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Abstract—The presence of desired signal in the training data for
sample covariance matrix calculation is known to lead to a substantial
performance degradation, especially when the desired signal is the
dominant signal in the training data. Together with the uncertainty
in the look direction, most of the adaptive beamforming solutions are
unable to approach the optimal performance. In this paper, we propose
an evolutionary algorithm (EA) based robust adaptive beamforming
that is able to achieve near optimal performance. The essence of the
idea is to shape the array beam response such that it has maximum
response in the desired signal’s angular range and minimum response in
the interferences’ angular range. In addition, the approach introduces
null-response constraints deduced from the array observation to achieve
better interference cancelation performance. As a whole, the proposed
optimization is solvable using an improved variant of the differential
evolution (DE) algorithm. Numerical simulations are also presented to
demonstrate the efficacy of the proposed algorithm.

1. INTRODUCTION

Traditional adaptive beamforming techniques work effectively only
under the assumption that precise knowledge of the desired signal
steering vector is known [1–3]. Any violation or mismatch between the
assumed (nominal) and the actual knowledge will cause a substantial
degradation in their performance [4]. Several approaches to improve
their robustness were proposed over the past decade [5–7]. However,
many of the proposed methods are limited to certain type of
mismatches.

These mismatches are the look-direction, gain-phase, array
geometry as well as other mismatches due to incorrect assumption of
the signal model, e.g., point-source or scattered-source (either coherent
or incoherent scattering) signal model. Besides these mismatches, the
performance of the beamformers is also known to degrade when the
number of snapshots is small or any other effects introduced by the
propagation environment.

In [4, 8], an approach based on loading of the diagonal of the
sample array covariance matrix is proposed to improve the robustness
against more general mismatches. While having the advantage of being
invariant to the type of mismatches, the choice of the optimal loading
factor is not obvious.

Recently, the authors in [9–13] uncertainty setting of the steering
vector which allows the norm of the mismatch vector to be bounded.
These approaches are modeled based on arbitrary mismatch and can
be interpreted as Capon beamformer with optimal diagonal loading



Progress In Electromagnetics Research B, Vol. 29, 2011 159

when the level of uncertainty due the mismatches is precisely known.
It is also worth mentioning that other approaches reported in [14, 15]
does not even need to specify the mismatch as the diagonal loading
value will be calculated in the method.

Although most of the existing approaches are able to recover the
performance degradation due to imprecise knowledge of the desired
signal steering vector, the performance degradation due to the use
of the sample covariance matrix received less attention. This is
because the performance degradation is observed only when the
input signal-to-noise ratio (SNR) is relatively high. In this paper,
we propose an evolutionary algorithm (EA) based robust adaptive
beamforming that is able to achieve near optimal performance at high
SNR case. The principal motivation behind the proposed approach
is to avoid the use of interference-plus-noise covariance because its
formulation strictly requires the array observation to be free of the
desired signal component. Given the capability of differential evolution
(DE) method to solve non-convex optimization and the simplicity
of its implementation, we propose to use DE to solve for a novel
objective function formulated as the ratio between the interference-
plus-noise and the desired signal beam pattern response, subjected to
the constraint that nullifies the response at interferences’ direction-of-
arrival (DOA).

At high SNR case, the proposed approach performs consistently
better than the state-of-the-art robust adaptive beam forming
approaches based on our empirical study. However, the proposed
method is a computationally expensive as compared to existing beam
forming techniques. Evolutionary algorithms are inherently parallel
and the computational complexity of the proposed approached can be
overcome by using Graphical Processing Units (GPUs) in general and
General-purpose GPUs (GPGPUs) [16–18] in particular as inexpensive
arithmetic processing units. In [16], the authors show that DE can be
executed 10-100 times faster on GPUs compared to CPUs depending
upon the complexity of the problem. Such a speed-up would make the
proposed robust adaptive beam forming realizable in real-time.

The rest of this paper is organized as follows. In Section 2,
we describe the array signal model and the existing robust adaptive
beamformers as well as some background on EA algorithms. Next
in Section 3, we explain the proposed approach that includes the
optimization formulation up to the implementation of the proposed
DE algorithm in addition to estimating the interferences’ DOA as a
pre-processing step required for the optimization. Section 4 presents
the simulation results that demonstrate the efficacy of the proposed
solution. And finally, Section 5 concludes the paper.
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2. BACKGROUND

2.1. Signal Model

Consider a narrowband beamforming model in which K narrowband
plane wave signals, modeled as statistically independent zero-mean
random sequence, impinge on an array of M sensors (K < M) from
directions θs and θi (i = 1, 2, . . . , K − 1). The received signal at the
array is given by

x(t) = a(θs)sd(t) +
K−1∑

i=1

a(θi)si(t) + n(t) (1)

where sd(t), si(t) and n(t) are the desired signal, i-th interference and
noise, respectively. a(θ) is the steering vector of the plane wave from
direction θ.

Generally, the adaptive beamformer applies a weight vector to the
array received signal in order to achieve the noise-reduced desired signal
and cancel the interferences at the same time. Conventional adaptive
beamforming calculates the optimal weight vector that minimizes the
interference-plus-noise output power subjected to a unity response of
the desired signal

min
w

wHRinw subject to wHa = 1 (2)

where w = [w1, . . . , wM ]T is the complex vector of beamformer
weights, M is the number of sensors, Rin is the interference-plus-noise
covariance matrix, a is the desired signal steering vector and (·)T and
(·)H denote the transpose and Hermitian transpose, respectively. The
optimal beamformer weight obtained by solving (2) can be expressed
as

wmvdr = (aHR−1
in a)−1R−1

in a (3)

In practice, the matrix Rin is estimated from the discrete-sampled
array received signal according to

R̂ =
1
N

N∑

n=1

x(n)x(n)H (4)

where N is the number of snapshots. Because of the presence of the
desired signal components a(θs)sd(t) in the array received signal for
computing R̂, it will lead to a substantial performance degradation as
measured by the output signal-to-interference-and-noise ratio (SINR).
That is, the output SINR performance of the existing beamformers
is unable to match the increasing rate of an ideal beamformer and
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eventually the output SINR flattens as signal-to-noise ratio (SNR)
increases. This problem is further complicated when there is a
mismatch between the actual and the presumed ASV (denoted as ā).

2.2. Existing Robust Adaptive Beamformers

A simple-yet-effective approach for robust adaptive beamforming is the
diagonal loading approach. As the name implies, the approach offers
robustness by adding a positive value to the diagonal terms of the
sample covariance matrix. The beamformer’s weight is then formulated
based on the loaded sampled covariance matrix Rdl according to

wlsmi = (āHR−1
dl ā)−1R−1

dl ā (5)

where ā denotes the presumed steering vector and Rdl , γI + R̂ is
the diagonally loaded sample covariance matrix, γ denotes the loading
factor and I is the identity matrix. Such an approach is termed as the
loaded sample matrix inverse (LSMI) beamformer.

Although it has been shown to improve the performance, it is
not clear how much loading factor or what is the suitable value for
γ is required. To explicitly relate the amount of loading factor to
the uncertainties in the desired signal steering vector, the authors
in [12] proposed a different optimization formulation for solving the
beamformer’s weight. The formulation is based on the following
quadratic optimization problem with a multi-dimensional spherical
constraint that models the uncertainty as the square-norm of the
mismatch vector:

min
a

aHR̂−1a subject to ‖a− ā‖2 ≤ ε. (6)

where ε quantifies the level of the uncertainty between the nominal and
actual steering vector. By imposing a quadratic equality constraint
on (1) and using the Lagrange multiplier method, the estimated
steering vector is given by:

â = ā− (I + λR̂)−1ā (7)

and the Lagrange multiplier λ is obtained by solving the following
constraint equation:

g(λ) ,
∥∥∥(I + λR̂)−1ā

∥∥∥
2

= ε. (8)

The estimated steering vector is later used to formulate the weight
vector

wrcb = (âHR̂−1â)−1R̂−1â (9)
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In the analysis presented in [12], this approach belongs to the diagonal
loading method where the loading factor is a function of the Lagrange
multiplier λ.

In another approach that attempts to avoid the need to know the
loading factor, the authors in [15] showed that the robust adaptive
beamforming can be formulated as a ridge regression problem. As a
result, the design of the weight vector does not require any preset
parameter even though the steering vector used is inaccurate. At
the end of the formulation, the authors in [15] also show that
this parameter-free robust beamformer is in fact a diagonal loading
approach with the loading parameter

ρ = (M − 1)σ̂2
LS/‖ηLS‖2

σ̂2
LS = ‖R̂1/2BηLS − R̂1/2ā/M‖2

ηLS = (BHB̂B)−1BHR̂ā/M

(10)

where B is an M × (M − 1) semi-unitary matrix orthogonal to the
nominal steering vector ā. The beamformer weight is the same as
that in LSMI beamformer with the diagonally-loaded covariance matrix
Rrr , ρI + R̂:

wrr = (āHR−1
rr ā)−1R−1

rr ā (11)

2.3. Evolutionary Algorithms Background

Recently, population-based stochastic algorithms such as evolutionary
algorithms (EAs), inspired by Darwinian Theory of evolution, are
gaining importance compared to Classical Optimization techniques due
to their ability to handle real-world optimization problems which are
non continuous and/or non-differentiable and characterized by chaotic
disturbances, randomness and complex non-linear dynamics. EAs start
with a population of individuals, each encoding a potential solution
to a given problem in a predefined search space. The individuals
communicate and exchange information through natural processes like
mutation, recombination and selection, to evolve increasingly fitter new
individuals to a particular environment.

More recently, differential evolution (DE) method proposed by
Storn and Price [19–21], a simple and powerful global optimization
algorithm, has attracted much attention due to its simplicity and
less number of parameters to tune [22–24]. DE perturbs the current-
generation population members with a scaled difference of randomly
selected and distinct population members.

The performance [25] of the DE algorithm is sensitive to the
mutation strategy, crossover strategy and control parameters such as
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the population size (NP), crossover rate (CR) and the scale factor
(F). The best settings for the control parameters can be different
for different optimization problems and the same functions with
different requirements for consumption time and accuracy. Therefore,
to successfully solve a specific optimization problem, it is generally
necessary to perform a time-consuming trial-and-error search for
the most appropriate combination of strategies and their associated
parameter values. However, such a trial-and-error search process
suffers from high computational costs. The population of DE may
evolve through different regions in the search space, within which
different strategies [28] with different parameter settings may be
more effective than others. Different partial adaptation schemes
have been proposed [26, 27] to overcome the time consuming trial-
and-error procedure. However, in [31] the authors propose a DE
algorithm with ensemble approach (EPSDE) and demonstrated its
superior performance.

2.4. Ensemble of Mutation Strategies and Parameters in DE
(EPSDE)

The effectiveness of conventional DE in solving a numerical
optimization problem depends on the selected mutation and crossover
strategy and its associated parameter values. However, different
optimization problems require different mutation strategies with
different parameter values depending on the nature of problem (uni-
modal and multi-modal) and available computation resources. In
addition, to solve a specific problem, different mutation strategies with
different parameter settings may be better during different stages of
the evolution than a single mutation strategy with unique parameter
settings as in the conventional DE. Motivated by these observations,
we propose an ensemble of mutation and crossover strategies and
parameter values for DE (EPSDE) in which a pool of mutation
strategies, along with a pool of values corresponding to each associated
parameter competes to produce successful offspring population. The
candidate pool of mutation and mutation strategies and parameters
should be restrictive to avoid the unfavorable influences of less effective
mutation strategies and parameters [28]. The mutation strategies or
the parameters present in a pool should have diverse characteristics,
so that they can exhibit distinct performance characteristics during
different stages of the evolution, when dealing with a particular
problem.

EPSDE consists of a pool of mutation and crossover strategies
along with a pool of values for each of the associated control
parameters. Each member in the initial population is randomly
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assigned with a mutation strategy and associated parameter values
taken from the respective pools. The population members (target
vectors) produce offspring (trial vectors) using the assigned mutation
strategy and parameter values. If the generated trial vector produced
is better than the target vector, the mutation strategy and parameter
values are retained with trial vector which becomes the parent (target
vector) in the next generation. The combination of the mutation
strategy and the parameter values that produced a better offspring
than the parent are stored. If the target vector is better than the trial
vector, then the target vector is randomly re-initialized with a new
mutation strategy and associated parameter values from the respective
pools or from the successful combinations stored with equal probability.
This leads to an increased probability of production of offspring by the
better combination of mutation strategy and the associated control
parameters in the future generations.

The implementation of the EPSDE algorithm is presented in [31].
The outline of the algorithm is presented in Section 3.2.

3. PROPOSED APPROACH

In this section, we propose a different approach to solve for the robust
adaptive beamforming problem. The idea pursued here is to design
the robust beamformer’s weight vector by minimizing the ratio of
the noise-plus-interference to the desired signal response. In other
words, the array beam response is designed in such a way that it
has maximum response in the desired signal’s angular range bounded
by the inequality: θL < θs < θU , where θL and θU are the lower
and upper bounds respectively; and it has minimum response in the
interferences’ angular range. In mathematical expression, this ratio
can be formulated as follows

f(w) =
wHĀinĀH

inw
wHĀsĀH

s w
(12)

where Ās = [ā(θs,1), ā(θs,1), . . . , ā(θs,Ls)] and {θs,q}Ls
q=1 are the

possible look-directions derived from the desired signal’s angular range.
Likewise, Āin = [ā(θin,1), ā(θin,1), . . . , ā(θin,Lin)], where {θin,q}Lin

q=1 are
derived from the interference-plus-noise angular range. Note that the
directions defined in θin,q do not overlap with those in θs,q.

Besides minimizing the function defined in (12), the proposed
optimization design includes the null-response constraints deduced
from the array observation x(t) to achieve better interference
cancelation performance. These null-response constraints can be
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expressed mathematically as hi(w) = 0 for i = {1, 2, . . . , K−1} where
hi(w) is defined as

hi(w) = wH ā(θ̂i) (13)

3.1. Estimating Interferences’ DOA

From the null-response constraints expression, we need to estimate the
interferences’ DOA. The key idea pursued here is to utilize the fact
that the beamformer’s response still forms nulls at the interferences’
DOA regardless of the look direction mismatch. This is because the
sensitivity of the Capon beamformer to the data model errors due to
mismatches only affects the desired signal DOA and this phenomenon
is widely known as signal self-nulling. As for the rest of the nulls formed
in the beampattern, they are corresponding to the interferences’ DOAs.
Therefore, this property can be utilized for estimating the interferences’
DOA from the rest of the nulls. Unless the desired signal’s DOA and
the interferences’ ones are very closely separated, the estimation errors
will not influence the proposed algorithm.

We know that the presumed steering vector ā(θs) corresponding
to the desired signal is known only approximately. Also, the presumed
look direction θs contains mismatch but the exact DOA of the desired
signal can be found within the range defined by θL < θs < θU . Notice
that in order to form ā(θs) for the evaluation of the beamformer’s
response or beampattern, we also require the knowledge of the
presumed array geometry. We start off with the Standard Capon
Beamformer solution given as

wSCB =
R−1a(θs)

aH(θs)R−1a(θs)
. (14)

Based on this solution, we can evaluate the beam pattern using the
expression

B(θ) = wH
SCBa(θ) for − 90 deg ≤ θ ≤ 90 deg . (15)

By setting to a suitable scanning resolution ε, we search for nulls
outside the SOI region. The location of the nulls outside the SOI
region would correspond to the interferences or grating nulls. We
represent the set of all the angles corresponding to these nulls as
I = {θ̂1, θ̂2, . . . , θ̂K−1}, where the maximum number of nulls found
is K − 1. This is done heuristically and can be written as,

I={I : I=θ |{θ < θL} ∪ {θ > θU}, B(θ−ε) > B(θ) < B(θ+ε)} (16)

where ε is the scanning resolution used. Hence, from the interferences’
DOA estimates given by I we can then form the null-response
constraints in (13).
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3.2. Solving for Beamformer’s Weight

Recall that the objective function and the constraints are defined
in (12) and (13). Also, the estimates of interferences’ DOA θ̂i can
be obtained from the approach described in Section 3.1. Hence,
the proposed adaptive beamformer’s weight can be solved from the
following optimization formulation

minimize f(w)
subject to hi(w) = 0 i = 1, . . . ,K − 1 (17)

By using a tolerance value of δ, the equality constraints can be written
as

gi(w) = max{|hi(w)| − δ, 0} i = 1, . . . , K − 1

With the above definitions, the objective is to minimize the fitness
function f(w) such that the optimal solution obtained satisfies all the
equality constraints gi(w). Let υ(w) denote the overall constraint
violation for an individual, formulated as a weighted mean of all the
equality constraints according to

υ(w) =
∑K−1

i=1 σigi(w)∑K−1
i=1 σi

where σi = 1
gmaxi

is a weight parameter, gmaxi is the maximum violation

of the gi(w) constraint obtained so far. Here, σi is set as 1
gmaxi

which
varies during the evolution in order to balance the contribution of
every constraint in the problem irrespective of their differing numerical
ranges.

As the formulation for the above robust adaptive beamforming
involves equality constraints, high quality solutions can be obtained by
constraint handling methods like ε-constraint with proper control of the
ε parameter [29, 30]. In ε-constraint handling method the relaxation of
the constraints is controlled by using the ε parameter. The ε level is
updated until the generation counter G reaches the control generation
Tc. After the generation counter exceeds Tc, the ε level is set to zero
to obtain solutions with no constraint violation. That is,

Initialize: ε(0) = υ(wθ)

Update: ε(G) =

{
ε(0)

(
1− G

Tc

)cp
, 0 < G < Tc

0, G ≥ Tc

(18)

where wθ is the top ϑ-th individual and ϑ = 0.5NP where NP denotes
the number of individuals in [29, 30]: Tc ∈ [0.1Tmax, 0.8Tmax] and
cp ∈ [2, 10]. The algorithmic description of the DE algorithm can
be summarized as
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STEP 1: Set the generation count G = 0, and randomly initialize
a population of NP individuals PG = {w1,G, . . . ,wNP,G} with
wi,G = {w1

i,G, . . . ,wD
i,G}, i = 1, . . . , NP uniformly distributed in

the range [wmin,wmax].
STEP 2: Select a pool of mutation strategies and a pool of values
for each associated parameters corresponding to each mutation
strategy.
STEP 3: Each population member is randomly assigned with
one of the mutation strategy from the pool and the associated
parameter values are chosen randomly from the corresponding
pool of values.
STEP 4: WHILE stopping criterion is not satisfied, DO FOR i = 1
to NP .
Mutation Step
Generate a mutated vector Vi,G = {V 1

i,G, . . . , V D
i,G}, i = 1, . . . , NP

corresponding to the target vector wi,G

Vi,G = wri
1,G + F (wri

2,G −wri
3,G)

The indices r1, r2, r3 are mutually exclusive integers randomly
generated anew for each mutant vector within the range [1, NP ],
which are also different from the index i.
Crossover Step
Generate a trial vector Ui,G = U1

i,G, . . . , UD
i,G, i = 1, . . . , NP for

each target vector wi,G

uj
i,G =

{
V j

i,G, randj(0, 1) ≤ CR or j = jrand

wj
i,G, otherwise

where j = 1, . . . , D.
Selection Step
Evaluate the trial vector Ui,G

wi,G+1 =





Ui,G, υ(Ui,G) < υ(wi,G)
or υ(Ui,G) = υ(wi,G) = 0
and f(Ui,G) < f(wi,G)

wi,G, otherwise
Increment the generation count G = G + 1.
STEP 5: END WHILE.

4. SIMULATION RESULTS

Consider 10-element ULA with half-wavelength spacing receiving three
Gaussian signals: the SOI from θs = 1◦ and two interferences from
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θi = {20◦, 30◦}. The two interferences are of equal power, i.e., 20 dB
and 0 dB white Gaussian distributed random variable is considered as
the additive noise. Here, we only consider the mismatch due to the
look-direction error although at later simulations we will demonstrate
the efficacy of the proposed algorithm in the presence of both look-
direction and array geometry mismatch. Also, R̂ calculated from 100
snapshots is used to implement all the beamformers discussed here.
In EPSDE algorithm the only parameter that has to be tuned is the
population size (NP ). In our experimentation we tried different values
for NP (for example 10, 20, 30, 40 and 50). The population size
NP = 20 gives the best values for maximum function evaluations
of 50000 and maximum generations of 2500. The other parameter
values used are: Tolerance for equality constraints = 10−8, Tc = 0.8×
Maximum Generations and cp = 10.

First, we look at the beampattern plot for the proposed
robust beamforming approach as compared to some of the existing
robust beamforming approaches at 10 dB SNR. Figure 1 shows the
beampattern plot comparison of the proposed approach against the
RCB and the IRCB [32] approaches. These are obtained from one
of the realization in the simulation. The proposed approach provides
deeper null in the directions of interferences (e.g., 20◦ and 30◦) as well
as lower side lobe level.

As a result of the better beamformer’s response, we expect
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Figure 1. Beampattern comparison of the best results of RCB, IRCB
and the proposed beamformer for 15% geometry error case.
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to observe better SINR performance as well. Therefore in the
next simulation, we evaluate the SINR performance of the proposed
approach calculated from 100 realizations and compare this with the
other existing approaches as well as the theoretically optimal SINR.
This is repeated across various SNR ranging from −30 dB to 30 dB.
Figure 2 shows the output SINR plot as a function of input SNR.
For the proposed approach, Table 1 details the output SINR obtained
for the proposed approach. It lists the mean, standard deviation, best
and worst output SINR obtained from the 100 Monte Carlo realizations
run.
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Figure 2. Best output SINR versus SNR for no geometry error case.

Table 1. For no geometry error case.

SNR [dB]
SINR [dB]

Mean STD Best Worst

−30 −22.0428 1.4355 −20.1902 −26.1966

−25 −17.3313 2.2922 −15.2362 −27.2179

−20 −11.9424 1.9474 −10.2698 −24.6896

−15 −6.4075 1.0932 −5.1682 −12.3138

−10 −1.2708 0.9750 −0.1803 −5.7857

−5 3.6565 1.4674 4.6042 −8.8450

0 8.5391 1.3168 9.6605 −0.7481

5 13.2175 2.7708 14.6395 −7.6216

10 18.8960 0.7102 19.7761 16.1672

15 23.9794 0.6474 24.7982 21.2416

20 29.0003 0.9349 29.7846 21.7928

25 34.1476 0.5379 34.7891 31.3588

30 39.1493 0.5026 39.7790 37.2189
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From the results in Table 1, it can be observed that the best results
of the proposed algorithm is approximately equal to the optimal values
across all the simulated input SNR. From Fig. 1, as the input SNR
increases the difference in performance of the proposed algorithm and
the existing robust beam forming algorithms can be clearly observed.
The improved performance of the proposed algorithm is due to the
parallel search procedure used in the DE algorithm.

To show the robustness of the proposed algorithm, we introduce
array geometry error which is modeled as uniform random variable
according to U(−0.15λ, 0.15λ), where λ is the signal wavelength. Fig. 3

 

-30 -20 -10 0 10 20 30

SNR [dB]

-30

-20

-10

0

10

20

30

40

S
IN

R
 O

u
tp

u
t 

[d
B

]

SCB

RCB

IRCB

Optimal

proposed

Figure 3. Best output SINR versus SNR for 15% geometry error case.

Table 2. For the case with 15% geometry error.

SNR [dB]
SINR [dB]

Mean STD Best Worst

−30 −24.6877 3.4527 −20.3700 −38.0661

−25 −19.1883 2.9335 −15.3710 −29.2180

−20 −14.2087 3.2726 −10.3208 −23.7799

−15 −9.0150 3.1734 −5.2639 −23.0553

−10 −3.5775 2.8548 −0.2708 −13.8238

−5 2.0242 2.1475 4.6662 −6.0678

0 7.0828 2.5196 9.5768 −5.3458

5 12.0608 3.4642 14.6450 −5.1473

10 17.8096 2.6446 19.5175 0.0376

15 23.3175 1.1645 24.5569 17.5174

20 28.4938 0.9266 29.5716 24.7978

25 33.4958 1.0332 34.6542 28.0268

30 38.5034 1.2025 39.6062 29.2504
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shows the performance of the proposed approach as compared to the
other existing approach when the array geometry error is considered to
contribute to the mismatch in the steering vector. These results show
that the proposed approach provides certain degree of robustness when
the presumed array geometry does not equal to the actual geometry.
Table 2 lists the mean, standard deviation, best and worst output SINR
for this case.

5. CONCLUSION

This paper proposes a near-optimal robust adaptive beamforming
approach based on solving non-convex optimization using evolutionary
algorithm. The ability to achieve near-optimal performance is
attributed to the formulation of the novel optimization function
for solving the beamformer’s weight vector. In particular, the
objective function is defined as the ratio between the interference-
plus-noise response and the desired signal response. By minimizing
the objective function subjected to the constraint that nullifies the
response at interferences’ DOA, the near-optimal performance can then
be achieved. As compared to the commonly used robust beamforming
formulation, our approach does not utilize the estimated covariance
matrix that is calculated from the array observation that includes the
desired signal. Although the objective function is no longer convex,
the problem is still solvable using differential evolution (DE) algorithm.
Numerical results demonstrate the efficacy of the proposed approach in
comparison with other existing robust techniques. As a future work we
would like to implement the proposed adaptive beam forming technique
using DE on GPUs to overcome the computational complexity.
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