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Abstract—For array beampattern synthesis, it is possible to simplify
the model and reduce the computational load by formulating it to
be a Quadratic Programming (QP) problem. Moreover, the QP
method is conceptually simple and also flexible and convenient for
the constrained problems. In the QP method, a key component is
the template function which describes the desired beampattern as a
deterministic function of direction. However, so far this method has
only found its application for the Dolph-Chebyshev arrays but not
for other arrays. In this paper, the template functions in the form
of Hypergeometric Function corresponding to Legendre arrays and
Gegenbauer arrays, namely, Legendre Hypergeometric Function (LHF)
and Gegenbauer Hypergeometric Function (GHF), are derived and the
synthesis procedures are also presented. The proposed generalized
template form using Hypergeometric Function works for the Dolph-
Chebyshe arrays as well. From the simulation results, it can be shown
that when the proposed template functions are used in the QP method,
the exactly synthesized beampatterns can be obtained and they can
provide good performance in the design of the constrained problems
for both Legendre arrays and Gegenbauer arrays. In addition, some
discussion results about the application of Gegenbauer arrays in the
QP method are presented.

1. INTRODUCTION

It is well-known that orthogonal polynomials such as Chebyshev
polynomials are useful in array beampattern synthesis. In [1], Dolph
has proposed the well-known Dolph-Chebyshev method to synthesize
the array beampattern of a Uniform Linear Array (ULA) based on
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the properties of Chebyshev polynomials. For a given Side-Lobe Level
(SLL), it has been proven that the Dolph-Chebyshev array provides
narrowest mainbeam width in the array beampattern, while for a given
mainbeam width, it achieves the lowest SLL. During decades, several
methods [2–7] have been proposed to make some improvements to
the Dolph-Chebyshev synthesis method, and they have either complex
concepts or heavy computational load. In particular, some synthesis
approaches based on the convex programming such as [8–11] are
considered to be used owing to their good performance. In such
cases, the excitations of the array elements are computed to “match”
a desired mask using the convex optimization method. Bucci [8]
proposed a general approach to form the synthesis problem to a
intersections finding problem to determine both antenna geometry and
the excitation using segment procedures to make a good compromise
between speed and complexity, Lebret [9] synthesized the array pattern
by minimizing the level over a given zone, and Rocca [11] obtained
optimal compromise among sum and difference patterns through sub-
arraying. However, these methods using convex programming are
solved by brute force, more or less, since some numerical techniques and
iterative work are required and sometimes the convergence problem
needs to be taken into account in the application. To deal with it,
Ng [12] proposed the Quadratic Programming (QP) flexible synthesis
method (Appendix A) which provides the one-step solution without
the numerical or iterative work and complex mathematical concepts.
By formulating the array pattern synthesis to be a QP problem,
The QP method only needs to have a deterministic mathematical
function, e.g., Dolph-Chebyshev Function (DCF), as the template
function to compute the coefficients which minimize the mean-square
error between the synthesized array pattern and the template function.
It is shown in Appendix A that the QP method not only has very
low computational load and conceptually simple procedures, but also
flexibility to solve the constrained problems which the classical Dolph-
Chebyshev method cannot deal with.

However, so far this method has only found its application
for the Dolph-Chebyshev arrays but not for other arrays. As
known, besides Chebyshev polynomials, Legendre polynomials and
Gegenbauer polynomials have also been employed to synthesize the
array beampattern [13, 14] which also produces narrow mainbeam, low
and controllable level of side-lobes. Legendre arrays may not provide
the optimum equi-ripple array beampattern as Doph-Chebyshev array,
but they still have the advantages over Chebyshev polynomials such
as lower far out side-lobes and higher beam efficiency. Moreover,
Gegenbauer arrays are so generalized that Legendre arrays and Dolph-
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Chebyshev arrays are just the special cases of them, and in the design,
the beam efficiency and the directivity can be further adjusted with
the SLL and the element number specified. Therefore, we hope to
apply the QP method in the beampattern synthesis of both Legendre
arrays and Gegenbauer arrays, and then the proper mathematical
functions, which can express their beampatterns exactly so that it
can be hired as templates for the QP method, are desired. In this
paper, based on the features of Hypergeometric Series (HS) and
Hypergeometric Functions (HF), Legendre Hypergeometric Function
(LHF) and Gegenbauer Hypergeometric Function are proposed as the
template functions for the QP method and the corresponding synthesis
procedures are also illustrated. The proposed generalized template
form using Hypergeometric Function works for the Dolph-Chebyshe
arrays as well. From the simulation results, it can be shown that
when the proposed template functions are used in the QP method,
the exactly synthesized beampatterns can be obtained and they can
provide good performance in the design of the constrained problems
for both Legendre arrays and Gegenbauer arrays.

To illustrate the whole contents, this paper is outlined as follows:
Section 2 illustrates the mathematical concepts of the HS and HF
and how to find the mathematical form of Legendre polynomials and
Gegenbauer polynomials. Section 3 shows how the LHF and GHF
are derived and how a Legendre array and a Gegenbauer array are
synthesized using the HF form template function in the QP method.
Some discussion about the Gegenbauer arrays are included as well.
Section 4 shows how the proposed template functions are used in the
QP method for the constrained synthesis problems.

2. HYPERGEOMETRIC SERIES AND
HYPERGEOMETRIC FUNCTIONS

In this section, the concepts of Hypergeometric Series (HS) and
Hypergeometric Function (HF) are introduced, and our objective is
to find a mathematical function form of Legendre polynomials and
Gegenbauer polyomials.

From [15], the explicit expression of the Legendre polynomials is

TN (x) =
1

2N

[N/2]∑

n=0

(−1)n (2N − 2n)!
n!(N − n)!(N − 2n)!

(2x)N−2n, (1)

while the explicit expression of the Gegenbaure polynomials is

T
′(α)
N (x) =

[N/2]∑

n=0

(−1)n Γ(N − n + α)
Γ(α)n!(N − 2n)!

(2x)N−2n, (2)
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where α is a constant. It can be observed that both Chebyshev
polynomials and Legendre polynomials have the same form as

PN (x) =
[N/2]∑

n=0

anxN−2n. (3)

Therefore, obviously, the beampattern of a ULA can be expressed
by a Legendre polynomial or a Gegenbauer polynomial as well as
Chebyshev polynomial. That is why both Legendre polynomials and
Gegenbauer polynomials can be used to synthesize the beampattern
of a ULA. From [12], it is proven that when using the QP method,
once the template function that can express the beampattern exactly
is found, the current excitations can be obtained easily. As a result,
we are motivated to find a mathematical function form of Chebyshev
polynomials or Legendre polynomials.

In mathematics [16], a power series in which the ratio of successive
coefficients indexed by n is a rational function of n is defined as a
Hypergeometric Series (HS), in the most general sense. The series, if
convergent, will define a Hypergeometric Function (HF), which may
then turn out to be defined over a wider domain of the argument by
analytic continuation. A HF is defined as pFq(a1, . . . , ap; b1, . . . , bq; x)
if the ratio of successive coefficients of the corresponding HS can be
written as

an+1

an
=

(n + a1)(n + a2) . . . (n + ap)
(n + b1)(n + b2) . . . (n + bq)(n + 1)

. (4)

From (1), it is noticed that the ratio of the successive coefficients of an
N order Legendre polynomials is

an+1

an
= − (N − 2n)(N − 2n− 1)

8(n + 1)(2N − 2n− 1)
. (5)

Obviously, it is a rational functions of n. Therefore, Legendre
polynomials are certainly a kind of HS and can be expressed by a HF
in the form of pFq(a, b; c; x). The similar conclusion can be obtained
for Gegenbauer polynomials. Even then, it is still difficult to derive
the HF forms corresponding to Legendre polynomials and Gegenbauer
polynomials, so an alternative way from the viewpoint of differential
equations is considered.

As known, orthogonal polynomials always originate from the
solutions of the differential equation in such a form as [15]

Q(x)
d2y

dx2
+ U(x)

dy

dx
+ λy = 0, (6)

where Q(x) is a given quadratic (at most) polynomial, U(x) is a
given linear polynomial, and λ is a constant. As a kind of orthogonal
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polynomials, Legendre function is the solution of Legendre’s differential
equation given as

d

dx

[(
1− x2

) dy

dx

]
+ N(N + 1)y = 0, (7)

or (
1− x2

) d2y

dx2
− 2x

dy

dx
+ N(N + 1)y = 0. (8)

When n is a nonnegative integer, e.g., N = 0, 1, 2, . . ., its solution,
Legendre function, is reduced to an N -order polynomial, which is
defined as a Legendre polynomial. Similarly, an N -order Gegenbauer
polynomial is the solution of Gegenbauer’s differential equation given
by

(
1− x2

) d2y

dx2
− (2α + 1)x

dy

dx
+ N(N + 2α)y = 0, (9)

where α is a positive real number. Meanwhile, the differential equation
in such a form as(

x
d

dx
+ a

)(
z

d

dx
+ b

)
y =

(
x

d

dx
+ c

)
dy

dx
, (10)

or

x(1− x)
d2y

dx2
+ [c− (a + b + 1)x]

dy

dx
− aby = 0, (11)

is known as a Hypergeometric Differential Equation (HDE). It is proved
that a HDE has its solution 2F1(−a, b; c;x) which is the HF mentioned
above. For a HDE, it is proven that when a is a non-positive integer,
e.g., −N , its solutions are reduced to polynomials. Up to constant
factors and scales, these are special cases of orthogonal polynomials
such as Legendre polynomials, Gegenbauer polynomials. etc..

Letting z = 1−x
2 , obviously, a Legendre’s differential equation in

the form of (7) can be transformed to be a HDE as

z(1− z)
d2y

dz2
+ (1− 2z)

dy

dz
+ N(N + 1)y = 0. (12)

Comparing (11) and (12), the parameters of the HDE can be
determined as a = −N, b = N + 1, and c = 1. Therefore, the HF
representing the Legendre polynomials is 2F1(−N, N + 1; 1; z). After
transformation the solution turns out to be 2F1(−N, N + 1; 1; 1−x

2 ).
As the same reason, a Gegenbauer polynomial can be written in

the form of a HF as

T
(α)
N (x) =

(2α)(N)

N ! 2F1

(
−N, 2α + N ; α +

1
2
;
1− x

2

)
, (13)
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where a(N) is the rising factorial computed by

a(N) =
(a + N − 1)!

(a− 1)!
=

Γ(a + N)
Γ(a)

. (14)

In addition, an interesting thing is that, as another kind of
orthogonal polynomial, Chebyshev polynomial can be expressed by
a HF as well. Letting z = 1−x

2 , a Chebyshev’s differential equation can
be transformed to be a HDE given by

z(1− z)
d2y

dz2
+

(
1
2
− z

)
dy

dz
+ N2by = 0. (15)

Then the parameters of the HDE can be determined as a = −N, b = N,
and c = 1

2 . Therefore, the HF representing the Chebyshev polynomials
is 2F1(−N, N ; 1

2 ; 1−x
2 ).

As a result, we find a generalized way to express Legendre
polynomials, Gegenbauer polynomials and Chebyshev polynomials in
the form of a mathematical function using a HF.

3. BEAMPATTERN SYNTHESIS USING
HYPERGEOMETRIC FUNCTIONS

In this section, we try to use the HF as the template function and apply
it in the QP method to synthesize the beampatterns of a Legendre
array and a Gegenbauer array.

Recall that in the paper [12], the Dolph-Chebyshev Function
(DCF) is used as a template function to synthesize a Dolph-Chebyshev
array, which is given by

HDCF (θ) = cos
[
(L− 1) cos−1 u cos

(
πd

λ
(cos θ − cos θ0)

)]
, (16)

where L is the number of array elements, d is the inter-element spacing,
λ is the wavelength corresponding to the operating frequency of the
array, θ is the azimuth angle measured w.r.t the array axis, and θ0 is
the looking direction. The parameter u, which is used to control the
SLL of the synthesized Dolph-Chebyshev array beampattern, is given
by

u = cosh
[

1
L− 1

cosh−1
(
10−sll/20

)]
, (17)

where sll is the specified SLL in dB scale.
From the discussion in the previous section, the DCF can also be

rewritten in the form of a HF as

HDCHF (θ) =2 F1

(
−L + 1, L− 1;

1
2
;Z

)
, (18)
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where

Z =
1− u cos

(
πd
λ (cos θ − cos θ0)

)

2
. (19)

That is, the function can also be defined as the Dolph-Chebyshev
Hypergeometric Function (DCHF). Before the simulations of Legendre
arrays and Gegenbauer arrays using the proposed template function in
the QP method, we can make a test to use the DCHF as the template.

Assuming a 32-element broadside ULA with half-wavelength
inter-element spacing, if the desired SLL is −40 dB, the synthesized
beampattern and the template function DCF are shown in Fig. 1. It is
shown that the proposed template function DCHF works as well as the
DCF applied in the QP method. Therefore, it indicates that the HF
form template function also works for Legendre arrays and Gegenbauer
arrays. The proposed template functions, Legendre-Hypergeometric
Function (LHF) and Gegenbauer-Hypergeometric Function (GHF), are
given by

HLHF (θ) =2 F1 (−L + 1, L; 1; Z) , (20)

and

HGHF (θ) =
(2α)(N)

N ! 2F1

(
−L + 1, 2α + L− 1;α +

1
2
; Z

)
, (21)

where Z is the same as given in (17) and u is used to control the SLL
of the synthesized beampattern as well.
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To determine the value of the parameter u, the procedures for
Legendre arrays and Gegenbauer arrays are similar:

(1) Find the order of the corresponding Legendre (or Gegenbauer)
polynomial by subtracting the element number by one.

(2) Find the maximum value of the side-lobes, which is actually the
peak value of the first side-lobe.

(3) Multiply the peak value of the first side-lobe according to the
desired SLL, equate the Legendre (or Gegenbauer) polynomial
with this value and solve for the roots of the equation.

Taking a 12-element half-wavelength spacing Legendre array as
an example, the order of the corresponding Legendre polynomial is 11
and its plot is shown in Fig. 2. In the figure, it can be observed that
the peak value of the first side-lobe is 0.4065. For this example, if
the desired SLL is −40 dB, we equate the Legendre polynomial with
40.65 and obtain u = 1.115 by solving for the roots of the equation.
For the example above, if the element number is changed to 32, by
the same procedures, the parameter u is determined to be 1.0149, and
the synthesized beampattern is shown in Fig. 3. It is shown that the
beampattern of the Legendre array can be synthesized exactly by the
LHF function with the QP method. The various values of u obtained
by the procedures above for different SLLs and element numbers are
shown in Fig. 4.

Comparing the Fig. 1 and Fig. 3, it is observed that Dolph-
Chebyshev arrays can obtain better directivity (Appendix B) while
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Legendre arrays can provide higher beam efficiency (Appendix B) than
Dolph-Chebyshev arrays. In Fig. 1, the directivity and beam efficiency
of the Dolph-Chebyshev array is 13.95 dB and 99.89%, respectively,
whereas in Fig. 3, the directivity and beam efficiency of the Legendre
array is 13.74 dB and 99.97%. It is concluded that the choice of
Legendre array and Dolph-Chebyshev array is a compromise between
the beam efficiency and the directivity. However, for either Legendre
arrays or Dolph-Chebyshev arrays, if the desired SLL is given, the beam
efficiency and the directivity of the synthesized beampattern cannot be
changed any more. To solve this problem, we can hire the Gegenbauer
arrays to further adjust the beam efficiency or the directivity to meet
the specified requirements.

Comparing (21) with (18) and (20), it is observed that when
α = 1

2 , the GHF is reduced to a LHF and when α is a small value, the
GHF can be considered as an approximation of the DCHF. Therefore,
the GHF is a very generalized function and the DCHF and the LHF
are its special cases. Using the GHF as the template function can not
only control the specifications of the synthesized beampattern better
by changing the parameter α, but also take the advantages of the QP
method, the visuality and simplicity of the operations, to make it more
convenient to synthesize an array.

To illustrate how the parameter α effect the synthesized
beampattern, the comparison of different α values is presented in
Fig. 5, and the values of directivity and the beam efficiency are listed
in Table 1. It is observed that when α increases, the beam efficiency
of the Gegenbauer array increases while the directivity of Gegenbauer
array decreases. Therefore, it is concluded that the GHF method is
more generalized than the LHF method and the DCHF method and
the QP method makes it easier to work. The curves representing the
beam efficiency and the directivity of a 12-element Gegenbauer array
with different values of α are shown in Fig. 6. From the figure, for
the specified beam efficiency and directivity, an appropriate value of α

Table 1. Specifications of beampattern of 12-element Gegenbauer
arrays with different α values.

α Beam Efficiency Directivity (dB)
0.05 99.97% 9.565
0.2 99.98% 9.526
0.5 99.98% 9.460
1.0 99.99% 9.374
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Figure 6. Beam Efficiency and
Directivity of 12-element Gegen-
bauer arrays with different α val-
ues.

can be easily found. As a result, using GHF method makes it possible
to obtain desired beam efficiency and directivity of the synthesized
beampattern conveniently by adjusting the value of the parameter α
without changing other parameters such as SLL and element number.

4. SYNTHESIS OF LEGENDRE ARRAY AND
GEGENBAUER ARRAY FOR THE CONSTRAINED
PROBLEM USING THE QP METHOD

As discussed above, the classical synthesis methods of Legendre array
and Gegenbaure array fail in dealing with the constrained problems,
while the QP method is flexible and convenient to solve them. Figs. 7–
10 show the performance of the proposed method used with null control
for Legendre arrays and Gegenbauer arrays, respetively. Note that
there are several ways to impose null response on the side lobe [19, 20].
However, since the intention of the paper is not to address the problem
of null constraints design but to illustrate the performance of the
proposed method when it is used with null control in the pattern
design, simple point constraints are used to fix a null at 50◦ and a
broad null at [55◦, 57◦, 59◦, 61◦]. In these examples, a −40 dB SLL
with an integration sector [0◦, 180◦] is used. It can be seen from
the examples that the performance of the proposed method for the
constrained problems are good and the properties of both Legendre
array and Gegenbauer array in the beampattern are still well preserved.
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Figure 8. Synthesized beampat-
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ray with null constraints imposed
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Figure 9. Synthesized beampat-
terns of 32-element Gegenbauer
array with null constraint im-
posed at 50◦.
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5. CONCLUSION

In this paper, LHF and GHF are proposed as the template functions
for the QP method and the corresponding synthesis procedures are
also illustrated. The proposed generalized template form using
Hypergeometric Function works for the Dolph-Chebyshe arrays as well.
From the simulation results, it can be shown that when the proposed
template functions are used in the QP method, the exactly synthesized
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beampatterns can be obtained and they can provide good performance
in the design of the constrained problems for both Legendre arrays
and Gegenbauer arrays. In addition, some discussion results about the
application of Gegenbauer arrays in the QP method are presented.
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APPENDIX A. THE FORMULATION OF THE QP
METHOD FOR ARRAY BEAMPATTERN SYNTHESIS

In array signal processing, one can define the array beampattern
at a certain operating frequency f to a plane-wave front with unit
amplitude arriving in direction of the azimuth angle θ as

H(θ,w) = wHa(θ), (A1)

where the superscript H denotes Hermitian transpose, w is the L-
dimensional complex vector of adjustable weights, and a(θ) is the space
vector given by

a(θ) =
[
exp

(
jkT r1

)
, . . . , exp

(
jkT rL

)]T
(A2)

where the wave-number vector

k(θ) = (2πf/v) cos θ, (A3)

and ri is the ith sensor location vector.
Based on the classical mathematical model above, the traditional

beamforming problem can be formulated as a quadratic program as

Minimize
∑

k

(
1

∆θk

) ∫ θuk

θlk

|H(θ,w)−H0(θ)|2dθ

Subject to H(θn,w) = Hc(θn), (A4)

where ∆θi = θui − θli , and the function H0(θ) is the template function
which describes the desired array pattern. Generally, for convenience,
commonly we use one integration sector as [0◦, 180◦]. Using the matrix
notations, (A4) can also be written as a quadratic program as

Minimize wHQw−wHP−PHw + c (A5)

Subject to wHD(θn) = FT , (A6)
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where

Q =
∑

k

(
1

∆θk

) ∫ θuk

θlk

aaHdθ,

P =
∑

k

(
1

∆θk

) ∫ θuk

θlk

H0(θ)adθ,

c =
∑

k

(
1

∆θk

) ∫ θuk

θlk

H0(θ) ∗H0(θ)?dθ,

(A7)

and the D and F are the matrix and vector used to achieve the
certain constrained pattern Hc(θn). Using the Lagrange multiplier
method, (A5) can be solved to yield the following solution weight
vector:

w0 = Q−1D
(
DHQ−1D

)−1 (
F−DHQ−1P

)
+ Q−1P. (A8)

If there is no constraint in the QP method, the solution in (A8) is
reduced to:

w0 = Q−1P. (A9)

From (A4) to (A9), it is shown that in the QP method, once given
a desired template function, all the coefficients can be calculated in
one step without any extra complex mathematical work or iterative
procedures.

To analyze the computational complexity of the QP method,
firstly it can be observed that for the case of unconstraint synthesis
problem, the final solution can be obtained by calculation the product
of a inversion of a matrix and a vector. Assuming an N -element
array, the matrix Q in (A9) is N × N and the vector P is N × 1,
which indicates its small computational load. Moreover, the work of
calculating the integration in (A7) can be further reduced significantly
since the problem is actually to solve a linear system problem, the
exact integration is not strictly required. If the sum of the function
values for the integrand were used to calculate the integration at the
sample points with small inter-spacing, there would exist avoidable
redundant information in the system. The practical simulations show
that generally N +1 sample points in the integration interval is enough
for the solution of the linear system, in other words, for the integration
interval [0◦, 180◦], the sampling spacing can be as large as 180◦

N+1 . In
conclusion, the QP method has very low computational complexity
and for a symmetric array, the computational load can be half as well.
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APPENDIX B. THE DIRECTIVITY AND THE BEAM
EFFICIENCY OF A BROADSIDE LINEAR ARRAY

Directivity is defined as the ratio of the maximum radiation intensity of
the antenna to the radiation intensity of isotropic source given as [17]

Directivity =
|H(π

2 )|2∫ π
0 |H(θ)|2 sin θdθ

, (B1)

where H(θ) is the function of array beampattern.
Beam efficiency is defined as the ratio of the power transmitted

within the main beam to the power transmitted by the antenna. For
the broadside linear array, the beam efficiency can be formulated as [17]

BE =

∫ π
2

θ1
|H(θ)|2 sin θdθ

∫ π
2

0 |H(θ)|2 sin θdθ
, (B2)

where θ1 is the direction where the first null occurs.
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