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Abstract—The early identification of malignant tissue is one of
the most significant factors in the successful treatment of breast
cancer. Microwave imaging is an emerging breast screening modality
based on the dielectric contrast between normal and cancerous tissues
at microwave frequencies. When the breast is illuminated with
an Ultrawideband (UWB) microwave pulse, the dielectric contrast
between normal and cancerous tissues generates electromagnetic
reflections. These reflected signals, containing tumor backscatter,
are spatially focused using a beamformer which can compensate for
attenuation and phase effects as the signal propagates through the
breast. However, recent studies have shown the breast to be a
dielectrically heterogeneous entity. High levels of heterogeneity reduce
the dielectric contrast between normal and cancerous tissue, limiting
the effectiveness of beamforming algorithms. One possible method to
assist in the diagnoses of cancer in a heterogeneously dense breast is the
use of contrast agents. Contrast agents modify the dielectric properties
of a malignant tumor site in order to increase the dielectric contrast
with fibroglandular tissue. In this paper, a number of beamforming
algorithms are applied to MRI-derived models with endogenous and
contrast enhanced malignant tissue properties. Two contrast agents
are applied to heterogeneously dense breast phantoms and simulations
are carried out prior and post contrast agent delivery. A range of tumor
diameters are simulated and a number of beamforming algorithms are
applied to the simulated data. The resulting differential scans are then
compared across a range of appropriate metrics.
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1. INTRODUCTION

The significant number of new cases of breast cancer reported globally
(1.5 million in the US alone [1]), coupled with the limitations
of the current de facto breast cancer screening method, X-Ray
Mammography [2, 3], have prompted the investigation of alternative
breast imaging modalities.

Microwave imaging is one such promising breast imaging modality,
using backscattered radar signals to identify cancerous regions within
the breast [4, 5]. The dielectric contrast between tissue types,
notably malignant and normal breast tissues, generate electromagnetic
reflections within the breast. These reflections can be recorded and a
time-domain image-formation algorithm (beamformer) can be used to
determine the location of any dielectric scatterer present.

Recently established data on the dielectric properties of the
breast [6] has shown that:
• The level of dielectric heterogeneity within the breast had

previously been significantly underestimated.
• The dielectric contrast between fibroglandular tissue and

cancerous tissue was less than 10%.
These findings highlight the challenges associated with using mi-
crowave imaging to locate cancerous regions within a heterogeneously
dense breast, which contains significant fibroglandular tissue con-
tent [7, 8]. Contrast agents have been shown to modify the relative
permittivity and conductivity of tissue-mimicking materials [9]. Using
these agents, the contrast between fibroglandular and malignant tis-
sue can be controlled in order to accurately locate tumors within the
breast.

In this paper, the effectiveness of tumor localization in contrast
enhanced differential images is examined using the following beam-
forming algorithms: Delay-And-Sum (DAS) [4, 10], Delay-Multiply-
And-Sum (DMAS) [11], Improved Delay-And-Sum (IDAS) [12] and
Transmitter-Grouping Robust Capon Beamforming(TGRCB) [13].
Each algorithm is evaluated using an anatomically realistic breast
model with a tumor of varying diameter, located in a region of dense
fibroconnective tissue. Differential images are then obtained by calcu-
lating the energy differences between images which are prior and post
contrast agent application. A number of metrics are used on the differ-
ential scans to determine the quality and effective localization ability
of each beamforming algorithm.

The remainder of the paper is organized as follows: Section 2
describes the four beamforming algorithms used to obtain differential
energy scans. The use of contrast agents in microwave medical
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imaging is considered in Section 3. The numerical breast model model
and performance metrics are described in Section 4, and results are
presented in Section 5. Finally, conclusions and suggestions for future
work are discussed in Section 6.

2. IMAGING ALGORITHMS

Beamforming algorithms can be classified as: Data-Independent
or Data-Adaptive methods. Data-Independent beamformers use
an assumed propagation model to compensate for path dependent
attenuation and dispersion [4, 7, 8, 10–12]. Conversely, Data-Adaptive
algorithms process the received signals in order to achieve unit
gain from a desired direction, while suppressing signals of the
same frequency from all other directions [13–15]. The Delay-
And-Sum (DAS) beamformer is based on the Confocal Microwave
Imaging approach [4]. The DAS algorithm time-shifts and sums the
backscattered signals from the breast to create a synthetic focus. If a
tumor exists at a specific focal point, then the returns from the tumor
site will add coherently. Returns from clutter due to variations in
tissue types will add incoherently, and therefore will be suppressed.
The energy at this synthetic focus is measured and stored, and an
image of energy scattered by breast tissue is created by varying the
position of the synthetic focus within the breast.

Klemm et al. [12] attempted to improve the traditional DAS
beamformer by introducing an additional weighting factor, called the
Quality Factor (QF), which is a measure of the coherence of UWB
backscattering at a particular focal point within the breast. At the
focal point (r), energy is collected across a window for each multistatic
signal and stored. The energy from the focal point is then cumulatively
summed and plotted against the number of channels used in the
process. A second order polynomial is fitted to the normalized energy
collection curve (y = ax2 + bx + c) with a assumed to be the Quality
Factor. a is then multiplied by the voxel energy calculated by the DAS
algorithm.

Another variant of the DAS algorithm is the Delay-Multiply-and-
Sum (DMAS) beamformer developed by Lim et al. [11]. This algorithm
involves signals being time-shifted (as in DAS), multiplied in pairs and
their products summed in order to calculate the energy at a focal point.

The Data-Adaptive Transmitter-Grouping Robust Capon Beam-
former (TGRCB) [13] attempts to determine the power of a desired
waveform by using received signal data to vary weights (via a steering
vector) applied to the antenna array [14, 15]. The TGRCB method uses
a unique signal grouping method, in order to effectively and efficiently
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apply the RCB algorithm. For each transmitter, all the corresponding
received signals are grouped together and the RCB method is applied
to this data set.

3. CONTRAST AGENTS

Confocal Microwave Imaging (CMI) is based on a number of
assumptions about the dielectric properties of the breast: that
the breast is primarily dielectrically homogeneous and that there
exists a significant dielectric contrast exists between cancerous and
normal breast tissue. Therefore, as suggested by Lazebnik et al. [6],
dense breast tissue, where there is a significant concentration of
fibroglandular tissue, poses significant challenges to UWB radar
imaging methods. One possible solution is the use of contrast agents.

The Enhanced Permeability and Retention [16] of malignant tissue
ensures that the clearance of macromolecules or lipids from a tumor
site is significantly impaired compared to normal or inflamed tissue.
Certain macromolecular substances can selectively target tumors and
remain at high concentration at the tumor site after clearing from
nearby organs and tissues. A number of chemical agents have been
observed to significantly modify the dielectric properties of tissue
mimicking materials. Microbubble solutions have been shown to lower
the relative permittivity and conductivity of a specimen by over 30%,
at certain controlled volumes [17]. Another promising nongaseous
contrast agent is Single-Walled Carbon Nanotubes (SWCNT) [18].
A recent study has shown that SWCNT can increase both the
relative permittivity and effective conductivity by up to 22% and
61% respectively [19]. SWCNTs have been successfully chemically
conjugated with drug delivery antibodies in order to target the contrast
agent towards a tumor site without altering its core functionality [20].

The use of contrast agents in clinical imaging is carried out as
follows: An initial UWB image of the breast is created. A contrast
agent is delivered and accumulates at the tumor site. The breast is
then re-imaged and the energy difference between the prior and post
agent delivery scans is calculated. The tumor site may be visible in
the resultant differential image due to the dielectric difference between
the cancerous tissues, before and after contrast agent application. This
paradigm is also used in this study.
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4. SIMULATIONS AND EVALUATION METRICS

4.1. Numerical Simulations

Simulation data is obtained by generating 3-D Finite Difference Time
Domain (FDTD) models of the breast. Each FDTD model is based
on an MRI-derived breast model, taken from the UWCEM breast
phantom repository, University of Wisconsin-Madison [21]. The
intensity of each voxel in the MRI is estimated and mapped to
appropriate dielectric properties in the resultant FDTD model [21]. In
order to adequately evaluate the effectiveness of the contrast agents, a
heterogeneously dense breast is considered, as shown in Figure 1.
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Figure 1. Breast tissue model with a 8 mm tumor at (−6.9, −1, −0.2).
(a) Slice taken at X = −6.9 cm for Y -Z image and (b) at Z = −0.2 cm
for X-Y image.

Dimensions within the 3D region of the breast are described
according to each axis. The X axis signifies the depth of the breast,
with 0 cm indicating the anterior position. Y and Z represent the
span and breadth of the breast respectively, with 0 cm centered at the
midpoint of each. A microlobulated sphere, representing a malignant
tumor, is introduced into the FDTD model. The tumor is positioned
at location (−6.9, −1, −0.2) in each simulation, where a particular
location within the breast is represented as ((X(cm), Y (cm), Z(cm)).
Tumor models are generated using the Gaussian Random Spheres
method [22–24] to simulate realistic shapes and surface textures. The
variation of tumor size is simulated by modifying the sphere radius,
generating tumors of 2 mm, 4 mm, 8 mm and 12 mm diameters.

The dispersive properties of breast tissue are incorporated into
the FDTD model using a single-pole Debye model [25] of the following
form:

εr(ω) = ε∞ +
σ

jωε0
+

(εs − ε∞)
1 + jωt0

(1)
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where εs is the static permittivity, ε∞ is the permittivity at infinite
frequency, ε0 is the permittivity of free space, σ represents the
conductivity and t0 is the relaxation time. The dielectric properties of
adipose and fibroglandular tissue are based on the results presented by
Zastrow et al. [21]. Skin debye parameters are obtained from published
data by Gabriel et al. [26]. Finally, Debye values for cancerous tissue, as
well as the Microbubble and SWCNT-infused tumour tissue are taken
from Shea et al. [27]. To simulate the modified dielectric properties of
the air-filled microbubbles, the relative permittivity and conductivity
of an endogenous tumor is reduced by 30% [17]. SWCNTs are
represented by increasing the endogenous tumor’s relative permittivity
and conductivity by 22% and 66%, respectively [19]. All Debye
parameters are described in Table 1.

Table 1. Debye parameters for the FDTD model.

Tissue ε∞ (εs − εinf) σ t0

Skin 15.63 8.2 0.82 12.6
Adipose (Low) 2.85 1.10 0.025 13

Fibroglandular (Low) 12.85 24.64 0.251 13
Adipose (Medium) 3.12 1.59 0.050 13

Fibroglandular (Medium) 13.81 35.55 0.738 13
Adipose (High) 3.98 3.54 0.080 13

Fibroglandular (High) 14.28 40.52 0.638 13
Tumor Endogenous 18.8 37.8 0.803 15

Tumor + Microbubble 13.2 26.5 0.562 15
Tumor + SWCNT 69.3 54.5 1.47 15

The overall FDTD grid size is approximately 3.3 million cubic
cells, the grid resolution is (1 mm(dx) × 1mm(dy) × 1mm(dz)) and
the time step dt is defined as 1.66 ps (dx/2c), where c represents the
speed of light. The FDTD grid is terminated on each side by a 12 layer
Universal Perfectly Matched Layer (UPML) [28] in order to minimize
edge reflections. In total, 12 FDTD simulations were carried out,
based on three levels of dielectric contrast and four tumor diameters.
A cylindrical antenna array [10], consisting of half-wavelength dipole
antennas polarized in the direction of the X axis, is placed around the
breast. Fifty three antennas are arranged on five rings, as illustrated
in Figure 2. The antenna array elements are placed on the skin,
with a uniform spacing of 22 mm between each ring along the X
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Figure 2. Antenna configuration.

axis. The input pulse is a 120 ps differentiated Gaussian pulse, with
a center frequency of 7.5 GHz and a −3 dB bandwidth of 9 GHz. An
ideal artifact removal algorithm [7, 13] is applied to the backscattered
signals to remove the input signal and any reflection from the skin-
breast interface. Prior to any signal processing, all FDTD signals are
downsampled to 50 GHz.

4.2. Metrics

Signal to Max ratio (SMXR) and the distance between actual and
imaged tumor (Drel) are used in order to evaluate the effect of the
contrast agent on the performance of each beamformer. The SMXR
is defined as the ratio of the tumor response to the maximum clutter
response in the same breast and Drel describes the distance in mm
between the actual and imaged tumor peak.

5. RESULTS

Differential profiles, obtained from energy backscatter, represent the
energy difference between a beamformed scan with an endogenous
tumor and a scan where the dielectric properties of the tumor are
modified by the contrast agent. By way of example, Figure 3 illustrates
the prior and post contrast enhanced slice along with a resultant
differential energy slice. Two contrast agents are applied to the
numerical models. This results in two differential images, representing
the application of the air-filled microbubbles and the SWCNTs.
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Differential imaging beamformer results of a 2 mm and 12 mm contrast
enhanced microlobulated tumor are shown in Figures 4 and 5, as a Y -
Z and associated X-Y cross-sectional slice. The DAS, IDAS, DMAS
and TGRCB algorithms were applied to the numerical data prior to
and post application of the air filled microbubbles and the SWCNTs.
SMXR results were taken from the 3D scans with endogenous dielectric
tumor properties (Table 2) as well as the differential images obtained
from the Microbubble (Table 3) and SWCNT (Table 4) enhanced
numerical simulations. Furthermore, the Drel results are shown in
Table 5.

Figure 3. Examples of an endogenous, SWCNT enhanced and
resulting differential DMAS image. Energy values are calculated within
the pink rectangles, near the actual tumor location at (6.9,−1,−0.2).

Table 2. Signal to Max ratio (SMXR) — results for endogenous tumor
images.

Radius(mm) DAS IDAS DMAS TGRCB
2 −0.44 −0.72 −0.88 0.14
4 −0.33 −0.72 −0.65 1.00
8 0.54 −0.55 1.24 3.96
12 1.83 −0.18 3.73 3.97

Average 0.40 −0.54 0.86 2.24
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Figure 4. Multistatic beamformed Microbubble differential images
for a 2mm tumor located at (6.9,−1,−0.2). Slices are taken at
X = −6.9 cm for Y -Z images and Z = −0.2 cm for X-Y images. DAS
Result (a) and (b); IDAS Result (c) and (d); DMAS Result (e) and
(f); and TGRCB Result (g) and (h).
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Figure 5. Multistatic beamformed SWCNT differential images for
a 12 mm tumor located at (6.9,−1,−0.2). Slices are taken at X =
−6.9 cm for Y -Z images and Z = −0.2 cm for X-Y images. DAS
Result (a) and (b); IDAS Result (c) and (d); DMAS Result (e) and
(f); and TGRCB Result (g) and (h).
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Table 3. Signal to Max ratio (SMXR) — results for microbubble-
endogenous differential images.

Radius(mm) DAS IDAS DMAS TGRCB
2 7.69 3.85 9.67 7.50
4 7.65 4.69 11.04 6.93
8 9.06 4.60 12.53 7.67
12 10.51 3.56 17.76 8.12

Average 8.73 4.18 12.75 7.55

Table 4. Signal to Max ratio (SMXR) — results for SWCNT-
endogenous differential images.

Radius(mm) DAS IDAS DMAS TGRCB
2 6.67 5.43 10.47 5.08
4 8.22 5.11 10.98 8.09
8 10.85 2.94 14.23 13.79
12 10.53 3.03 19.88 12.63

Average 9.07 4.13 13.89 9.90

Table 5. Drel — Distance between Actual and Imaged Tumor.

Radii

(mm)

MicroBubbles SWCNT

DAS IDAS DMAS TGRCB DAS IDAS DMAS TGRCB

2 5.83 9.38 6.69 5.78 7.81 7.81 7.81 9.85

4 7.28 9.38 6.69 5.78 7.81 9.70 5.92 3.61

8 6.32 6.08 4.12 3.61 5.83 9.70 5.20 3.16

1.2 2.00 7.28 4.69 4.24 8.00 7.81 7.81 3.00

Average 5.36 8.03 5.55 4.85 7.36 8.75 6.68 4.90

Examining the SMXR results from an imaging scenario containing
an endogenous tumor (Table 2), the highest scoring algorithm is the
TGRCB, with an average SMXR result of 2.24 dB. IDAS yields the
lowest result with an average metric score of −0.54 dB. The DAS
and DMAS metrics are comparable, with an average SMXR metric
of 0.40 dB and 0.86 dB, respectively.
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Examining the SMXR results from an imaging scenario containing
an endogenous tumor (Table 2), the highest scoring algorithm is the
TGRCB, with an average SMXR result of 2.24 dB. IDAS yields the
lowest result with an average metric score of −0.54 dB. The DAS
and DMAS metrics are comparable, with an average SMXR metric
of 0.40 dB and 0.86 dB, respectively.

As previously reported, all beamformers perform poorly with
the presence of fibroglandular tissue. The contrast between the
assumed and actual propagation channel affects the performance of
each beamformer.

IDAS is the weakest algorithm in this scenario since the
beamformer is based on the principle of weighting voxels where
coherent addition occurs, and coherent addition occurs, which is much
more difficult with increasing levels of dielectric heterogeneity. The
TGRCB algorithm significantly reduces clutter in the propagation
channel and offers significant improvements over the Data-Independent
algorithms.

All SMXR results from differential profiles for both contrast agents
(Tables 3 and 4) increase significantly over the endogenous tumour
scan results in Table 2. The SMXR results in Table 3 are taken from
differential data from microbubble-endogenous scans. DMAS offers the
best results with an average SMXR of 12.75 dB, an increase of 11.89 dB
from the endogenous scan result. DAS and TGRCB register an
average improvement of 8.33 dB and 5.31 dB, respectively. The poorest
performer is IDAS, with an average SMXR result of 4.18 dB, giving an
improvement of 4.72 dB from the unmodified tumor scan. The results
from the SWCNT-Endogenous differential in Table 4 show that DMAS
achieves the highest SMXR results, with an average score of 13.89 dB.
This is an increase of 13.03 dB over the average endogenous metric
result. Again, the IDAS algorithm is the weakest of the four, with an
average SMXR of 4.13 dB. The performance of DAS and TGRCB is
comparable with an average improvement over the endogenous SMXR
metrics of 8.67 dB and 7.66 dB, respectively.

The final Metric, Drel (Table 5), indicates that the TGRCB
algorithm achieves the best localization, imaging the malignant tumor
closest to the actual tumor location at an average distance of 4.85mm
and 4.9 mm for the microbubble and SWCNT agents, respectively. As
with the two previous metrics, the IDAS algorithm performs poorly,
recording an average distance of 8.03mm for a microbubble agent and
8.75mm in a SWCNT differential image.

The poor performance of the IDAS algorithm can most likely be
attributed to the difficultly in compensating for the attenuation effects
as the UWB pulse propagates through the heterogeneous breast [8].
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The difference between the actual and assumed propagation channel
used by the IDAS algorithm means that the cumulative energy curve
method is a less reliable measure of coherent addition within a
dielectrically heterogeneous breast.

The DMAS algorithm significantly outperforms both the DAS and
IDAS algorithm. The DMAS algorithm has previously been shown to
perform particularly well when the tumour is the largest scatterer in
the breast [7, 8]. When contrast agents are applied, the tumor is an
even stronger scatterer due to increased mismatch at the boundary of
the malignant inclusion. DMAS performs constructive multiplication
at the tumor site, and an improved image of the breast is produced
due to the substantial energy differences between the contrast enhanced
scans and the endogenous results.

Finally, although under-performing when compared to DMAS in
terms of SMXR, the TGRCB algorithm achieves the best localization
performance. Data-Independent beamformers rely on an assumed
homogeneous channel model, while Data-Adaptive algorithms use
collected signal data in order to overcome the inhomogeneous nature
of the actual channel.

6. CONCLUSIONS

In this paper, four beamforming algorithms are evaluated on
differential images obtained with the application of contrast agents
in a heterogeneous imaging scenario. The contrast agents modify the
dielectric properties of cancerous tissue within the breast, to increase
the contrast between normal and cancerous tissues. Differential profiles
represent the magnitude of energy-change from a scan with endogenous
tumor properties and a scan with a contrast agent applied. Two
contrast agents were investigated: microbubbles and SWCNT. In
order to adequately examine the performance of each beamformer, 12
3D FDTD models were created, each with a malignant microlobular
inclusion of different size. All beamforming algorithms were examined
using two metrics: SMXR and Drel.

For both contrast agents, all beamformers successfully located
a scatterer embedded within a region of fibroglandular tissue when
differential images were obtained. Significantly, tumors as small
as 2mm are readily identified within the differential images. The
DMAS algorithm achieves the highest SMXR metric results. DMAS
effectively exploits the contrast in the dielectric properties of an
endogenous and contrast enhanced malignant scatterer, emphasising
the difference in the resultant energy levels of each scan. The
TGRCB algorithm achieves the highest Drel metric results. Large
perturbations in the assumed homogeneous channel affect the ability
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of a Data-Independent beamformer to accurately locate the tumor.
Data-Adaptive beamformers attempt to compensate for the actual,
dielectrically diverse channel by using the received signal data
to determine appropriate weights for filtering. Future work will
involve using more effective antenna compensation techniques as
well as investigating contrast-enhanced imaging in extremely dense
heterogeneous breast models.
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