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Abstract—This work presents a two-dimensional (2D) subgrid
technique for the geodesic finite different time-domain (FDTD)
algorithm, which is applied to solve global extremely low frequency
(ELF) electromagnetic (EM) wave propagation problems in the Earth-
ionosphere system. The new technology provides arbitrarily locale
resolution to study finer structure without disturb the global grid
structure. Combined with the subgrid technique, the new geodesic
FDTD algorithm can solve EM propagation problems in specific locale
regions without extra computational burden. Based on the original
geodesic FDTD formulations, the 2D subgrid technique is developed,
and its computational stable relation is derived and analyzed. Then,
possible three-dimensional (3D) subgrid structure is proposed. Finally,
potential applications for the subgrid technique are suggested.

1. INTRODUCTION

Propagation of extremely low frequency EM waves in the Earth-
ionosphere is an interesting and important investigation area in the
last few decades, and it has applied in many fields related to the Earth
science and other fields. As reported in [1], “Currently, propagation
phenomena below 300 kHz form the physics basis of remote-sensing
investigations of lightning and sprites, global temperature change,
subsurface structures, submarine communications, and potential
Earthquake precursors”.

Solutions to the ELF EM wave propagation problems has been
focused on analytical formulations [2]. Recently, using the time domain
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algorithm to simulate the wave propagation in the Earth-ionosphere
system is becoming a hot topic [1, 3–6]. The review by Simpson [1] has
provided a brief introduction to the relative works in this field.

In 2004, Simpson and Taflove proposed a novel 2D geodesic FDTD
grid model [7], in which the grid was comprised entirely of hexagonal
cells except for 12 pentagonal cells needed for grid completion. After
that, they also extended this 2D grid into a fully 3-D space lattice [8, 9].
This geodesic FDTD method is superior to the previous widely-used
latitude-longitude FDTD method [5, 6, 10–12] because it has provided
much more numerically isotropic wave propagation, and completely
has avoided grid-cell convergences at the Earth’s poles [1].

Both the latitude-longitude and geodesic FDTD algorithms of the
Earth-ionosphere system focus on solving global ELF EM propagation
problems. However in most applications, the EM fields in specific
local regions are more preferable than those in other regions. To
achieve this goal, higher resolution is required in specific local regions
when modeling the Earth-ionosphere system. It is obvious that if the
regions located outside interested areas are simulated using the same
high resolution then unnecessary expenditure of computer resources
are increased. In order to solve this problem, it is considered only
to model the locale region in the Earth-ionosphere system using the
traditional FDTD algorithm [3, 4]. However, solving EM problems
in this way will lose global influence on locale regions, thus giving
inaccurate solutions. In fact, this method can only deal EM problems
with spectrum higher than ELF, because the global influence on locale
regions can be ignored for EM wave with spectrum higher than ELF
due to the fast attenuation rate [13, 14]. In fact, the direct way to study
locale ELF propagation problems coupled with global influence is to
only increase the resolution of the interested areas. Several techniques
applied in other algorithms have the potential possibilities to solve
this problem [12, 15, 16]. The subgrid techniques introduced in [15] is
the general approach for these problems, and it focused only on the
Cartesian subgrids. From 2002, Simpson and Taflove [7, 12] proposed a
technique to reduce the eccentricity of the cells in the polar regions by
merging adjacent grid-cells in the East-West direction. This technology
has been pointed out the possibility to divide grid-cell into subgrids in
the spherical FDTD model. In [16], a local high-resolution technique
was proposed based on a different technique, but it was only effective
for the latitude-longitude FDTD algorithm and with many limitations.

In this paper, we report a subgrid technology in the geodesic
FDTD algorithm for the purpose of increasing local resolution when
simulating Earth-ionosphere system. In this new algorithm, specific
triangular grid cell of the geodesic FDTD model is divided into four
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smaller triangular grid cells in order to achieve higher resolution. Based
on this algorithm, the local EM field can be obtained with higher
accuracy and lower computational cost. The rest of the paper is
organized as follows. In Section 2, the basic idea of the geodesic FDTD
algorithm is briefly reviewed. Then, we introduced the details of the
subgridding method in Section 3. An example of using the subgridding
method in the geodesic is described in Section 4. After that, several
potential applications for the subgrid technique are proposed. Finally,
we conclude our work.

2. THE GEODESIC FDTD ALGORITHM

The geodesic FDTD grid method is initially proposed by Simpson and
Taflove [7, 8] to simulate the ELF EM wave propagation problems in
the Earth-ionosphere system. Our previous works have verified the
efficiency of this algorithm in solving the global EM problems [14, 17].
The basic idea of this FDTD grid technique is to model the entire
Earth-ionosphere system using the alternating planes of the transverse-
magnetic (TM) and the transverse-electric (TE) field components,
which are comprised of triangular grid-cells or hexagonal grid-cells
(including 12 pentagonal grid-cells), separately. Figure 1 presents a
typical geodesic grid model, in which the triangular grid cells and
the hexagon grid cells are illustrated using different lifestyles. Note
that the radial projections of the vertexes of the hexagonal grid-cells
(or pentagonal grid-cells) on the triangular combined plane are the
circumcenters of the triangular grid cells. Based on this model, the

Figure 1. The 3D geodesic FDTD model.
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integral form of Ampere’s Law and Faraday’s Law are applied to
develop the FDTD time-stepping relations:∮

C
E · dl = −

∫

S

∂B
∂t

· ds,
∮

C
H · dl =

∫

S

∂D
∂t

· ds (1)

Figure 2. The 2D triangular grid-cell and 3D field distributions of
the geodesic FDTD algorithm.

Figure 2 is plotted to show the details of a triangular FDTD grid-
cell. In the figure, i and j stand for the directions in the tangential
(horizontal) plane; k is the radial (vertical) direction. Update equation,
for the up grid-cell is as the follow, only Er component,

Ern+1(k, i, j, 1) = Ern(k, i, j, 1) +
∆t

ε∆S(k, i, j, 1)
×{Htn+0.5(k, i, j, 1)×∆l1(k, i, j, 1)−Htn+0.5(k, i, j, 0)×∆l2(k, i, j, 1)
−Htn+0.5(k, i− 1, j, 2)×∆l0(k, i, j, 1)} (2)

where ∆t, ∆lx and ∆S are the time-step, the x th wall length of the
triangular grid-cell and the area of the cell, respectively.

The 2D FDTD time-stepping algorithm is completed by specifying
the update equations for the magnetic field. For example, referring to
the tangential magnetic field quantities Ht in the up triangular grid
cells shown in Figure 3, we have

Htn+1.5(k, i− 1, j, 2) = Htn+0.5(k, i− 1, j, 2) +
∆t

µδt(k, i− 1, j, 2)
×{Ern+1(k, i−1, j, 0)−Ern+1(k, i, j, 1)} (3)

Htn+1.5(k, i, j, 1) = Htn+0.5(k, i, j, 1) +
∆t

µδt(k, i, j, 1)
×{Ern+1(k, i, j, 1)−Ern+1(k, i, j, 0)} (4)
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Htn+1.5(k, i, j, 0) = Htn+0.5(k, i, j, 0) +
∆t

µδt(k, i, j, 0)
×{Ern+1(k, i, j + 1, 0)−Ern+1(k, i, j, 1)} (5)

where δ is the distance between adjacent Er ’s at Ht.
For field components Et and Hr, the updated equations are

similarly,

Hrn+1.5 = Hrn+0.5 +
∆t

µ∆Shexagon
×

∑
(Etn+1 × δt) (6)

Etn+1 = Etn +
∆t

ε∆l
×

∑
Hrn+0.5 +

∆t

εδr
×

∑
Htn+0.5 (7)

where δt is the distance between adjacent Et ’s at Ht (radial direction).
It is noted that in 3D update equations, when updating Ht, the radial
field quantity Et is added into the update equations.

3. THE 2D SUBGRID TECHNOLOGY

Figure 3 is illustrated the geometry of the subgrid technology for the
TM planes in the Earth-ionosphere model. The main idea of this
algorithm is to divide the triangular grid-cell into four smaller grid-
cells in order to increase the resolution of specific regions in the global
model and so on. In Figure 3, the triangular grid in the TM plane is
divided into 4 smaller subgrids, the division is completed by connecting
the middle points of the triangular grid-cells edges. In the figure, the
E and H denote fields in the primary grid, and e and h denote fields
in the subgrid.

According to the subgrid geometry structure shown in Figure 3,
the field quantities in the subgrid cells (er, ht) have to be calculated
to complete the FDTD algorithm, also a special treatment is needed
for border field quantities of the subgrid cells.

First, referring to the subgrid cells in Figure 3, we have

ern+1 = ern +
∆t

ε∆Ssub
×

∑
(htn+0.5 ×∆lsub) (8)

where ∆t, ∆Ssub and ∆lsub are the time-step, the area and the wall
length of the subgrid cell centered around er, respectively.

The update equations for the border field quantities Er are

Ern+1 =Ern +
∆t

ε∆Snorm
×

{∑
(Htn+0.5 ×∆lnorm) +

∑
(htn+0.5 ×∆lsub)

} (9)
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Figure 3. Subgrid technologies
for triangular grid-cell, the orig-
inal triangle in the middle is di-
vided into four smaller sub trian-
gles.

Figure 4. The possible subgrid
technique for hexagonal grid-cell,
virtual field quantities (Etv) are
added to form completely FDTD
algorithm.

where ∆Snorm and ∆lnorm are the area and the wall length of
the normal cell centered around Er, respectively. Other the radial
electric field quantities can be updated using normal geodesic FDTD
algorithm.

For the tangential magnetic field ht inside grid-cell that is
subgridded, we have

htn+1.5 = htn+0.5 +
∆t

µδt,sub
×

∑
ern+1 (10)

where δt,sub is the distance between adjacent er ’s at ht, and δr is the
distance between adjacent TE planes.

To calculate the ht field quantities in the edge of the subgrid cells,
we assume that the field quantities inside the normal grid-cells are
distributed evenly, and obtain the approximation update equation

htn+1.5 ≈ htn+0.5 +
∆t

µδt,sub
× (

ern+1 ±Ern+1
border

)
(11)

where Ern+1
border stands for the average field quantity in the normal grid-

cell in the subgrid border.
Note that the stable relation is decided by the smallest grid-

cell distance in the geodesic model. Here we consider the smallest
triangular grid-cell (subgrid cell) is regular triangles, and use the
approximate stable relation

C∆t ≤
√

3
2

∆lsub,min (12)
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where C is the light speed, ∆lsub,min is the minimum wall length of
the subgrid cells.

To complete the 3D subgrid technology of the geodesic FDTD
algorithm, the corresponding grid-cell divisions have to be made for
the hexagon grid-cells in the TE plane. Possible subgrid cell structure
is illustrated in Figure 4. In the figure, the virtual field quantities (Etv)
are needed for information transfer between the normal grid-cell and
the subgrid cell. The update equations for the 3D subgrid technique
are to be developed in further work.

4. VALIDATIONS

In order to validate the subgrid technique for the geodesic FDTD
algorithm, a Gaussian pulse is excited at the equator, and monitored
in the antipode. Figure 5 presents the simulation results of wave
propagation in the Earth’s sphere (dt = 3.0 × 10−5 s). To obtain
the results in the figure, three different simulation conditions are
introduced: A) order 6th geodesic FDTD algorithm (top result), B)
order 5th geodesic FDTD algorithm with subgrid technique (middle
result), C) order 5th geodesic FDTD algorithm (bottom result). The
results are similar to each other (sources are the same)and indicate a
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Figure 5. ELF wave propagation validation. A source is placed
in a normal grid-cell and observed in the antipode of the sphere
under different simualtion conditions. Top: simulating using order 6
normal geodesic algorithm; middle: simulating using 5th order geodesic
algorithm and subgrid technique; bottom: simulating using 5th order
geodesic algorithm.
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Figure 6. Propagation wave-
forms on the earth’s surface at
timestep 2500 (0.075s). Subgrid
fields is near the center of the fig-
ure.

Figure 7. Propagation wave-
forms on the earth’s surface at
time steps 1600 (0.048 s). 18 nor-
mal grid-cells are subgridded.

propagation period of about 0.134 s (correspond to the period of EM
waves travel around the Earth’s sphere at light speed), which proves
the correctness of our subgrid technique. Note that in the figure, the
top and middle results are the average EM field in an area of about
6220 km2 (order 6), however the bottom result is only the average
EM field in an area of about 24900 km2 (order 5). It clearly shows
that the introduce of subgrid technique can results in the resolution
of 6th order while using the 5th order geodesic FDTD algorithm.
Figure 6 illustrates the wave propagation on the Earth’s surface at
timestep 2500 (0.075 s), which also proves the correctness of the subgrid
technique.

Here we list a table to describe the simulation condition and
computational cost of the above experiments, thus to prove the
advantage of using the subgrid technique. From the table it is clear
shown that to obtain the results with the same resolution, it saves
much computational time and computer memory using the subgrid
technique.

Another simulation example is given here to further prove the
performance of the subgrid technique. In this experiment, four
simulation conditions are considered: A) 4th order simulation; B) 5th
order simulation; C) 4th order simulation with 1 subgrid; D) 4th order
simulation with 18 subgrids. The subgrid simulation results at 1600
time steps (0.048 s) are mapped on to the sphere surface (case D) in
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Table 1. Comparison of different simulation condition.

Conditions A (Top results) B (Middle results) C (Bottom results)

Grid-cell no. 81920 20480 20480

Resultion 125 km 125 km 250 km

Memory applied 300MB 95MB 80MB

Timesteps 100000 100000 100000

Simulation time 40min 12min 12min
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Figure 8. Comparison of numerical errors at different conditions:
A) 4th order simulation; B) 4th order simulation with 1 subgrid
(observation grid); C) 4th order simulation with 18 subgrids (including
observation grid). The numerical errors are obtained by comparing
these results to the 5th order simulation result.

Figure 7, which shows that the subgrids technique adapts well with the
geodesic FDTD algorithm. Figure 8 compares the frequency domain
numerical errors (taking case B as the reference as it is simulated using
the highest resolution of the four, thus gives the most accurate results).
In this figure, it is clearly seen that below 20 Hz, the numerical errors
are similar to each other; in 20–60 Hz, the subgrid results give less
numerical errors, thus provide more accurate results. Also the more
the normal grid cells are subgridded, the more accurate the results can
be obtained.
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5. POTENTIAL APPLICATIONS OF THE SUBGRID
TECHNIQUE

Figures 9 and 10 are illustrated potential applications of the subgrid
technique, and Figure 9 is described a long distance system to study
wave propagation between the transmitter and the receiver. In order
to obtain rigorous simulation results, for positions of the transmitter
and the receivers the grid-cells require resolution as high as possible.
In real applications, the anomalous phenomena of VLF propagation in
earthquake regions have been observed many times, previous studied
only focused on model locale regions using traditional FDTD that do
not include global EM noises and global EM wave propagations, and
the geodesic FDTD algorithm can consider these global influence but
with much unnecessary computational consume. The model structure
proposed in Figure 6 can overcome the disadvantage of the geodesic
FDTD algorithm, thus provides efficient solutions to the locale VLF
study.

Figure 9. Example of subgrid
application. Several normal grid-
cells are subgridded.

Figure 10. Example of subgrid
application. Subgrid technique is
used several times to achieve high
resolution in a small area.

A high order subgrid technique is described in Figure 10. To
study locale effect of global EM activities such as lightning, because
the interested place is limited to a small area (sometime the area has
radius of only several kilometer), and the use of subgrid technique can
not provide enough resolution, thus high order subgrid technique is to
be applied. In this technique, the subgrid cell can be divided again into
smaller ones, namely the 2rd order subgrid cell. In order to achieve
interested resolution, this procedure can be repeated again.
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6. CONCLUSIONS AND ONGOING WORK

In this work, we have proposed a subgrid technique for the geodesic
FDTD algorithm, which is applied to solve ELF EM wave propagation
problems in the Earth-ionosphere system. Coupled with the subgrid
technique, the global FDTD algorithm can solve EM problems in
specific locale regions without unnecessary computational burden.
However, the subgridding procedure will also require special treatment
of border fields and complex subgrid model constructions. It is also
noted that using the subgrid technology makes the stable relation
of the whole geodesic FDTD algorithm stricter. At present, we are
extending this work into fully 3D subgrid technique for the geodesic
FDTD algorithm. This will permit real EM propagation study in locale
regions of the Earth-ionosphere system.
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