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Abstract—Compared with MPI, OpenMP provides us an easy way
to parallelize the multilevel fast multipole algorithm (MLFMA) on
shared-memory systems. However, the implementation of OpenMP
parallelization has many pitfalls because different parts of MLFMA
have distinct numerical characteristics due to its complicated algorithm
structure. These pitfalls often cause very low efficiency, especially when
many threads are employed. Through an in-depth investigation on
these pitfalls with analysis and numerical experiments, we propose
an efficient OpenMP parallel MLFMA. Two strategies are proposed
in the parallelization, including: 1) loop reorganization for far-field
interaction in the MLFMA; 2) determination of a transition level.
Numerical experiments on large scale targets show the proposed
OpenMP parallel scheme can perform as efficiently as the MPI
counterpart, and much more efficiently than the straightforward
OpenMP parallel one.

1. INTRODUCTION

Combining integral equation based methods [1–10] with parallel
techniques becomes a new trend in computational electromagnetic
(CEM) community because associated applications are always
computational resources (including both CPU time and memory)
demanding. A series of successes have actually been reached in this
area [11–26]. Parallelization of the fast multipole method (FMM)
and its recursive variant, the multilevel fast multipole algorithm
(MLFMA) [12–22] is the most distinguished one among them. To date,
most works on the parallelization of the FMM/MLFMA are purely
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based on message passing interface (MPI) for distributed memory
parallel platforms [12–20]. MPI programs are highly scalable and
portable. But its implementation is challenging because workload
distribution and communications should be manually realized. Lots
of skills and experience are required to guarantee acceptable efficiency.
In contrast, OpenMP standard provides us an easy alternative [27].
OpenMP often works on shared-memory computer systems and has a
totally different parallel mechanism from MPI. The time-consuming
communications in MPI can be avoided because OpenMP realizes
parallelism through multithreading.

Some works have employed OpenMP to parallelize the FMM
and its variants [21, 22], exhibiting the potential of OpenMP. In [21],
OpenMP is combined with MPI to accelerate the FFT extension
of the conventional FMM (denoted by FMM-FFT). Although the
proposed parallel FMM-FFT has a relatively high parallel efficiency,
the OpenMP parallel strategy in [21] can hardly be applied to the
MLFMA because of the distinct algorithm structures between the
MLFMA and the FMM-FFT. At the same time, a straightforward
implementation of the OpenMP FMM may perform awkwardly. As
shown in [22], the parallel efficiency is only about 40% when 8 threads
are used, and decreases to be less than 25% when the number of threads
increases to 16. Due to the distinct algorithm structures between
the MLFMA and the FMM (FMM-FFT), pitfalls and essentials on
OpenMP parallelization of the MLFMA are not discussed in [21, 22].
On this observation, OpenMP parallel MLFMA are studied in detail.
Two strategies are proposed to guarantee high efficiency of OpenMP
parallel MLFMA:
1) Strategy of loop reorganization

Our study shows that the conventional implementation of loops
computing far-field interaction in MLFMA results in extremely
low parallel efficiency of OpenMP parallel MLFMA. A strategy
for reorganization of loops is proposed to improve the parallel
efficiency of OpenMP parallel MLFMA.

2) Strategy of determining transition level
It is important to find a transition level in the proposed OpenMP
scheme when different parallel strategies are employed in the
different levels in MLFMA. A strategy on determining the
transition level is proposed to obtain high efficiency of OpenMP
parallel MLFMA.

An OpenMP MLFMA is developed and numerical experiments are
carried out to validate our analysis. The capability of the parallel
MLFMA is demonstrated by calculating RCS from two extremely large
targets.
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2. OUTLINE OF THE MLFMA

For perfectly electric conducting (PEC) objects, discretization of
surface integral equations yields N × N (where N is the number of
unknowns) dense matrix equations in the form of

[Z]{J} = {Ei}, (1)

where [Z] is the impedance matrix, {J} is the effective currents, and
{Ei} is the incident wave. The matrix Equation (1) can be solved
iteratively, where the required matrix-vector multiplication (MVM)
can be accelerated by the FMM or MLFMA [1]. The FMM/MLFMA
decomposes MVM into two parts: near-field interaction (NFI) and
far-field interaction (FFI). The former is computed directly, while the
latter is accelerated by FMM/MLFMA. Thus the matrix equation in
the context of FMM/MLFMA has a form of

[Z]N{I}+ [Z]F {I} = {Ei}, (2)

where [Z]N and [Z]F are, respectively, the near part and the far part
of [Z]. The entries in matrix [Z]N remain the same as the method
of moments, but those corresponding to [Z]F are not numerically
available. In fact, FFI [Z]F {I} in the FMM is realized through three
stages: the aggregation, the translation and the disaggregation. In the
MLFMA, interpolation/anterpolation combined with center-shifting
operations is required to transfer far-field patterns (FFPs) from son-
box to parent-box or vice versa.

3. PITFALLS IN THE OPENMP PARALLEL MLFMA
AND OUR SOLUTIONS

It is valuable to maintain the good virtue of being simple by figuring
out suitable computational regions for OpenMP parallelization. To
this end, numerical experiments are performed on a perfect electrical
conducting (PEC) sphere with a 48 wavelengths (λ) diameter, denoted
by sph-48. Sph-48 involves 2,639,532 unknowns with an average mesh
size of 0.10λ. In all computations, a 9-level MLFMA (the 0-th level
is the coarsest level) is employed. Table 1 lists proportions of CPU-
time used for different stages in the MLFMA. In the matrix filling
stage, filling NFI matrix consumes most of CPU-time. In contrast,
FFI takes up about 98% of time for one MVM. So parallelization will
concentrate on these two stages. It should be noted that the translation
stage takes up about 60% of CPU-time for one FFI, while aggregation
and disaggregation stages cost the rest 40%. Although how much
time a stage in the MLFMA consumes exactly may be implementation
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Table 1. Proportions of CPU-time used for different stages in the
MLFMA.

Proportion
Establishment of matrixes in the MLFMA

FFI matrix 2.43%
NFI matrix 95.94%

Other operations < 1.7%
one MVM in the MLFMA

NFI 2.09%
FFI 97.91%

dependent, the NFI matrix filling and FFI implementation stages are
sure to be the most time-consuming ones. For both these two stages,
OpenMP parallelization is carried out on the top DO loop to reach
high parallel efficiency.

A straightforward OpenMP MLFMA performs reasonably well for
moderately sized targets. With the size of the target increasing, the
efficiency decreases rapidly when more threads are employed. The
reason lies in that the number of boxes at coarse levels may be less
than that of threads. Inspired by the hybrid MPI parallel scheme [13–
18], a strategy is developed in this paper, where a transition level is
chosen and different parallel methods are employed at coarse (levels
with larger boxes than those at the transition level) levels and fine
ones. In specific, parallelization is carried out on the loops over FFPs
at coarse levels, and on the loops over boxes at other levels.

3.1. The Loop Reorganization Strategy

Pitfalls may arise if the OpenMP parallel directives is directly
moved from loops over boxes to those over FFPs. Loops are
required to be reorganized for high efficiency. For translation
stage, it requires few modifications on the reorganization, but for
aggregation/disaggregation careful considerations are necessary.

Aggregation/disaggregation involves boxes at two levels: A
parent level and the son level. Because parent boxes often need
more FFPs than son boxes, interpolation/anterpolation is required
to transfer FFPs between parent and son levels. Therefore,
aggregation/disaggregation requires three loops: one over parent
boxes, one over son boxes and one over FFPs. All these loops can
serve as an outer loop in OpenMP implementation. Unfortunately,
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an unsuitable choice of an outer loop would definitely result in race
condition in OpenMP and thus a bad efficiency. This can be illustrated
by the following examples as shown in Fig. 1.

T2T1

S1 S2

Parent Box

Son 

Boxes

T2T1

Parent Box

Son 

Boxes
S1 S2

(a) (b)

Figure 1. Parallel strategy for disaggregation. (a) Unsuitable
strategy. (b) Suitable strategy.

Suppose the loop on parent boxes is treated as an outer loop
and two threads are involved in. The parent box has two sons, as
shown in Fig. 1. There are three facts for the case of Fig. 1(a) during
the computation. First, FFPs (or to say loop cycles) of the parent
box are assigned to two threads (T1 and T2) equally. Second, FFPs
of the son boxes, denoted by S1 and S2, are shared by T1 and T2.
Third, both parts of FFPs assigned to T1 and T2 contribute to FFPs
of the son boxes S1 and S2. As a result, T1 and T2 may access
S1 or S2 to update the corresponding FFP values simultaneously.
Unfortunately, this sets up a race condition, in which the computation
exhibits nondeterministic behavior. To avoid the race condition, a
critical section can be employed to protect the update process. But it
will cause a poor speedup because the critical section is actually a piece
of sequential code. Another solution is to protect the update process
by claiming variables for S1 and S2 as reduction ones. Thus, OpenMP
will take care of the details, such as storing FFPs for S1 and S2 in
private variables and then adding partial sums to the shared variables
after the loop. However, additional memory and floating operations
are required in this solution. Consequently, the speeding up rate is
also limited, especially when a large number of threads are used. Our
smart strategy is to set the loop over son boxes as the outer loop, as
shown in Fig. 1(b). The main idea is to partition FFPs of son boxes,
which will be updated during the computation, to different threads.
All threads need not access and write these FFPs of son boxes that are
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C…Aggregation 

!$OMP PARALLEL

!$OMP DO k=1, M; each FFP of a parent box 

Do j=1, P; each box at the i-th level 

Do n=1, S; each son box of the k-th box  

Computations on aggregation 

END DO

END DO

!$OMP END PARALLEL

C…Translation and disaggregation 

DO i= 2, levmax 

!$OMP PARALLEL

!$OMP DO j=1, M; each FFP for box in the i-th level 

DO k=1, Q; each box at the i-th level  

The loop over boxes for translation 

END DO

IF i>2 THEN 

DO k=1, Q; each box at the i-th level 

Computations on disaggregation 

END DO

END IF

!$OMP END DO

!$OMP END PARALLEL

END DO 

ENDO

DO i=levmax-1, 2

Figure 2. New parallel scheme of FFI at coarse levels.

not allocated to them. Therefore, race condition is totally avoided. On
the contrary, FFPs of parent boxes should be allocated among threads
in the aggregation stage for the similar reason. To implement the above
strategy, a careful organization of computational steps on loops should
be designed as shown in Fig. 2.

3.2. The Transition Level Determination Strategy

The choice of a transition level is vital for efficiency and two factors
should be taken into account. First, CPU time used in the sequential
code should be minimized since changes on the computational loops
will exhibit different efficiencies. Fig. 3 presents the time used
for computations at different levels in one FFI when the outer
loop is, respectively, the loop over boxes and the loop over FFPs,
denoted by Loop-Box and Loop-FFP. One thread is employed in these
computations. It indicates that efficiencies of these two cases are
comparable at coarse levels, but the Loop-Box case is much more
efficient than the Loop-FFP one at fine levels. It is thus not suitable to
choose a fine level as a transition level. According to this, a criterion
for the choice of a transition level ltrans can be written as

ltrans < lmax − q, (3)
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Figure 3. CPU time used for the computations at different levels in
one FFI.

where lmax refers to the finest level in the MLFMA (the level with only
one box is indexed by 0), q is an integer greater than or equal to 1.
Since computational speed depends heavily on hardware architecture,
q may vary even for a same problem on different computers. It is set
to be 3 according to our numerical experiments on moderately sized
and large scale targets.

Second, a transition level should be chosen by maximizing parallel
efficiency. It is therefore required that boxes at coarse levels should
have enough FFPs as the loop over FFPs is the outer loop. Based on
this, a criterion for the choice of a transition level can be written as:

Sltrans/T ≥ w, and Sltrans+1/T < w, (4)

where Sltrans denotes the number of boxes at the ltrans level, T is the
number of threads, and w is the number of cycles (FFPs) that should
be allocated to each thread for good efficiency. How many loop cycles
are enough for each thread may vary in different applications. As far
as the MLFMA is concerned, at least 20 cycles (FFPs) are needed by
one thread according to our numerical experiments. So, we usually set
w to be 20. (3) and (4) may leads to different choices, and the coarser
one is usually chosen as the transition level in our implementation. In
practical, choice obtained from (4) is generally the finally adopted one
since the proposed scheme is always used for large scale targets where a
large number of threads are employed. From this point of view, choice
of q is generally not a key factor in the proposed scheme.
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4. NUMERICAL EXPERIMENTS

Numerical experiments are carried out to study the proposed OpenMP
parallel MLFMA. All the experiments are carried out on the high
performance computing (HPC) platform Deep-Comp 7000 at the
Chinese Academy of Sciences [28]. The computational node used to
conduct our numerical experiments is configured with 8 Xeon quad-
core CPUs and 256GB memory. RWG functions are chosen as basis
and testing functions to discretize CFIE with a combination coefficient
of 0.5. The GMRES iteration process is terminated when the 2-norm
of the residual vector is reduced to 10−3.

Let t1 be the time for evaluating a single FFI on a single thread
and let tT be the time for computing a FFI on T threads. Then, the
parallel efficiency is defined as

η =
t1

T × tT
× 100% (5)

Note that in an ideal situation η = 100%. Because the parallel
efficiency of NFI matrix filling can always reach as high as over 95%,
in the following discussion, we focus on the parallelization of FFI.

The sph-48 is used to test the OpenMP parallel strategy discussed
in Section 3. And then two large scale targets: a sphere with a diameter
of 220λ and a complex airplane model with a largest dimension of
530λ, are used to demonstrate the capability of the OpenMP parallel
MLFMA.

4.1. Investigation on the Schedule Manners

Different from MPI, OpenMP provides us a mechanism of automatic
workload distribution. It is this attractive virtue that makes OpenMP
programming much simpler than MPI. There are three types of
schedule manners in the automatic workload distribution mechanism.
Namely, they are: static, dynamic and guided schedules [27]. The effect
of different schedule manners on parallel efficiency is investigated by
changing the number of threads. Since translation takes up 60% CPU
time of FFI, we firstly investigate parallel efficiency of translation at
different levels. In our computations, different schedule manners are
employed by fixing the number of threads to be 4. As shown in Fig. 4,
different schedule manners show distinct efficiency while the guided one
performs much better than the other two. This difference is actually
caused by the distinct numerical characteristics at different levels in
the MLFMA. The amount of work associated with a given box may
always differ much from that with another box at a same level. A
static schedule cannot take it into account because loop cycles (boxes)
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Figure 4. Parallel efficiency
of translation at different levels
when 4 threads are used.

Figure 5. Parallel efficiency as a
function of the number of threads.

are distributed among threads equally before the computation begins.
Load imbalance thus arises. Both dynamic and guided schedules can
avoid the load imbalance since they assign workload dynamically. But a
dynamic schedule needs more scheduling operations than a guided one
when a same chunk-size is used. In addition, the more cycles a loop has,
the more overhead will be in a dynamic schedule. This explains why
a dynamic schedule performs inferior to a guided one in our numerical
experiments, as shown in Fig. 4. In particular, a dynamic schedule
degrades the efficiency seriously at fine levels with a large number of
boxes/cycles. It is worthy to point out that specifying an integer other
than 1 (the default value) to the chunk-size for guided schedule doesn’t
improve the total efficiency greatly. On one hand, a small chunk-size
will not be adopted to distribute workload since OpenMP would find
an optimal chunk-size automatically [27]. On the other hand, a large
chunk-size may lead to load imbalance since workload of boxes may
differ much even for boxes at a same level.

In Fig. 5, we present the parallel efficiency on FFI as a function of
the number of threads. Again, it can be found that a guided schedule
performs much better than the other two.

4.2. Validation on the Loop Reorganization and Transition
Level Determination Strategies

As discussed in Section 3, a straightforward parallel scheme can only
perform well when a small number of threads are employed. In fact, it
can be observed from Fig. 5 that the efficiency decreases rapidly with
the increasing of threads. New strategies should be used to overcome
this deficiency.
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Here, the strategy on reorganization of loops is firstly validated.
Since the reason for inverting loops is clear, we only need validate
the strategy to choose an outer loop for aggregation/disaggregation.
Table 2 compares the CPU time consumed by disaggregation before
and after our strategy is used. It can be seen that a suitable
organization of loops by our proposed strategy can reach high efficiency
while the unsuitable one performs awkwardly. In fact, the computation
cannot be completed in reasonable time if more than 4 threads are used
because of race condition. Here, the transition level is fixed at the 3rd
level.

The criteria to choose a transition level, described in (3) and (4),
are also investigated. Three cases are studied in the experiments where
a transition level is determined by different manners: 1) case 1: by the
strategy proposed in Section 3.2; 2) case 2: by manually fixing it to
be the 2nd level; 3) case 3: by manually fixing it to be the 5th level.
Fig. 6 presents the parallel efficiency as a function of the number of
threads. As shown in Fig. 6, our strategy can reach an overall good
performance. In case 3, efficiency is extremely low compared with the

Table 2. CPU time (seconds) consumed by disaggregation before and
after our strategy is used (* means that the computation cannot be
completed in reasonable time).

Threads Before After
1 15.9 13.4
2 30.1 7.0
4 * 3.7

Figure 6. Parallel efficiency as a
function of the number of threads.

Figure 7. Bistatic RCS from
sph-220.
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other two cases due to the unsuitable choice of a transitional level. As
shown in Fig. 3, the CPU time may increase a lot even if the program
runs sequentially in this case.

4.3. Capability of the Proposed Parallel Scheme

A PEC sphere with a diameter of 220λ is employed to demonstrate the
capability of our proposed OpenMP parallel MLFMA. This sphere,
denoted by sph-220, involves 4,4930,700 unknowns with an average
mesh size of 0.10λ. In the computation, an 11-level MLFMA, where the
0-th level is the coarsest level, is employed with a requirement of about
180 GB memories. In order to compare our OpenMP parallelization
with the MPI one, we also calculate radar cross section (RCS) from
this sphere by the MPI code [16]. The MPI code requires 230 GB
memory when 32 processes are employed since each process needs some
additional memory space. This is one of the largest spheres which can
be solved on our computational platform. Fig. 7 presents the RCS
results from OpenMP parallel MLFMA against that from the MPI
parallel one. Since RCS results obtained from all the computations
are almost identical, only those for the 32 threads (processes in terms
of MPI) cases are plotted. The Mie theory result is also presented in
Fig. 7. As shown in Fig. 7, there is no loss of accuracy in our OpenMP
parallelization.

Figure 8 illustrates the parallel efficiency as a function of the
number of threads/processes. The efficiency of the MPI parallel
MLFMA is also presented in the figure for comparison. As can be
found from the figure, our proposed OpenMP MLFMA exhibits a
high efficiency and performs as efficiently as the MPI counterpart.

Figure 8. Parallel efficiency as a
function of the number of threads.

Figure 9. Parallel efficiency as a
function of the number of threads.
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The total CPU time used is about 5 hours and 4 hours, respectively,
in the 32 threads case and in the 32 processes case. The OpenMP
MLFMA requires more time because only two major parts of MLFMA
are parallelized.

To further demonstrate the capability of our OpenMP MLFMA,
RCS from an airplane model is calculated. It is a complex target and
has a largest dimension of 530λ, involving 46,443,538 unknowns with
an average mesh size of 0.13λ. A 12-level MLFMA is employed with the
usage of over 200 GB memories. Fig. 9 presents the OpenMP parallel
efficiency against the MPI one. Again, the efficiency of OpenMP is
very high, which is comparable to that of MPI. The total CPU time
used is about 4 hours and 3.5 hours, respectively, in the 32 threads
case and in the 32 processes case. The OpenMP MLFMA requires
more time for the same reason as in the sph-220 case.

From above numerical experiments, it can be found that the
straightforward OpenMP parallel scheme can only work well for
moderately sized targets when no more than 8 threads are used, while
the one with carefully designed outer loops can perform well even when
32 threads are used.

At the same time, it is worthy to point out that OpenMP and
MPI differ much in mechanisms, which have their advantages and
disadvantages. For example, OpenMP parallelization is simple but it
is limited by hardware resources, while a MPI one has good scalability
yet is complex. The best way of parallelization may combine them
together, especially for HPC clusters with computational nodes of
shared-memory systems.

5. CONCLUSIONS

Although OpenMP provides us an easy way to parallelize the
MLFMA on shared-memory systems, the implementation of OpenMP
parallelization has many pitfalls because different parts of the MLFMA
have distinct numerical characteristics due to its complicated algorithm
structure. The strategies on loop reorganization and on determination
of transition level are proposed to guarantee high efficiency of OpenMP
parallel MLFMA. The proposed OpenMP scheme is efficient while
maintaining the good virtue of being simple. Numerical experiments
on large scale targets show that the proposed OpenMP MLFMA
can perform as efficiently as the MPI counterpart, and much more
efficiently than the straightforward OpenMP scheme. Because of the
current restriction on hardware resources of shared-memory systems,
the capability of the OpenMP parallel MLFMA is still limited. A
combination of OpenMP and MPI should be a best choice for extremely
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large scale targets by fully exploiting advantages of both shared-
memory systems and distributed memory ones.
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