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Abstract—This paper presents the performance of an Adaptive
Transmit Beamspace Beamformer (ATBBF) in a dynamic channel for
Multiple Input Single Output (MISO) per user wireless system. An
ATBBF consists of several transmit beamformers on the Transmit
Antenna Array (TAA). The antenna weights of each Transmit
Beamformer (TB) are held constant while its input is weighted
by an adaptive beamspace weight. A Beamspace Gradient Sign
Feedback (BGSF) algorithm updates these beamspace weights. The
performance metric of an ATBBF is derived and analyzed in a
dynamic channel undergoing Rayleigh fading independently at the
antennas. A performance comparison between an ATBBF and a TB
having adaptive antenna weights is made in terms of convergence
and tracking of various slow and fast fading channels by simulations.
Both Full Dimension (FD) and Reduced Dimension (RD) ATBBFs
are considered. Comparisons show that the FD ATBBF gives a
performance equivalent to that of a TB and outperforms the RD
ATBBF. Thus the FD ATBBF can provide beamforming gain and
fading diversity similar to that of a TB. Furthermore, the performance
of the FD ATBBF improves on increasing the number of antenna
elements of the TAA.
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1. INTRODUCTION

The evolution of Third Generation (3G) Wideband Code Division
Multiple Access (WCDMA) to Beyond Third Generation (B3G) Long
Term Evolution (LTE) wireless communication system has resulted in
specifying that wireless and multimedia services are asymmetrical in
terms of data requirement, with downlink having higher traffic than
uplink [1]. Moreover, current base stations have dual receive antenna
diversity to improve uplink performance in terms of single user link
and system capacity [2]. To have the same receive diversity at the
Mobile Station (MS) in downlink is a costly addition for users of
small portable voice terminals. Their small physical sizes necessitates
multiple antennas to be closely spaced. This often increases correlation
among received signals that leads to reduced diversity gain [2]. This
correlation also restricts capacity enhancements offered by Multiple
Input Multiple Output (MIMO) systems [3]. Thus a practical and
cost effective increase in downlink capacity can be achieved by having
multiple antennas only at the base station, i.e., having a Multiple Input
Single Output (MISO) system [4].

Both WCDMA and LTE support Frequency Division Duplex
(FDD) [5, 6]. In FDD, downlink and uplink channels in a multipath
environment are generally not the same, and the measured uplink
channel cannot be directly applied as a reciprocal downlink. For the
MISO FDD system, spatial diversity and beamforming become the two
main downlink multiantenna schemes [5, 6]. Spatial diversity provides
maximum performance gain when the channels from the base station
antennas to the mobile are uncorrelated. Large antenna spacing on
the order of several carrier wavelengths for the Transmit Antenna
Array (TAA) at the base station leads to uncorrelated channels [4].
Techniques based on Space Time Codes (STC) provide diversity [7]
and coding gain for multiple receive antennas. For a single receive
antenna, STC provides diversity gain only. This gain will reduce if
fading channels across multiple antennas become correlated [8].

Downlink Beamforming is achieved by a Transmit Beamformer
(TB). A TB combines a TAA with a signal processor to adapt antenna
weights of the array. These weights determine the array factor of a
TAA [9]. The baseband waveform of a user is replicated into multiple
streams equivalent to the number of antenna elements in the array.
Each stream is multiplied by an antenna specific adaptive complex
base band weight. It is then fed to its antenna through the transceiver
for subsequent transmission [9]. This allows the TB, to transmit
coded bits in a way that they are received coherently at the mobile
station. Furthermore, this forms a beam with maximum gain in the
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direction of the desired mobile [2]. Antenna spacings for a TB are
required to be typically half the wave length to prevent spatial domain
aliasing [2, 10]. Secondly, the TB has to launch a beam into the
propagation environment, so that each user gets its signal without
interference from signals intended for other users [11]. In contrast,
a Receive Beamformer (RB) aims to spatially filter the single user
signal by formation of a beam or beams in the signal processor [9, 12].
Hence transmit and receive beamforming are substantially different in
nature [13], with the former affecting all receivers, while the latter
can be implemented independently at each receiver without disturbing
other links [14].

A TB requires knowledge of the downlink channel to set its
adaptive weights. Methods based on utilizing the measured uplink
channel characteristics (e.g., angle of arrival and angular dispersion)
to infer the downlink characteristics require correlation between receive
antennas. These methods do not provide fading diversity, as in the case
of independent fading at the antennas there is no correlation between
receive antennas [8]. To provide both fading diversity and beamforming
gain in FDD systems, feedback of the channel coefficients from the
mobile to the TB is required. Various algorithms have been proposed
to decrease this feedback [8, 15–17]. Their tracking performance in
slow and fast fading channels with independent fading at the antennas
reveals that they outperform STC in slow fading channels and are
outperformed by STC in fast fading channels [8, 15]. Beamforming
techniques in B3G LTE and Fourth Generation (4G) LTE-Advanced
systems are variants of the above techniques tailored for MIMO [6, 18].

In [19], an innovative approach based on an Adaptive Transmit
Beamspace Beamformer (ATBBF) was proposed for downlink
beamforming. In an ATBBF multiple streams of a user signal are equal
to the number of transmit beamformers with each stream assigned
to a TB. A stream is multiplied by its respective adaptive complex
base band beamspace weight and then fed to its TB. The outputs of
each TB for an antenna are summed at the base band level before
being fed to that antenna through the transceiver [9]. The beam
pattern of each TB is steered towards a different direction. Updating a
beamspace weight results in altering only the magnitude of this beam
pattern, while its steered direction remains constant. The Gradient
Sign Feedback (GSF) algorithm [8] was modified so that instead of
updating antenna weights of the TB, beamspace weights of the ATBBF
were updated [19]. Comparisons between this ATBBF and a TB with
GSF algorithm for a static channel showed an approximately similar
performance [19]. This paper compares their performance for dynamic
channels. In Section 2, the system model consisting of an ATBBF in a
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dynamic channel is described. Details of the Beamspace Gradient Sign
Feedback (BGSF) algorithm for a dynamic channel are in Section 3.
In Section 4, the performance of an ATBBF in a dynamic channel
undergoing Rayleigh fading is derived. Performance comparisons can
be found in Section 5, which is followed by the conclusion.

2. SYSTEM MODEL

The system model consists of an ATBBF at the base station of
a MISO per user WCDMA wireless system in a dynamic channel.
WCDMA utilizes the Direct Sequence Code Division Multiple Access
(DS-CDMA) and FDD methods. Performance metric of an ATBBF in
this system is also derived.

2.1. ATBBF

A TAA is a Uniform Linear Array (ULA) having N isotropic antenna
elements with half wave length inter element spacing. Furthermore,
TAA is aligned along the z-axis at the base station. The ATBBF
consists of M transmit beamformers on the TAA.

In a Full Dimension Adaptive Transmit Beamspace Beamformer
(FD ATBBF) M = N , while in a Reduced Dimension Adaptive
Transmit Beamspace Beamformer (RD ATBBF) M < N . Each of the
M transmit beamformers has a constant weight vector of size N×1 for
the antenna elements of the TAA. Among the M transmit beamformers
there is always one TB that weighs each antenna element of the TAA
uniformly, i.e., its beam pattern is directed towards broadside. In a FD
ATBBF, weight vectors for other transmit beamformers are chosen so
that their beam patterns are directed on either side of broadside and
are uniformly spread out in the total spatial span of a ULA. This gives
a total of M = N transmit beamformers/beam patterns of the FD
ATBBF [10]. These beam patterns are ideally mutually orthogonal;
hence, they are called orthogonal beams [10]. For a RD ATBBF a
reduced set of M < N orthogonal beams are selected from among the
M = N orthogonal beams of the FD ATBBF.

The matrix consisting of N ×M antenna weights of all transmit
beamformers is called the beamspace matrix Bbs, where the mth
column of Bbs represents the weight vector of the mth TB. The
weight vector of each TB is normalized by N so that the maximum
beamforming gain provided by a TB in its steered direction is 0 dB.
These weight vectors and hence columns of Bbs are also mutually
orthogonal [10].
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Figure 1. Schematic diagram of a M = N = 4 FD ATBBF.

BH
bsBbs =

I
N

(1)

The signal to be transmitted s is replicated M times and each replica
is fed to an adaptive beamspace weight of a TB as shown in Figure 1.
The M×1 beamspace weight vector wbs, consists of beamspace weights
of all M transmit beamformers. The M × 1 vector xbs, is the output
when input signal s is processed by wbs.

xbs = wbss (2)

Each single element of xbs is processed by a weight vector of a respective
TB to get a N × 1 output vector. These M output vectors are added
to get a resultant N × 1 transmit signal vector t for the TAA. In
matrix notation these two steps are accomodated in the following
matrix multiplication:

t=Bbsxbs=Bbswbss (3)

2.2. Transmit Signal

The Nyquist sampling theorem has been applied to the system model
for appropriate discrete time signal representation. If n is the Nyquist
sampling time index, straffic(n) is the transmitted sequence and P

(T )
traffic
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is the transmit power, then the signal vector tranmitted by the ATBBF
from (3) becomes:

t (n) =
√

P
(T )
traffic

Bbswbs(i)
‖Bbswbs(i)‖straffic(n) (4)

Here i is the time index denoting the ith iteration number of the BGSF
algorithm. Therefore wbs(i) is the beamspace weight vector of the
ATBBF in the ith iteration of the BGSF. The product Bbswbs (i) has
been normalized by its norm, so that the direction of the product is
taken into account rather than its magnitude. The simplification of
this norm from the Hermitian transpose property [10] and (1) is:

‖Bbswbs(i)‖ =
√

(Bbswbs(i))
HBbswbs(i) =

√
wH

bs(i)B
H
bsBbs

wbs(i)

=

√
wH

bs(i)wbs
(i)

N
=
‖wbs(i)‖√

N
(5)

Hence t (n) becomes

t (n) =
√

P
(T )
traffic

Bbswbs(i)
√

N

‖wbs(i)‖ straffic(n) (6)

2.3. Dynamic Channel

The dynamic channel in this model is a flat fading channel, i.e.,
it consists of a single time resolvable path. Thus there is only a
single channel coefficient associated with each antenna element of the
TAA. The N × 1 channel vector c consists of all these N channel
coefficients. A complex fading channel coefficient is usually modeled
as a correlated complex Gaussian random process with Rayleigh
distributed amplitudes and phases [20, 21]. This is achieved here by
modelling each coefficient of c as a first order Autoregressive (AR1) [10]
complex Gaussian process with a zero mean complex Gaussian stimulus
x [8, 15].

c (i + 1) = ac (i) + x(i) (7)

Here i is the time index denoting the ith update interval of the channel.
This i is the same as in (4) indicating that the channel and the
beamspace weights are being updated at the same rate. The parameter
a indicates the fading rate of the channel. To verify that an ATBBF
can provide fading diversity, the channel is taken to be uncorrelated
across the antennas, i.e.,

E
(
x(i)xH(i)

)
= 2σ2I (8)
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Uncorrelated fading is possible for half wave length antenna spacing
and appropriate angle spread as can be inferred from [22].

2.4. Received Signal

Assuming no pilot signal, the received signal at the mobile with perfect
channel estimation for demodulation becomes

r (n) =
√

P
(T )
traffic cH(i)

Bbswbs(i)
√

N

‖wbs(i)‖ straffic (n) + z(n) (9)

where z(n) is the received complex zero mean Gaussian noise with
variance 2σ2.

2.5. Performance Metric of ATBBF

The total usable signal power P (R) at the mobile is the square of
received signal voltage divided by the unit resistance [23]. The first
term on the right side of (9) is the received signal voltage, hence P (R)

becomes

P (R) =

[√
P

(T )
traffic cH(i)

Bbswbs(i)
√

N

‖wbs(i)‖ straffic (n)

]

[√
P

(T )
traffic cH(i)

Bbswbs(i)
√

N

‖wbs(i)‖ straffic (n)

]H

The power of the modulated signal sequence |straffic(n)|2 is assumed
one. From the Hermitian transpose property the above equation
becomes

=
NP

(T )
traffic

wbs(i)
2

[
cH(i)Bbswbs(i)

] [
wH

bs(i)B
H
bsc(i)

]
(10)

Each of the terms in the two brackets is a scalar quantity. Scalar
multiplication is commutative, reversing the sequence of the two terms
does not affect the product. Defining the N × N channel correlation
matrix R(i) [4] as:

R(i) = c(i)cH(i) (11)

Inserting R(i) in (10)

=
NP

(T )
traffic

‖wbs(i)‖2w
H
bs(i)B

H
bsR(i)Bbswbs(i)
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The performance metric J is the ratio of the received and transmit
powers that becomes:

J(i) =
P (R)

P
(T )
traffic

=
NwH

bs(i)B
H
bsR(i)Bbswbs(i)

‖wbs(i)‖2

=
(Bbswbs(i))

HR(i)Bbswbs(i)
‖Bbswbs(i)‖2 (12)

3. ALGORITHM DESCRIPTION

The BGSF algorithm is concerned with the selection of beamspace
weights of an ATBBF that can maximize the ATBBF’s performance
in a dynamic channel. The BGSF updates the ATBBF’s beamspace
weights at the base station of a WCDMA system as given below.

3.1. At the Base Station Transmitter

The traffic signal transmitted by the ATBBF with beamspace weights
wbs(i) in the ith update interval is given in (6). For the pilot
signal defined in the WCDMA system, two beamspace weight vectors
wbseven(i) and wbsodd

(i) are derived from wbs(i) as follows:

wbseven(i) = wbs(i) + ‖wbs(i)‖βp(i) (13)
wbsodd

(i) = wbs(i)− ‖wbs(i)‖βp(i) (14)

Here β is the adaption rate parameter and p is the M × 1 test
perturbation vector. The test perturbation vector is generated as a
complex, zero mean, normal Gaussian vector with an auto correlation
matrix of 2I. It is clear from Equations (13) and (14) that wbs is the
mean of wbseven and wbsodd

. A time slot of duration K is defined as an
integral multiple of the Nyquist sampling index (n). The pilot signal
is sent with wbsevenduring even slots

(⌊
n
K

⌋
= even

)
and with wbsodd

in
odd slots

(⌊
n
K

⌋
= odd

)
. The update interval i is an integral multiple

of 2K times the Nyquist sampling time interval. All weights are held
constant during the ith measurement interval. Total transmit signal
during this interval becomes:

t (n) =
√

P
(T )
traffic

Bbswbs(i)
√

N

‖wbs(i)‖ straffic (n)

+
√

P
(T )
pilotBbsspilot (n)

√
N





wbseven (i)
‖wbseven (i)‖ if

(⌊
n
K

⌋
=even

)
wbsodd

(i)

‖wbsodd
(i)‖ if

(⌊
n
K

⌋
=odd

)


 (15)
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Here spilot (n) is the pilot sequence modulation and P
(T )
pilot is the mean

pilot channel transmission power.

3.2. At the Mobile Receiver

The received signal is the channel passed data and pilot signal, to which
noise is added, i.e.,

r (n) =
√

P
(T )
traffic

cH(i)Bbswbs(i)
√

N

‖wbs(i)‖ straffic (n)

+
√

P
(T )
pilotc

H(i)Bbsspilot (n)
√

N





wbseven(i)
‖wbseven(i)‖ if

(⌊
n
K

⌋
=even

)
wbsodd

(i)

‖wbsodd
(i)‖ if

(⌊
n
K

⌋
=odd

)


+z(n) (16)

Code multiplexing can make spilot (n) and straffic (n) orthogonal to each
other and hence they can be separated at the receiver. Power delivered
by the pilot signal for even and odd slots from (12) becomes as follows:

P
(R)
piloteven

=
NP

(T )
pilot

‖wbseven(i)‖2wH
bseven

(i)BH
bsR(i)Bbswbseven(i) (17)

P
(R)
pilotodd

=
NP

(T )
pilot

‖wbsodd
(i)‖2wH

bsodd
(i)BH

bsR(i)Bbswbsodd
(i) (18)

It must be noted that the two products Bbswbseven(i) and Bbswbsodd
(i)

have been normalized in (15). Therefore, the power delivered to the
receiver by the pilot weights in (17) and (18) is dependent upon their
direction rather than their magnitudes. The mobile receiver will sum
P

(R)
piloteven

and P
(R)
pilotodd

for all the respective even and odd slots in the
ith interval and then compare them as follows:

d (i) =
∫

P
(R)
piloteven

−
∫

P
(R)
pilotodd

(19)

Feedback to the base station becomes as follows

feedback(i) = sign(d (i)) (20)

The comparison generates a +1 feedback if received power in the even
slot is greater than the received power in the odd slot, while it is −1
for vice versa.

3.3. Returning to the Base Station Transmitter

The above feedback updates wbs at the transmitter as follows:
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if (feedback (i) == +1)

wbs (i + 1) = wbseven(i) (21)

elseif (feedback (i) == −1)

wbs (i + 1) = wbsodd
(i) (22)

Feedback indicates which of the two pilot channels delivers more power
to the mobile. The beamspace weight vector of the indicated pilot
channel is chosen as wbs for the next update interval (i + 1).

4. PERFORMANCE ANALYSIS IN AR1 CHANNEL

The performance metric of the ATBBF given in (12) can be simplified
for a AR1 channel having a single resolvable path, because R(i)
becomes a rank one matrix. Eigen analysis of R(i) will give only
one non-zero eigenvalue λ0(i) with its corresponding eigenvector q0(i)
equivalent to the normalized channel vector, i.e.,

q0(i) =
c(i)
‖c(i)‖ (23)

All other eigenvalues λ1(i), . . . , λN−1(i) of R(i) are zero and their
corresponding eigenvectors q1 (i) , . . . ,qN−1 (i) are arbitrary within
the space orthogonal to the channel vector called the null space.
Secondly, eigen analysis reveals that any arbitrary vector having the
same dimensions as that of an eigenvector can be expressed as a linear
combination of eigenvectors [24]. The product Bbswbs (i) is N × 1
vector and can be expressed as:

Bbswbs (i) =
∫ l=N−1

l=0
ul(i)ql (i) (24)

where the coefficients ul are called the eigenweights of the product
Bbswbs (i). A specific set of two eigenvectors where the first is q0(i),
while the second is the normalized projection of Bbswbs (i) on to
the null space can be imposed in (24) because all other eigenvectors
q1 (i) , . . . ,qN−1 (i) are arbitrary within the null space. The first
eigenvector represents the desired weight vector while the second
eigenvector is the error vector. Thus (24) becomes

Bbswbs (i) = u0 (i)q0 (i) + u1 (i)q1 (i) (25)

The projection matrix onto the channel vector c(i) from [10] is

c(i)
[
cH(i)c(i)

]−1
cH(i) = c(i)

(
‖c(i)‖2

)−1
cH(i)=

c(i)cH(i)
‖c(i)‖2 (26)
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Thus the projection matrix onto the null space becomes
(
I− c (i) cH (i)

‖c (i) ‖2
)

(27)

Hence projection of Bbswbs (i) on to the null space is
(
I− c (i) cH (i)

‖c (i) ‖2
)

Bbswbs (i) (28)

Normalized value of the above projection is the second eigenvector
q1 (i), i.e.,

q1 (i)=

(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥
(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥
(29)

Eigenweights u0(i) and u1(i) in (25) are given from [24]:

u0 (i) = qH
0 (i)Bbswbs (i) (30)

u1 (i) = qH
1 (i)Bbswbs (i) (31)

Substituting the value of q0 (i) ,q1 (i) from (23) and (29) into (30) and
(31) respectively

u0 (i) =
cH (i)
‖c (i) ‖Bbswbs (i) (32)

u1 =




(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥
(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥




H

Bbswbs (i)

=
wH

bs(i)B
H
bs

(
I− c(i)cH(i)

‖c(i)‖2
)H

∥∥∥
(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥
Bbswbs (i) (33)

For convenience eigenweight energies are defined as the square of the
magnitude of corresponding eigenweights, i.e.,

v0 (i)=|u0 (i)|2=
∣∣∣∣
cH (i)Bbswbs (i)

‖c (i) ‖

∣∣∣∣
2

(34)

v1 (i)=|u1 (i)|2=

∣∣∣∣∣∣∣

wH
bs(i)B

H
bs

(
I− c(i)cH(i)

‖c(i)‖2
)H

Bbswbs (i)
∥∥∥
(
I− c(i)cH(i)

‖c(i)‖2
)
Bbswbs (i)

∥∥∥

∣∣∣∣∣∣∣

2

(35)
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Therefore v0 (i) gives the portion of the energy of Bbswbs (i) that is
in the direction of the mobile and received by it. v1 (i) represents
that portion of energy of Bbswbs (i) that is not received by the mobile
and is called error energy. The performance metric J of the ATBBF is
simplified in terms of eigenweight energies v0 (i) , v1 (i) as shown below:

J (i) =
(Bbswbs)

HR(i)Bbswbs

‖Bbswbs‖2

=
[u0 (i)q0 (i) + u1 (i)q1 (i)]HR (i) [u0 (i)q0 (i) + u1 (i)q1 (i)]

‖u0 (i)q0 (i) + u1 (i)q1 (i) ‖2

J(i)=

[
uH

0 (i) uH
1 (i)

][qH
0 (i)

qH
1 (i)

]
[q0(i)q1(i)]

[
λ0(i) 0

0 0

][
qH

0 (i)
qH

1 (i)

]
[q0(i)q1(i)]

[
u0(i)
u1(i)

]

|u0(i)|2 + |u1(i)|2

J(i) =
λ0 (i) |u0 (i)|2

|u0 (i)|2 + |u1 (i)|2 =
v0 (i) λ0 (i)

v0 (i) + v1 (i)
(36)

λ0 is equal to the Rayleigh quotient of its corresponding eigenvector
q0 and is given from [24] as

λ0 (i) =
qH

0 (i)R(i)q0 (i)
‖q0 (i) ‖2 =

cH(i)
‖c(i)‖c (i) cH (i) c(i)

‖c(i)‖

‖ c(i)
‖c(i)‖‖

2

=

‖c(i)‖2‖c(i)‖2
‖c(i)‖2
‖c(i)‖2
‖c(i)‖2

= ‖c (i) ‖2 (37)

Inserting this value of λ0 in (36) we get:

J (i) =
v0 (i)

v0 (i) + v1 (i)
λ0 (i)=

v0 (i)
v0 (i) + v1 (i)

‖c (i) ‖2 (38)

Thus for the given channel vector c (i), the performance metric J (i)
of the ATBBF depends upon the ratio of the received energy v0 (i) to
the sum of the received and error energies v0 (i) + v1 (i). This ratio is
denoted by J ′ (i), i.e.,

J ′ (i) =
v0 (i)

v0 (i) + v1 (i)
(39)

Therefore if the error energy v1 (i) is zero then J ′ (i) attains its
maximum value of one (or 0 dB). J (i) then becomes equal to ‖c (i) ‖2

and the ATBBF delivers maximum power. Performance metric of a
TB in AR1 Rayleigh fading is also dependent upon the ratio J ′ (i) [8].
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5. PERFORMANCE SIMULATIONS IN AR1 CHANNEL

The performance simulations generate performance curves of an
ATBBF and a TB in an AR1 Rayleigh flat fading channel as described
in (7) and (8). The set of values of the fading rate a chosen to represent
different fading channels are:

a = [0.999, 0.9968, 0.99, 0.968, 0.9, 0.6, 0.3, 0] (40)

Small values of a indicate fast fading channels, while its large
values represent slow fading channels. For both ATBBF and TB, a
performance curve is generated for each value of a. The ordinate axis
of a performance curve represents the ratio J ′ (i) of an ATBBF or TB
in dB’s. Both the BGSF and GSF algorithm of an ATBBF and TB
respectively have an adaption rate parameter β. The abscissa of a
performance curve consists of the following set of β values:

β = [0.0013, 0.0022, 0.004, 0.007, 0.013, 0.022, 0.04, 0.07, 0.13,
0.22, 0.4, 0.7, 1.3] (41)

Each curve is obtained by taking the mean value of J ′ (i) of an ATBBF
or a TB for 1, 000, 000 iterations of BGSF or GSF respectively. In each
ith iteration the beamspace weights or antenna weights of the ATBBF
or TB are updated by BGSF or GSF algorithms respectively, along
with the update of AR1 channel coefficients. The performance curves
become independent of the initial channel coefficients and the variance
σ2 given in (8) for this number of iterations.

The performance curves of a FD ATBBF (M = N = 2) are shown
in Figure 2, where the curve of the slowest fading channel a = 0.999

Figure 2. Performance curves of FD ATBBF for N = 2.
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Figure 3. Performance curves of TB for N = 2.

has the maximum magnitude. As the fading rate increases, magnitude
of the curve decreases, which is why the fastest fading channel a = 0
has the lowest magnitude. In slow fading, due to the slowly varying
channel, the FD ATBBF has the time to perturb its beamspace weights
in the right direction before considerable change in the channel takes
place. In fast fading, by the time the FD ATBBF acquires the
required beamspace weights, the channel changes considerably. For a
performance curve of a particular fading rate the value of β that gives
its maximum value is called its βmax value. The βmax for the curve of
the slowest fading channel a = 0.999 is minimum. It increases with
the increase in the fading rate. This is because the FD ATBBF has
to accommodate more change in its beamspace weights in fast fading
channels.

The performance curves of the TB for N = 2 are shown in
Figure 3. On comparing the curves of the FD ATBBF and TB for
N = 2, it becomes evident that at any fading rate both give the same
performance. For N = 4 antennas, FD ATBBF and TB curves are
shown in Figures 4 and 5 respectively. The variation in the maximum
value and the βmax value of the performance curve with the increase in
fading rate is similar to that described for N = 2 antennas. Similarly,
the performance of the FD ATBBF and TB for N = 4 antennas over
all slow and fast fading rates of the channel has the same magnitude
as was seen for N = 2 antennas.

Performance curves for N = 2 are also compared with those for
N = 4. It is observed that at any fading rate the maximum value of
a curve for N = 2 is approximately two times its maximum value
for N = 4 in terms of dB’s. The reason is that the number of
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Figure 4. Performance curves of FD ATBBF for N = 4.

Figure 5. Performance curves of TB for N = 4.

adaptive weights for N = 2 is half than that for N = 4 resulting
in shorter convergence time of beamspace weights for the former. A
greater magnitude of J ′ (i) for N = 2 does not translate into a greater
magnitude of J(i). J(i) from (38) depends on the product of J ′(i)
and square of the channel vector norm ‖c(i)‖2. ‖c(i)‖2 for N = 2 and
N = 4 gives a 3.01 dB and 6.02 dB array gain respectively. On adding
array gain to the performance curves of N = 2 and N = 4, J (i) of the
FD ATTBF for N = 4 acquires greater magnitude than for N = 2 in
all fading channels.

Both RD and FD ATBBF have the same value of N and hence
equivalent value of ‖c(i)‖2. Thus their performance comparison
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Figure 6. Performance curves of RD ATBBF for M = 3; N = 4.

depends only on their value of J ′(i). Performance curves of RD ATBBF
in the above AR1 channels are generated for three cases M = 1,
N = 4; M = 2, N = 4; & M = 3, N = 4. Performance of the
highest magnitude is obtained for M = 3, N = 4 RD ATBBF (given
in Figure 6). This is due to the fact that among the three cases M = 3,
N = 4 RD ATBBF has the largest number of orthogonal beams in the
total spatial span. This same reason causes the RD ATBBF to be
outperformed by M = N = 4 FD ATBBF for all fading rates, as
observed on comparing Figure 6 with Figure 4 respectively. Figure 6
also illustrates that the variation in the maximum value and the βmax

value of the performance curve with the increase in fading rate is similar
to that for the FD ATBBF.

6. CONCLUSIONS

The tracking performance of an ATBBF in a dynamic channel has
been presented. An ATBBF consists of M transmit beamformers on
a TAA having N antenna elements with M ≤ N . Each TB has a
constant N × 1 weight vector for the TAA. In an ATBBF the signal to
be transmitted is fed to the TB through an adaptive beamspace weight,
which is updated by BGSF. Performance of the ATBBF is analysed
in a flat fading dynamic channel with a single time resolvable path.
The channel coefficients are undergoing AR1 Rayleigh fading that is
uncorrelated across the N antenna elements. Different fading rates are
applied to represent slow and fast fading channels. The performance
results are plotted for a FD ATBBF, TB and RD ATBBF.

The results illustrate that the RD and FD ATBBF give maximum
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performance in slow fading channels, while performance decreases in
fast fading channels. In slow fading both the RD and FD ATBBF are
able to track the channel effectively. In fast fading the channel changes
at a rate that is greater than the ability of the RD and FD ATBBF to
acquire and keep track of the optimal beamspace weights. Secondly,
the βmax value of a performance curve for both the RD or FD ATBBF
increases with the increase in the fading rate. This is because a greater
value of β is required to bring more change in the beamspace weights
of the RD or FD ATBBF to track fast fading channels.

For the same number of antenna elements, the FD ATBBF and
TB give a similar performance in a single time resolvable path AR1
channel. Hence the FD ATBBF can provide the same beamforming
gain and fading diversity as by a TB.

On comparing the performance of the FD ATBBF for N = 2
and N = 4, it is observed that without incorporating the array
gain, maximum performance of the former is approximately double
than that of the latter in terms of dB’s. The reason is that the
number of adaptive beamspace weights for N = 2 is half than that
for N = 4 resulting in shorter convergence time of beamspace weights
and improved performance for the former. On adding array gain,
performance for N = 4 acquires greater magnitude than for N = 2
in all fading channels.

The RD ATBBF gives its best performance in the above AR1
channels when it has the greatest number of orthogonal beams in
the total spatial span. The FD ATBBF outperforms the RD ATBBF
because it will always have more orthogonal beams in the total spatial
span.
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