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Abstract—In this paper, a new method based on the complex
images technique has been presented to efficiently compute the Green’s
functions required in a Mixed Potential Integral Equation (MPIE)
analysis of a periodic structure located on a layered medium. This
method leads to a closed-form representation of the Green’s functions
of these periodic structures given in terms of slowly convergent series
valid for sub-wavelength as well as super-wavelength cell sizes for all
source-point to field-point distances. Comparison between the results
obtained by the proposed method and those obtained through other
numerical methods verifies its accuracy. Fast convergence, simple final
form and versatility of the proposed method are its main advantages
which make it suitable for the analysis of the periodic structures using
the integral equation techniques.

1. INTRODUCTION

Periodic structures, such as electromagnetic or photonic band-gap
(EBG/PBG) structures [1] and left-handed metamaterials (MTMs)
with both negative effective permittivity and permeability [2] have
been extensively developed and utilized through the last decade in
order to control and manipulate the flow of the electromagnetic waves
in various applications.

When applying numerical full wave methods such as integral
equation techniques (IE) to periodic structures, fast and accurate
means for evaluating the periodic Green’s function are required.
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While the application of the Floquet-Bloch theorem [3, 4] reduces
the computational domain of infinite periodic structures to a single
unit cell, it is still required to compute very slowly convergent series
for their Green’s functions like the magnetic vector potential and
electric scalar potential Green’s functions used in a conventional MPIE
formulation. In order to speed up the evaluation of these series several
acceleration techniques have been proposed in the literature which can
be categorized in two main groups of the general algorithms and the
specific ones.

Shank’s [5], Chebyshev-Toeplitz, ρ [6], θ and Levin’s transforms
are some of the general algorithms while Kummer, Poisson [7] and
Ewald’s transforms belong to the second category. Among these
methods Shanks’ transformation can efficiently evaluate the periodic
Green’s function of planar stratified media, like the one shown in Fig. 1,
but unfortunately its efficiency severely decreases when the field-source
point distance diminishes.

Figure 1. An infinite array of point sources above a substrate.

Ewald’s transform [8] is another well-recognized technique in
speeding up the summation of the periodic Green’s function which
partitions the main series into two spectral and spatial components
with Gaussian decaying characteristics. In [9, 10], this method has been
used to accelerate the convergence of the periodic Green’s function
series in free-space while in [11] it has been applied to the periodic
Green’s function of multilayered planar structures. However, the
method shows some deficiencies in the evaluation of the complementary
error functions with complex arguments. In [12], a new acceleration
technique with exponential convergence rate has been presented,
which is numerically less complex than Ewald’s transform, easier to
implement and performs better for moderate accuracies.

In [17], a combination of the Spectral Domain Approach (SDA)
and the Array Scanning Method (ASM) was used to analyze a
microstrip antenna located on a periodic metamaterial substrate.
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When it comes to the layered media the complex image technique
allows one to substitute the relevant Green’s function with a finite
summation of the free-space Green’s functions [13]. Kipp and Chan [14]
and Shubair and Chow [15] solved the problem of the periodic Green’s
function in layered media by using the acceleration techniques of the
free-space periodic Green’s function combined with the complex image
technique.

In this paper, for the first time a simple, closed-form expression
for the periodic spatial domain Green’s function of a multilayered
medium will be derived using the concept of complex images for
multilayered media, leading to a summation of free-space Green’s
function, combined with the complex images representation of the
periodic Green’s function in free space presented in [16]. Using this
method, it becomes possible to represent the Green’s functions of
arrays of periodic sources located on layered media in terms of finite
summations of complex images. This representation is numerically
more efficient than the other known techniques [14, 15, 17], as it avoids
the computation of the infinite series. It is also valid for all the source-
point to field-point distances.

On this ground, the paper first represents a brief introduction
to the complex images technique in a multilayered medium that
substitutes the main problem, i.e., an array of point sources over
a layered medium, with a convenient array of sources located in
homogeneous media. Then the method of complex images in periodic
array of sources in free space will be reviewed and finally these two
methods will be combined to complete the derivation of the proposed
method in Section 2.

Numerical results will be presented in Section 3. There, the
validity of the proposed method will be examined through different
examples of 2-D periodic arrays of point sources over a grounded
substrate. Finally Section 4 gives some concluding remarks.

2. FORMULATION OF THE PROBLEM

Assume a periodic array of point sources located above a layered
medium (Fig. 1). In order to obtain the periodic Green’s functions
of such an array, we first consider an x-directed current source of unit-
strength located above a layered medium as shown in Fig. 2. The
ejωt time dependence is assumed throughout the paper. The spectral-
domain MPIE potentials in the air region can then be obtained from
the following equations:

G̃xx
A =

µ0

4π

1
j2kz0

[
e−jkz0(z−z′) + RTEe−jkz0(z+z′)

]
(1a)
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Figure 2. An x-directed electric source over a layered medium.

G̃q =
1

4πε0

1
j2kz0

[
e−jkz0(z−z′) + (RTE + Rq) e−jkz0(z+z′)

]
(1b)

where kz0 =
√

k2
0 − k2

ρ, and RTE and Rq are the reflection coefficients
from the layered medium defined in [13].

In (1), G̃xx
A represents the x component of the spectral-domain

magnetic vector potential produced by the x-directed current source
and G̃q is the spectral-domain electric scalar potential.

Using the procedure given in [13], one can extract the quasi-
dynamic images [20] from the spectral domain representation (1) and
write the following expressions for the spatial domain Green’s functions
by using the Sommerfeld’s identity.

Gxx
A =Gxx

A0+
µ0

4π

+∞∫

−∞

1
j2kz0

(RTE−RTE0 )e−jkz0(z+ź)H
(2)
0 (kρρ) kρdkρ(2a)

Gq=Gq0+
1

4πε0

+∞∫

−∞

1
j2kz0

(RTE +Rq −RTE0 −Rq0)

e−jkz0(z+ź)H
(2)
0 (kρρ) kρdkρ (2b)

where RTE0 and Rq0 are defined in [13] and

Gxx
A0 =

µ0

4π

(
e−jk0r0

r0
− e−jk0ŕ0

ŕ0

)
(3a)

Gq0 =
1

4πε0

(
e−jk0r0

r0
+ K

e−jk0r′′0

r′′0
+ K2 e−jk0r1

r1

−K
e−jk0r2

r2
−K2 e−jk0r3

r3
−K2 e−jk0r′0

r′0

)
(3b)
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r0 =
√

ρ2 + (z − z′)2, r′0 =
√

ρ2 + (z + z′ + 2h)2

r′′0 =
√

ρ2 + (z + z′)2, rn =
√

ρ2 + (z + z′ + 2nh)2, K =
1− εr

1 + εr

By extracting the surface wave poles from the spectral domain
Green’s functions and approximating the remaining parts by a
finite series of exponentials, using Prony’s method [13] or other
approximating techniques as GPOF [19], etc., a closed form
representations of the spatial domain Green’s functions are derived
as [13]

Gxx
A = Gxx

A0 + Gxx
A,ci + Gxx

A,sw (4a)
Gq = Gq0 + Gq,ci + Gq,sw (4b)

where

Gxx
A,sw =

µ0

4π
(−2jπ) Res1H

(2)
0 (kρpρ) kρp (5a)

Gq,sw =
1

4πε0
(−2jπ) Res2H

(2)
0 (kρpρ) kρp (5b)

and

Gxx
A,ci =

µ0

4π

N∑

i=1

ai
e−jk0ri

ri
, ri =

√
ρ2 + (z + z′ − jbi)

2 (6a)

Gq,ci =
1

4πε0

N∑

i=1

a′i
e−jk0r′i

r′i
, r′i =

√
ρ2 + (z + z′ − jb′i)

2 (6b)

Here, ri and r′i are the distances from complex images with amplitudes
of ai and a′i. Also, kρp is a typical pole of the integrands in (2), giving
contribution to the surface waves when determining the corresponding
residue as in (5), and N is the number of exponentials used for
the approximation of the spectral domain Green’s functions which
is normally between 3 to 7. In this way, a point source over a
grounded substrate has been replaced by a number of real point
sources (corresponding to Gxx

A0 and Gq0) located in real locations
in a homogeneous medium (ε0), plus a number of point sources
(corresponding to Gxx

A,ci and Gq,ci) in complex locations with complex
amplitudes located in again the same homogeneous medium ε0, and
a number of line sources (corresponding Gxx

A,sw and Gq,sw) in the
homogeneous medium with a relative permittivity of εr = (kρp/k0)2.

Figure 3 visualizes the equivalence of the original problem (Fig. 2)
with the combination of the two above-mentioned groups of point and
line sources located in homogeneous media. Being able to replace the



230 Bahadori, Alaeian, and Faraji-Dana

Figure 3. A visualization of different terms in (4a).

point source of Fig. 2 with a finite series of point and line sources
located in homogeneous media as depicted in Fig. 3, paves the way
to find the Green’s functions of the periodic structure presented in
Fig. 1 by considering each of these equivalent sources in an array
configuration located in the respective homogenous medium.

To this end, first assume a 1-D periodic array of sources over
a substrate. The Green’s functions of this 1-D periodic structure are
given by converting each term in (4) into a 1-D periodic array of sources
located in homogeneous media. That is

Gxx
A−1D = Gxx

A0−1D + Gxx
A,ci−1D + Gxx

A,sw−1D (7a)
Gq−1D = Gq0−1D + Gq,ci−1D + Gq,sw−1D (7b)

where each term represents an infinite 1-D periodic Green’s function
corresponding to the periodic array of sources.

Without loss of generality assume an infinite array of point sources
along x-axis as in Fig. 4 with X as the period of the array and kx as
the phase progression factor between two adjacent sources. Using the
Floquet-Bloch theorem, the periodic Green’s function, Gper is given
by:

G1P
per =

+∞∑
n=−∞

e−jk0rn

4πrn
e−jnkxX , rn =

√
(x− nX)2 + y2 + z2 (8)

In [16], the complex images technique has been used to derive
a closed-form representation for a 1-D periodic Green’s function of
point and line sources. Appendix A and B give a short description of
the complex images formulation used to find the 1-D periodic Green’s
function of point and line sources, respectively. The final results are
given by (17) and (21). It can be seen that instead of using a very slowly
converging infinite series, one can use a finite series of complex images
to compute the 1-D periodic Green’s functions. Therefore the periodic
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Figure 4. A one-dimensional array of point sources.

Figure 5. A visualization of the complex image representation of 1-D
array of point sources over a substrate.

Green’s function of 1-D array of point sources over a substrate can
be expressed in a closed-form, by some finite terms when the relevant
periodic terms of (4) are substituted with their corresponding complex
images representation of (17) and (21). Fig. 5 shows a visualization of
the lattice of point and line sources in these two equations.

It is clear that Gxx
A0−1D, Gq0−1D and Gxx

A,ci−1D, Gq,ci−1D, must be
computed by using (17) and Gxx

A,sw−1D, Gq,sw−1D using (21). Here,
the final form for one of the periodic terms of (7), i.e., Gxx

A0−1D is given
as an example. Similar expressions can be easily written for the other
terms.

Gxx
A0−1D =

µ0

4π

(
e−jk0r0

r0
− e−jk0r1

r1
+ e−jkxX e−jk0r0x

r0x
− e−jkxX e−jk0r1x

r1x

+
N1∑

n=1

an

(
e−jk0r0i

r0i
− e−jk0r1i

r1i

)

+e−jkxX
N2∑

n=1

cn

(
e−jk0r0xi

r0xi
− e−jk0r1xi

r1xi

))
(9)
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where r1, r2 are defined in (3) and:

r0x =
√

(x−X)2+y2+(z−z′)2, r1x =
√

(x−X)2+y2+(z + z′+2h)2

r0i =
√

(|x|+ jbn)2 + y2 + (z − z′)2,

r1i =
√

(|x|+ jbn)2 + y2 + (z + z′ + 2h)2

r0xi =
√

(|x−X|+ jdn)2 + y2 + (z − z′)2

r1xi =
√

(|x−X|+ jdn)2 + y2 + (z + z′ + 2h)2

This idea can easily be extended to the case of 2-D periodic
array of sources over a substrate where every source in Fig. 5 must
be repeated with periodicity of Y , in y direction. Again the infinite
series of sources in y direction can be reduced to finite series of sources
by using (17) and (21), as in Fig. 6.

Figure 6. A visualization of the sources in complex images
representation of 2-D periodic array of sources over a substrate.

This means that the periodicity of each term of Gxx
A0−1D and

Gxx
A,ci−1D or Gq0−1D and Gq,ci−1D in y-direction can be expressed by

some real point sources and other images in real or complex location
of y-direction obtained from (17). While for y-direction periodicity
of Gxx

A,sw−1D and Gq,sw−1D the complex image representation of (21)
must be used.

It is worthy to notice that this method leads to a closed-form
representation for the periodic Green’s function of every kind of array
and is valid for every source-field distance. In the representations
the most effective elements of the array, i.e., sources surrounding the
unit cell, will be preserved in their original form while images with
complex amplitudes in complex locations model the behavior of all
other sources in the array. So, the final representation can exactly
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express the singularity of the Green’s function near the boundaries. It
also allows us to use some fewer terms when the near field values of
the periodic Green’s function are considered.

Finally, the method described in this section is quite general and
applicable to any kind of array with any dimension but much simpler
results can be obtained when special arrays are considered. Sub-
wavelength arrays with periodicities less than the wavelength are one
of those important arrays with simple complex image representation.
In these arrays there exist no poles near the integration path shown
in Fig. 12. Consequently the approximation process of (16) does not
require the extraction of pole singularities of the respective functions.
In these cases all the terms in the final representation resemble the
original elements of the array except that they are complex valued
elements in complex locations [18].

3. NUMERICAL RESULTS

In this section, the numerical accuracy of the developed method
is demonstrated through various examples. For that purpose the
magnitude and phase of the scalar and vector potentials of 2-D periodic
arrays of sources over a grounded substrate have been obtained by
using the proposed method and compared with ones obtained from
relevant modal series accelerated with Shanks’ transform. The arrays
have been considered for both cases of sub and super-wavelength and

(a) (b)

Figure 7. The vector potential of 2-D array of sources with X = 0.6λ,
Y = 0.6λ, kx = π

1.8λ , ky = π
2.4λ on a grounded substrate with εr = 8.6,

h = 0.06λ along its diagonal path in the unit cell (a) magnitude, (b)
phase.
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assumed to be located on a substrate with parameters of εr = 8.6 and
h = 0.06λ. Throughout these examples the GPOF [19] method has
been used in order to find the exponential approximations of (16) and
consequent complex images.

Figures 7 and 8 show the results for vector and scalar potentials of
a sub-wavelength 2-D array with X = 0.6λ, Y = 0.6λ, kx = π

1.8λ , ky =
π

2.4λ , respectively. The observation point moves along the diagonal
path in the unit cell. An excellent agreement can be observed between
the two groups of results. The effect of poles and surface waves has
been considered in this example.

(a) (b)

Figure 8. The scalar potential of 2-D array of sources with X = 0.6λ,
Y = 0.6λ, kx = π

1.8λ , ky = π
2.4λ on a substrate with εr = 8.6, h = 0.06λ

along its diagonal path in the unit cell (a) magnitude, (b) phase.

(a) (b)

Figure 9. The vector potential of 2-D array of sources with X = 1.5λ,
Y = 1.5λ, kx = π

30λ , ky = π
36λ on a substrate with εr = 8.6, h = 0.06λ

along its diagonal path in the unit cell (a) magnitude, (b) phase.
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Here, we have chosen T0 = 15 (T0 is the truncation point as shown
in Fig. 12) and used 2 quasi-dynamic [20] and 6 complex image terms
in (3) and (6) respectively to model the behavior of the grounded
substrate. Also 4 complex images have been used in each direction of
the periodic array in order to include the periodicity of the array.

Figures 9 and 10 represent the results of vector and scalar potential
of a super wavelength 2-D array over the same substrate along the
same path. Here, it has been assumed that X = 1.5λ, Y = 1.5λ and
kx = π

30λ , ky = π
36λ . Again excellent agreements are observed between

the results of the two methods. Fig. 11 compares the magnitude of the

(a) (b)

Figure 10. The scalar potential of 2-D array of sources with X = 1.5λ,
Y = 1.5λ, kx = π

30λ , ky = π
36λ , on a substrate with εr = 8.6, h = 0.06λ

along its diagonal path in the unit cell (a) magnitude, (b) phase.

Figure 11. Magnitude of scalar potential of 2-D array of sources
(f = 30 GHz, X = Y = 1.1λ, kx = ky = 0) over the substrate with
εr = 9.8, h = 0.06λ along its diagonal path of two unit cells. Our
results are given by dashed line while the results of [15] are given in
solid line.
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Figure 12. The approximation path in the βx plane.

scalar potential of a 2-D array of sources in f = 30GHz, X = Y = 1.1λ,
kx = ky = 0 over the same substrate obtained using our proposed
method with the results presented in [15] using Possion’s transform
accelerating technique. Again good agreement is observed.

4. CONCLUSION

In this paper, a novel method based on the complex images technique
has been presented for the calculation of periodic Green’s functions in
layered media. Using this closed-form representation, fast and accurate
computation of the periodic Green’s function becomes possible for
all the source-field points distances. This will drastically improve
and facilitate the application of the integral equation techniques in
analyzing the periodic structures and metamaterials.

APPENDIX A.

Consider a periodic array of point sources along the direction of x with
period of X and phase shift of kx. From the Floquet-Bloch theorem,
the periodic Green’s function Gper

1P is given by:

Gper
1P =

+∞∑
n=−∞

e−jk0rn

4πrn
e−jnkxX (A1)

Using Sommerfeld’s identity as:

e−jk0r

4πr
=

1
4π

∫ +∞

−∞

e−jβx|x|

j2βx
H

(2)
0 (kρρ) kρdkρ (A2)
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where
β2

x + k2
ρ = k2

0, ρ =
√

y2 + z2, r2 = ρ2 + x2 (A3)

after substituting (A2) in (A1) the periodic GF can be rewritten as:

Gper
1P =

1
4π

∫ +∞

−∞

+∞∑
−∞

e−jnXkx
e−jβx|x−nX|

2jβx
H

(2)
0 (kρρ) kρdkρ (A4)

The infinite integral of (A4) can be approximated with one along
the truncated path of C2 which can be replaced with C1 according to
the deformation theorem. Along this new path the geometrical series in
the integrand of (A4) becomes a convergent one which its convergence
limit is obtained from the following equations:

+∞∑
n=−∞

e−jnXkxe−jβx|x−nX| = e−jβx|x| + e−jXkxe−jβx|x−X|

+e−jβx|x| ejX(kx−βx)

1− ejX(kx−βx)
+ e−jXkxe−jβx|x−X| e−jX(kx+βx)

1− e−jX(kx+βx)
(A5)

Substituting the above equation in (A4) the following results will be
obtained:

Gper
1P =

1
4π

∫ +∞

−∞

e−jβx|x|

2jβx
H

(2)
0 (kρρ) kρdkρ

+
e−jXkx

4π

∫ +∞

−∞

e−jβx |x−X|
2jβx

H
(2)
0 (kρρ) kρdkρ

+
1
4π

∫ +∞

−∞

e−jβx|x|

2jβx

ejX(kx−βx)

1− ejX(kx−βx)
︸ ︷︷ ︸

F1(βx)

H
(2)
0 (kρρ) kρdkρ

+
e−jXkx

4π

∫ +∞

−∞

e−jβx|x|

2jβx

e−jX(kx+βx)

1− e−jX(kx+βx)
︸ ︷︷ ︸

F2(βx)

H
(2)
0 (kρρ) kρdkρ (A6)

The first two terms correspond to the two most effective sources
surrounding the unit cell. The last two terms can be simplified when
the indicated fractions are approximated with exponential terms as
below:

F1 (βx)=
∑N1

1
anebnβx , F2 (βx)=

∑N2

1
cnednβx (A7)

Substituting the above equations in (A6), the following results will
be obtained which leads to a closed-form representation for infinite
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series in (A1):

Gper
1P =

1
4π


e−jk0

√
x2+y2+z2

√
x2 + y2 + z2

+ e−jkxX e−jk0

√
(x−X)2+y2+z2

√
(x−X)2 + y2 + z2

+
N1∑

n=1

an
e−jk0

√
(|x|+jbn)2+y2+z2

√
(|x|+ jbn)2 + y2 + z2

+e−jkxX
N2∑

n=1

cn
e−jk0

√
(|x−X|+jdn)2+y2+z2

√
(|x−X|+ jdn)2 + y2 + z2


 (A8)

In the case of a super-wavelength array, i.e., X > λ, there will exist one
or more pole singularities close to the approximation path of Fig. 12.
In this case the effect of these poles should be extracted from the
approximated functions F1(βx) and F2(βx) and their effects should be
added to (A8) by applying the residue theorem [18].

APPENDIX B.

The problem of 1-D periodic array of line sources is very similar to
that of point sources except that (A1) and (A2) must be substituted
with the following equations:

Gper
1L =

+∞∑
n=−∞

e−jnXkx

4j
H

(2)
0

(
k0

√
(x− nX)2 + z2

)
(B1)

1
4j

H
(2)
0

(
k0

√
x2 + z2

)
=

1
2π

∫ +∞

−∞

e−jβx|x|

j2βx
e−jkzzdkz (B2)

where
β2

x + k2
z = k2

0 (B3)
Substituting (B2) in (B1) and taking the same procedure as

for point sources the following complex image representation will be
obtained for 1-D array of line sources:

Gper
1L =

1
4j

H
(2)
0

(
k0

√
x2 + z2

)
+

e−jXkx

4j
H

(2)
0

(
k0

√
(x−X)2 + z2

)

+
N1∑

n=1

an
1
4j

H
(2)
0

(
k0

√
(|x| − jbn)2 + z2

)

+e−jXkx

∫ N2

n=1
cn

1
4j

H
(2)
0

(
k0

√
(|x−X| − jdn)2 + z2

)
(B4)
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This completes the derivation of a closed form representation for
periodic Green’s functions of line sources.
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