TM of the usual energy-momentum
conservation law.

In curved Finsler spaces, the components of the generalized stress-
energy tensor can be obtained by varying the field action with respect
to the metric gij (x, y) (thus getting Tij ) and with respect to the
Ehresmann connection N (which provides the components, Tij̄).

We estimate that differential form language, combined with
tangent bundle (in particular, Riemann-Finsler) geometry methods
could also offer a very useful tool for the study of topical problems
(e.g., in [24, 25, 29]) of electromagnetics in anisotropic media.
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