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Abstract—In this paper, a numerical method for improving the
performance of the beamforming algorithm and the MUSIC algorithm
for TOA (Time-of-arrival) estimation is presented. It has been
shown that the conventional beamforming algorithm and the MUSIC
algorithm can be used for time delay estimation. Using the
beamforming algorithm and the MUSIC algorithm for TOA estimation,
the initial estimate for the TOA is obtained. To improve the accuracy
of the TOA estimation, we apply the Newton iteration to the initial
estimate. The initial estimates obtained from the beamforming
algorithm and the MUSIC algorithm are updated to obtain the final
estimates which are more accurate than the initial estimates in terms
of the RMSE (Root Mean Square Error). To find the TOA which
maximizes the beamforming spectrum or the MUSIC spectrum, we find
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the TOA at which the derivative of the beamforming spectrum with
respect to the delay is zero. To find numerically the TOA at which
the derivative of the beamforming spectrum or the MUSIC spectrum
is zero, the Newton iteration is adopted. In numerical results, the
validity of the proposed scheme is illustrated using various examples.

1. INTRODUCTION

Determination of the TOA (time-of-arrival) [1–9, 33] of a incident
signal has been of interest to the signal processing community. The
estimation of the TOA has many applications which range from
military to civilian applications. The main application of DOA and
AOA estimation is the wireless localization. There has been much
research on wireless localization [13–24].

What is the most important in the TOA estimation is how to
achieve good estimation accuracy. In this paper, we propose how to
improve the accuracy of the TOA estimation using numerical method.
The scheme is based on the Newton iteration applied to the cost
function derived from the TOA estimation. Using the initial estimate
obtained from the time delay estimation, the initial estimate is updated
iteratively using the Newton iteration. The final estimate obtained
after the iterative refinement is more accurate than the initial estimate.

In this paper, we use the conventional beamforming algorithm
and the MUSIC algorithm to get the initial estimates for the TOA.
Originally, these algorithms are usually used for estimating the DOA
(Direction-of-arrival). It has been shown in previous papers that they
can also be used for estimating the TOA as well as DOA [3, 5, 25–33].

Once the initial TOA estimates are available, it is shown in this
paper that the Newton-type nonlinear iteration [10–12] can be applied
to refine the initial TOA estimates to get more accurate final TOA
estimates.

In the viewpoint of the resolution, the MUSIC algorithm beats
the conventional beamforming algorithm. The cost for more accurate
estimate of the MUSIC algorithm over the conventional beamforming
algorithm is that the MUSIC algorithm is computationally more
intensive than the conventional beamforming algorithm. The
additional computation required for the implementation of the MUSIC
algorithm with respect to the conventional MUSIC algorithm is the
calculation of the eigenvectors of the covariance matrix.

In the numerical results, we investigated the effect of the number
of the multipath components on the performance the TOA estimation.
Although it is true that the performance degrades for large number
of the multipath components, it has been shown that the scheme still
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works when the number of TOA’s is greater than two.

2. BEAMFORMING AND MUSIC ALGORITHM FOR
TIME DELAY ESTIMATION [3]

The impulse response of the multipath channel can be written as

h (t) =
Lp∑

k=0

αkδ (t− τk) (1)

where Lp is the number of multipath, and αk and τk are the amplitude
and phase of the k-th multipath component.

Using the Fourier transform of (1), we have the frequency response

H (f) =
Lp∑

k=0

αke
−j2πfτk . (2)

Considering the additive Gaussian noise, we can rewrite (2) as

x (f) =
Lp∑

k=0

αke
−j2πfτk + W (f) (3)

where W (f) represents additive white Gaussian noise with variance
σ2

w.
Sampling the frequency response at discrete frequency at f = fl ≡

f0 + l∆f results in

x (fl)=H (fl)+w (fl) =
Lp∑

k=0

αke
−j2πflτk +w (fl) l=0, . . . , L− 1. (4)

Note that Lp is the number of multipath and that L is the number of
frequencies considered at which we compute the frequency response.

Using vector notation, (4) can be written as
x = H + w = Va + w (5)

where
H = [ H (f0) H (f1) . . . H (fL−1) ]T

w = [ w (0) w (1) . . . w (L− 1) ]T

V = [ v (τ0) v (τ1) . . . v (τL−1) ]

v (τk) =
[

1 e−j2π∆fτk . . . e−j2π(L−1)∆fτk
]T

a =
[

α′0 α′1 . . . α′
Lp−1

]T

α′k = αke
−2πf0τk

. (6)
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Exchanging the time and frequency variables in (2), we have

H (τ) =
Lp∑

k=0

αke
−j2πfkτ (7)

which is harmonic model. It has been shown that any spectral
estimation techniques for the harmonic signal analysis can also be
applied to the TOA estimation using the frequency response [3].

From the explanation in the previous paragraph, the beamforming
algorithm can also be used for the estimation of TOA [2, 3]. TOA
(Time-of-arrival) can be selected from the delay at which the following
output achieves the maximum

PBF (τ) = v(τ)TRv(τ). (8)

where τ is the time delay of an interest, R is the autocorrelation matrix
defined from (5)

R = VE
{
aaH

}
VH + σ2

wI = E
{
xxH

}
= VAVH + σ2

wI, (9)

and v(τ) is given by

v(τ) =
[

1 e−j2π∆fτ . . . e−j2π(L−1)∆fτ
]T

. (10)

That is, we evaluate (8) as a function of τ at discrete values, and
find τ at which PBF (τ) achieves the maximum:

τ̂
(0)
BF = arg

{
max

τ
[PBF (τ)]

}
= arg

{
max

τ

[
v(τ)TRv(τ)

]}

τ = τstart, τstart + ∆τ, τstart + 2∆τ, . . . τstart +
⌊

τstop − τstart

∆τ

⌋
∆τ (11)

where ∆τ is the search increment.
Similarly, using the MUSIC pseudospectrum for TOA estimation

can be written as follows:

PMU(τ) =
1

v(τ)TPwv(τ)
≡ 1

DMU(τ)
. (12)

The matrix Pw can be written as

Pw = UNUH
N

where UN is defined using the noise eigenvectors of the covariance
matrix R:

UN =
[
uLp+1, uLp+2, . . . , uL

]
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MUSIC — based TOA’s can be determined from the delay values
achieving the maximum:

τ̂
(0)
MUSIC = arg

{
max

τ
[PMUSIC(τ)]

}
= arg

{
min

τ

[
v(τ)TPwv(τ)

]}

τ = τstart, τstart + ∆τ, τstart + 2∆τ, . . . τstart +
⌊

τstop − τstart

∆τ

⌋
∆τ (13)

Note that v(τ)TPwv(τ) should be minimized over τ , rather than
maximized, because it is in the denominator of PMUSIC (τ).

In implementation of beamforming-based TOA, the TOA estimate
is determined from the peak value of (8) not at continuous delays
but at discrete delays. Therefore, the estimate is inevitably restricted
to one of discrete delays at which we compute (8). Of course, this
problem can be mitigated by decreasing the increment between the
discrete delays, which results in the increase of the computational cost
of the beamforming algorithm since the beamforming output should
be computed at more discrete delays. This is due to the fact that,
given the delay range of interest, decreasing the increment between the
discrete delays implies the increase of the number of discrete delays.

3. PROPOSED ALGORITHM

3.1. Beamforming Algorithm

Using (10) in (8), after some manipulation, we have

PBF (τ) =
L∑

m=1

L∑

n=1

ej(m−n)2π∆fτ ·Rnm (14)

where Rnm denotes the n-th row and m-th column of the matrix R.
Although, in the derivation of the scheme, for simplicity, we

assume that the number of TOA parameters to be estimated, Lp, is
one, it can be also applied to the case of Lp ≥ 2, which is verified in
the numerical results where we try to estimate two parameters of τ1

and τ2.
The initial estimate of the TOA, τ̂

(0)
BF , can be found from (11).

To further refine the initial estimate, we have to find the delay which
maximizes (14), which is equivalent to finding the delay at which the
derivative of (14) is zero.

Differentiation of (14) with respect to τ is easily obtained as
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follows:

fBF (τ) ≡ P ′
BF (τ) =

PBF (τ)
dτ

=
d

dτ

L∑

m=1

L∑

n=1

ej(m−n)2π∆fτRnm

=
L∑

m=1

L∑

n=1

j(m− n)2π∆f · ej(m−n)2π∆fτRnm. (15)

Since (15) is the derivative of (14), to find the delay which
maximizes (14), we have to find the solution of

fBF (τ) =
L∑

m=1

L∑

n=1

j(m− n)2π∆f · ej(m−n)2π∆fτRnm = 0. (16)

Since the maximum of (14) is obtained from the solution of (16),
the initial guess of the solution of (16) is the initial TOA estimate
of (14). As previously stated, since the initial TOA estimate is obtained
from (11), the initial guess of the solution of (16) is also calculated
from (11).

Our concern is, given the initial estimate, τ̂
(0)
BF , how to find

the solution of (16) numerically. The final estimate, τ̂
(final)
BF , can be

obtained from the iterative update. To find the solution of (16) using
the Newton iteration, we have to find the derivative of fBF (τ) with
respect to τ .

The derivative of (7) is easily obtained to be

f ′BF (τ) =
L∑

m=1

L∑

n=1

(j(m− n)2π∆f)2 · ej(m−n)2π∆fτ ·Rnm (17)

Using (15) and (17), the following iteration is repeated until the
update of the estimate is less than the specified tolerance. That
is, when the update of the estimate,

∣∣∣τ̂ (i+1)
BF − τ̂

(i)
BF

∣∣∣, is less than the
specified tolerance, the estimate is considered to be convergent.

τ̂
(i+1)
BF = τ̂

(i)
BF −

f(τ̂ (i)
BF )

f ′(τ̂ (i)
BF )

= τ̂
(i)
BF−

L∑
m=1

L∑
n=1

j(m−n)2π∆f · ej(m−n)2π∆fτ̂
(i)
BF Rnm

L∑
m=1

L∑
n=1

(j(m−n)2π∆f)2 ·ej(m−n)2π∆fτ̂
(i)
BF ·Rnm

i=0, 1, . . .(18)



Progress In Electromagnetics Research, Vol. 116, 2011 481

where the initial estimate τ̂
(0)
BF used for the first iteration is obtained

from (4), and τ̂
(i)
BF represents the TOA estimate for the i-th iteration.

The estimate obtained from the last iteration is designated as the final
estimate τ̂

(final)
BF .

3.2. MUSIC Algorithm

Using (10) in (12), after some manipulation, we have

PMU(τ) =
1

L∑
m=1

L∑
n=1

ej(m−n)2π∆fτ ·Pw nm

≡ 1
DMU(τ)

. (19)

Following the way how we refine the initial estimate which has
been obtained using the beamforming algorithm, we can easily find how
we can refine the initial estimate obtained from the MUSIC algorithm.

We have to find the delay which maximizes PMU(τ), which is
equivalent to finding the delay where DMU(τ) can be minimized.

The delay minimizing DMU(τ) can also be found from the values
where the derivative of DMU(τ) is zero.

Differentiation of DMU(τ) with respect to τ is easily obtained as
follows:

fMU(τ) ≡ D′
MU(τ) =

DMU(τ)
dτ

=
d

dτ

L∑

m=1

L∑

n=1

ej(m−n)2π∆fτPw nm

=
L∑

m=1

L∑

n=1

j(m− n)2π∆f · ej(m−n)2π∆fτPw nm (20)

We have to find the solution of

fMU(τ) =
L∑

m=1

L∑

n=1

j(m− n)2π∆f · ej(m−n)2π∆fτPw nm = 0. (21)

Our concern is, given the initial estimate, τ̂
(0)
MU, how to find the

solution of (21) numerically. To find the final estimate, τ̂
(final)
MU , we have

to find the derivative of fMU (τ) with respect to τ .
The derivative of (21) can be written as

f ′MU(τ) =
L∑

m=1

L∑

n=1

(j(m− n)2π∆f)2 · ej(m−n)2π∆fτ ·Pw nm (22)
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Figure 1. Initial and final estimates of the first delay obtained
from the beamforming algorithm for two TOA’s ([τ̂ (true)

1 τ̂
(true)
2 ] =

[31 ns 151 ns], ∆τ = 9 ns).

Using (20) and (22), the following iteration is repeated until
convergence is achieved

τ̂
(i+1)
MU = τ̂

(i)
MU −

f
(
τ̂

(i)
MU

)

f ′
(
τ̂

(i)
MU

) =

τ̂
(i)
MU−

L∑
m=1

L∑
n=1

j(m− n)2π∆f · ej(m−n)2π∆fτ̂
(i)
MUPw nm

L∑
m=1

L∑
n=1

(j(m−n)2π∆f)2 ·ej(m−n)2π∆fτ̂
(i)
MU ·Pw nm

i=0, 1, . . . (23)
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Figure 2. Initial and final estimates of the second de-
lay obtained from the beamforming algorithm for two TOA’s
([τ̂ (true)

1 τ̂
(true)
2 ] = [31 ns 151 ns], ∆τ = 9 ns).

4. NUMERICAL RESULTS

The discrete data are obtained from sampling the frequency response
at equally spaced frequencies. The center frequency is f0 = 109 Hz,
and the bandwidth is given by 20 × 106 Hz. The frequency step for
sampling frequency response is ∆f = 106 Hz. Thus, the frequencies
considered are given by

fl =
(
109 − 10× 106

)
+ 106 × l l = 0, . . . , 20. (24)

The frequency responses are generated using (5) and L is given by
L = 21.

In this section, the numerical results are provided to validate the
proposed scheme. In Figs. 1–14, it is assumed that we want to estimate
two delay parameters of τ1 and τ2, which indicates Lp = 2 in (1). The
amplitudes of the first multipath and that of the second multipath are
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Figure 3. Initial estimates of the first delay obtained from the
beamforming algorithm for two TOA’s.
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beamforming algorithm for two TOA’s.
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beamforming algorithm for two TOA’s.
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(a) 1 ns∆τ = (b) 2 ns∆τ=
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(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 7. Initial estimates of the first delay obtained from the MUSIC
algorithm for two TOA’s.

(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 8. Final estimates of the first delay obtained from the MUSIC
algorithm for two TOA’s.
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 9. Initial estimates of the second delay obtained from the
MUSIC algorithm for two TOA’s.

chosen to be 1 and 0.8, respectively. In Figs. 15–18, Lp can be Lp = 2
or Lp = 10, and in Figs. 19–30, Lp is equal to three.

The Root-Mean-Square Error (RMSE) is used as a criterion for
the estimate accuracy. RMSE is calculated from Ntials repetitions as
follows:

RMSE
(
τ̂

(0)
i

)
≡

√√√√√
Ntrials∑
j=1

∣∣∣τ̂ (0)
i,j − τ

(true)
i

∣∣∣
2

Ntrials
i = 1, 2, . . . , Lp

RMSE
(
τ̂

(final)
i

)
≡

√√√√√
Ntrials∑
j=1

∣∣∣τ̂ (final)
i,j − τ

(true)
i

∣∣∣
2

Ntrials
i = 1, 2, . . . , Lp

. (25)
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 10. Final estimates of the second delay obtained from the
MUSIC algorithm for two TOA’s.

where subscript j denotes the j-th estimate out of Ntrials = 1000
repetitions, and Lp is the number of the TOA’s to be estimated.

Figures 1–2 show the RMSE’s of τ̂
(0)
1 , τ̂

(final)
1 , τ̂

(0)
2 and τ̂

(final)
2

for search increment of ∆τ = 9ns. The true time delays are given
by τ̂

(true)
1 = 31ns and τ̂

(true)
2 = 151 ns. While RMSE’s of τ̂

(0)
1

are approximately 4 × 10−9, RMSE of τ̂
(final)
0 decreases significantly

compared with that of τ̂
(0)
1 . Therefore, RMSE of τ̂

(final)
1 is much less

than that of τ̂
(0)
1 , which validates the proposed scheme. The same is

true for τ̂
(0)
2 and τ̂

(final)
2 , which is evident from Fig. 2.

In Figs. 3–6, the parameters for the simulations are the separation
between true time delays,

∣∣∣τ (true)
1 − τ

(true)
2

∣∣∣ and the search increment of
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 11. Initial estimates of the first delay for two TOA’s.

the discrete time delays, ∆τ , at which we compute the beamforming
output The effects of the search increment, ∆τ , is illustrated. ∆τ
values for (a), (b), (c), and (d) are ∆τ = 1ns, ∆τ = 2 ns, ∆τ = 4 ns
and ∆τ = 9 ns, respectively.

Increasing ∆τ results in the reduction in the computational cost
of the beamforming algorithm since the beamforming output should
be computed at more discrete time delays. This is due to the fact
that, given the time delay range of interest, increasing the increment
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 12. Final estimates of the first delay for two TOA’s.

between the discrete time delays implies the decrease in the number of
discrete time delays at which we have to evaluate the cost function.

The true time delays are as follows:[
τ̂

(true)
1 τ̂

(true)
2

]
= [31 ns 61 ns ], [ 31 ns 91 ns ], [ 31 ns 121 ns ],

[ 31 ns 151 ns ], [ 31 ns 181 ns ].

Therefore,
∣∣∣τ (true)

1 − τ
(true)
2

∣∣∣ values are 30 ns, 60 ns, 90 ns, 120 ns,
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 13. Initial estimates of the second delay for two TOA’s.

and 150 ns, respectively. As shown in Figs. 3–6, the RMSE usually
decreases as

∣∣∣τ (true)
1 − τ

(true)
2

∣∣∣ increases.

Figures 3, 4, 5 and 6 show the RMSE’s of τ̂
(0)
1 , τ̂

(final)
1 , τ̂

(0)
2 and

τ̂
(final)
2 , respectively. In Figs. 3 and 5, we have shown the results

when the Newton iteration is not applied. That is, the results of
the beamforming algorithm are displayed. On the other hand, in
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 14. Final estimates of the second delay for two TOA’s.

Figs. 4 and 6, the results are shown when the Newton iteration is
applied to the initial estimates of the beamforming algorithm. Figs. 3–
6 indicate that the proposed scheme can be applied for various values
of

∣∣∣τ (true)
1 − τ

(true)
2

∣∣∣ and various values of search increment, ∆τ .
Comparing Fig. 3 and Fig. 4, it is confirmed that the estimation

accuracy of the first TOA is improved using the Newton iteration.
Similarly, from Fig. 5 and Fig. 6, we can see that the Newton method
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 15. Initial estimates of the first delay obtained from the
MUSIC algorithm using (19) for two TOA’s and ten TOA’s.

results in the accuracy improvement of the estimate of the second TOA.
Note that, in Fig. 3(a), the line corresponding to [τ̂ (true)

1 τ̂
(true)
2 ]

= [31 ns 61 ns] is not shown for all SNR’s and the reason is as follows:
Two incident angles are too close to each other to be resolved in the
beamforming algorithm. What happens in that case is that we can
get only one initial estimate, which usually is located between two
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 16. Initial estimates of the second delay obtained from the
MUSIC algorithm using (19) for two TOA’s and ten TOA’s.

true TOA’s. Thus, we do not calculate the RMSE’s in the case that
only one initial estimate is found. That is why there is no result for
[τ̂ (true)

1 τ̂
(true)
2 ] = [31 ns 61 ns].

On the other hand, in Fig. 7(a), if we use the MUSIC algorithm,
the two TOA’s can be resolved [τ̂ (true)

1 τ̂
(true)
2 ] = [31 ns 61 ns].

Another thing we have to notice in Fig. 3(a) is that there is
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 17. Final estimates of the first delay obtained from the MUSIC
algorithm using (23) for two TOA’s and ten TOA’s.

no result for [τ̂ (true)
1 τ̂

(true)
2 ] = [31 ns 151 ns] and SNR = 18, 20 dB.

Similarly, there is no result for [τ̂ (true)
1 τ̂

(true)
2 ] = [31 ns 181 ns] and

SNR = 16, 18, 20 dB. You can easily understand these phenomena
from the fact that the search increment for Fig. 3(a) is 1 ns. When the
initial estimate obtained from the beamforming algorithm is exactly
equal to the true estimate, the RMSE is identically zero. Since the
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 18. Final estimates of the second delay obtained from the
MUSIC algorithm using (23) for two TOA’s and ten TOA’s.

y-axis of the graph is of logarithmic scale, zero cannot be shown in
the figure. The same is true for

[
τ̂

(true)
1 τ̂

(true)
2

]
= [31 ns 181 ns] and

SNR = 20dB in Fig. 5(a) which shows the results for the second delay.
In Figs. 7–10, we show that our scheme can also be applied to

the MUSIC algorithm. It is clearly shown that using initial estimates
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 19. Initial estimates of the first delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

from the MUSIC algorithm, we can get more accurate final estimates
by applying the scheme proposed in this paper.

In Figs. 11–14, we compare the initial estimates obtained from
the beamforming algorithm with those obtained from the MUSIC
algorithm. ‘BF’ and ‘MU’ denote the beamforming algorithm and the
MUSIC algorithm, respectively. We will summarize a few observations
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 20. Final estimates of the first delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

in Figs. 11–14.
First, note that it is not always true that the MUSIC algorithm

outperforms the beamforming algorithm. The superiority of the
MUSIC algorithm to the beamforming algorithm is quite obvious when
two true TOA’s are close to each other. At low SNR’s, it may be true
that the beamforming algorithm is better than the MUSIC algorithm,
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(a) 1 ns∆τ = (b) 2 ns∆τ =

(c) 4 ns∆τ = (d) 9 ns∆τ =

Figure 21. Initial estimates of the second delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

which can be shown in Fig. This phenomenon can be explained from
the fact that, in MUSIC algorithm, we have to calculate the noise
eigenvector of the noisy covariance matrix which is essentially very
ill-conditioned operation.

It is easily observed that, at high SNR’s, the Newton iteration
proposed in this paper is capable of greatly improving the accuracy
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 22. Final estimates of the second delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

of the initial estimates both for the beamforming algorithm and the
MUSIC algorithm.

In Figs. 15–18, we have considered the case that the number of
TOA’s is greater than two. We compared the RMS errors when the
number of the TOA’s is two and ten. We used the MUSIC algorithm.

The solid lines correspond to the case in which we estimate the
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 23. Initial estimates of the third delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

first two dominant TOA’s when there are actually ten TOA’s. The
dashed lines correspond to the case in which there are only two TOA’s
and we want to estimate these two TOA’s.

In Figs. 15–18, we can see that the performance degrades a little
when the number of TOA’s is ten in comparison with the case that
there are only two TOA’s. Although there is some degradation in
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 24. Final estimates of the third delay obtained from the
beamforming algorithm and the MUSIC algorithm when there are
three TOA’s.

performance, it is easy to see that the proposed scheme still works
when there are ten TOA’s.

We considered the case that there are three TOA’s. From Figs. 19–
24, we compared the performance of the beamforming algorithm with
that of the MUSIC algorithm. When the separation among the
TOA’s is small, the MUSIC algorithm outperforms the beamforming
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(a) 2 ns∆τ= (b) 4 ns∆τ =

(c) 9 ns∆τ=

Figure 25. Initial estimates and final estimates of the first delay
obtained from the MUSIC algorithm when there are three TOA’s.

(a) 2 ns∆τ= (b) 4 ns∆τ =
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(c) 9 ns∆τ=

Figure 26. Initial estimates and final estimates of the second delay
obtained from the MUSIC algorithm when there are three TOA’s.

(a) 2 ns∆τ= (b) 4 ns∆τ =

(c) 9 ns∆τ=

Figure 27. Initial estimates and final estimates of the third delay
obtained from the MUSIC algorithm when there are three TOA’s.
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 28. Initial estimates of the first delay obtained from the
MUSIC algorithm and final estimates of the first delay obtained from
the beamforming algorithm when there are three TOA’s.

algorithm due to the superresolution property of the MUSIC algorithm.
On the other hand, when the separation among TOA’s is large,
the beamforming algorithm outperforms the MUSIC algorithm. In
the legend, ‘BF’ and ‘MU’ represent the results of the beamforming
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 29. Initial estimates of the second delay obtained from the
MUSIC algorithm and final estimates of the second delay obtained
from the beamforming algorithm when there are three TOA’s.

algorithm and the MUSIC algorithm, respectively.
In Figs. 25–27, we compared the accuracy of the initial estimates

and the final estimates when there are three TOA’s. In the legend,
‘MU’ and ‘MU+NT’ correspond to the initial estimate of the MUSIC
algorithm and the final estimate of the MUSIC algorithm, respectively.
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 30. Initial estimates of the third delay obtained from the
MUSIC algorithm and final estimates of the third delay obtained from
the beamforming algorithm when there are three TOA’s.

In Figs. 28–30, we compared the accuracy of the initial estimate
of the MUSIC algorithm with that of the final estimate of the
beamforming algorithm. In most cases, we can see that the final
estimate of the beamforming algorithm is more accurate than the initial
estimate of the MUSIC algorithm. In the legend, ‘MU’ and ‘BF+NT’
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 31. Distribution of eigenvalues for [τ̂ (true)
1 τ̂

(true)
2 ] =

[31 ns 91 ns].

(a) 1 ns∆τ = (b) 2 ns∆τ=
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(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 32. Distribution of eigenvalues for [τ̂ (true)
1 τ̂

(true)
2 ] =

[31 ns 121 ns].

(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 33. Distribution of eigenvalues for [τ̂ (true)
1 τ̂

(true)
2 ] =

[31 ns 151 ns].
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(a) 1 ns∆τ = (b) 2 ns∆τ=

(c) 4 ns∆τ = (d) 9 ns∆τ=

Figure 34. Distribution of eigenvalues for [τ̂ (true)
1 τ̂

(true)
2 ] =

[31 ns 181 ns].

correspond to the initial estimate of the MUSIC algorithm and the
final estimate of the beamforming algorithm, respectively.

In the case that the number of parameters is not known a priori,
we can estimate the number of parameters from the effective rank of
the covariance matrix in (9).

In Figs. 31–34, we have shown the distribution of the eigenvalues
to see whether it’s possible to estimate the effective number of the
parameters from the distribution of the eigenvalues. The average values
of 100 repetitions are shown. When SNR is higher than or equal to
SNR = 2dB, it is quite easy to recognize that the number of TOA’s
to be estimated is two from the distribution of the eigenvalues. Note
that the number of TOA parameters to be estimated is equal to the
effective rank of the covariance matrix.
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5. CONCLUSION

In this paper, we propose that the Newton iteration can be applied to
the TOA estimation to improve the accuracy of the initial estimate for
the beamforming algorithm and the MUSIC algorithm. We apply the
Newton iteration to the initial estimate obtained from the beamforming
algorithm and the MUSIC algorithm to obtain the final estimate which
is more accurate than the initial estimate. We have demonstrated the
performance improvement using the various numerical results. Besides
the beamforming algorithms and the MUSIC algorithm, it is quite
straightforward to get the suggested scheme applied to the any other
TOA estimation algorithms.
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