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TURES IN FINITE ELEMENTS METHOD ANALYSIS
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Abstract—We present a new accurate node’s renumbering method
for minimizing the profile of stiffness matrix arising in finite elements
problems. This method is suitable for cylindrical structures like
electrical rotating machines and is especially intended for movement
consideration by the moving band method. The structure is divided
into sectors classified in a special way. The nodes contained in each
sector are classified according to their radius value in regressing order.
We show that the performances of the method are better than the
most popular ones proposed in the literature. Application for a
permanent magnet synchronous machine is presented. Application for
finite elements analysis of a permanent synchronous machine in motion
is achieved.
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1. INTRODUCTION

The Finite element Method is widely used for the computation of the
electromagnetic field in the electrical machines. It allows movement
consideration and takes into account saturation and coupling with
electrical circuit [1].

The finite element discretization leads to solve algebraic systems
with large sparse matrices using direct or iterative methods. In
the 2D case, direct methods are preferred because they produce an
exact solution using a finite number of operations and they have
no convergence difficulties. Moreover, they do not require an initial
estimate for the solution [1].

In both cases, a nodes renumbering method for minimizing the
bandwidth, the profile or the frontwidth is required in order to reduce
the computation time while solving the algebraic system [2]. Most of
these methods use the matrix graph levels. A graph of the matrix
is built and structured into levels. The nodes of the graph are then
numbered level by level.

In [3], a comparison of some renumbering methods adapted for
finite elements problems is presented. It has been concluded that the
GENRCM algorithm of George and Liu [5], which is a variant of the
GPS algorithm [5], gives good performances in reducing the bandwidth
and the profile with acceptable computation time. The GPS method
is one of the fastest methods for minimizing the bandwidth of sparse
matrices [6] whereas Sloan’s algorithm [7] represents a better choice for
profile and frontwidth reduction. We can note that recent studies show
that the method can be improved [6, 8, 9]. The cost of the improved
method in [6] is not important and is comparable with the original one.

Since this comparison, few methods of minimizing bandwidth and
profile were published in literature. We can quote the Tabu Search [10]
developed by Marti et al. It has the particularity of being the first
method which is not a graph level method. In some cases, it ensures a
better reduction of bandwidth and profile compared with GPS method,
but it is expensive in computing time. Moreover, this method is
not applicable for large systems. The GRASP-PR method [11] and
the Search Annealing method [12] have also large CPU time. Other
methods based on operational research like genetic algorithms [13] and
colonies of ants [14] are used with the same drawback regarding the
computation time.

We proposed in [15] a new mesh renumbering method which is
faster and more efficient than the GPS-GENRCM algorithm. The time
required for building the matrix graph is removed. We have shown that
the proposed method is very suitable for moving band problems.
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In this paper, we propose another new renumbering mesh method
especially dedicated to cylindrical structures like electrical rotating
machines. It consists in ordering the nodes in sectors according to
their radius. The sectors are classed with a specific method making it
simpler than the one proposed in [15]. It also provides better results in
profile reduction leading to huge savings in computation time with a
Cholesky direct solver. Application to electromagnetic modeling of
electrical machines with movement consideration using the moving
band method is presented. It is shown that the computation time
is much smaller compared to the fastest methods existing today. An
application for electrical machines in rotation with moving band is
presented.

2. PRINCIPLE OF THE RENUMBERING METHOD

2.1. Profile Reduction for Cholesky Resolution

Let A be an N by N symmetric positive definite matrix, with entries
aij . The i-th bandwidth of A is:

βi (A) = i−min {j | aij 6= 0} (1)

The bandwidth of A is defined by [4]

β = β (A) = max {βi (A) | 1 ≤ i ≤ N} = max {|i− j| | aij 6= 0} (2)

For Cholesky resolution, we use a vector that contains the all lines
bandwidths also called envelope of A. This vector is defined by:

Env (A) = {i, j | 0 < i− j < βi (A)} (3)

The quantity |Env (A) | is called the profile or the envelope size
of A, and is defined by:

|Env (A)| =
N∑

i=1

βi (A) (4)

Another quantity called frontwidth is defined by the number of
rows of the envelope of A which intersect column i.

ωi (A) = {k | k > i and ak` 6= 0 ∀ ` ≤ i} (5)

The number of operations required to factor A into LLt, for
envelope methods, is given by:

Nfact =
1
2

N∑

i=1

ωi (A) (ωi (A) + 3) (6)
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Using a “profile” solver, the number of operations required during
the factorization of A into LLt (L is a lower matrix) is:

Nop = 2× (Env (A) + N) (7)

To estimate factorization time, a quantity called root mean square
frontwidth is introduced by [7]. This quantity is given by:

f =

√√√√ 1
N

(
N∑

i=1

ω2
i

)
(8)

The better profile reduction methods are those minimise the
quantities defined in (4) and (8).

2.2. Graph Theory and Maximum Eccentricity

Let be A symmetric sparse positive definite matrix. Each no diagonal
element of matrix A is represented by a segment between diagonal
elements that represents the graph’s nodes. A graph G(A) can be
associated with the matrix. This graph is defined by a set of nodes
XA and a set of segments EA.

GA =
(
XA, EA

)
(9)

A graph G is valid if:

∀ {xi, xj} ∈ EA, aij = aji 6= 0, i 6= j (10)

The fastest graph renumbering methods are based on level
decomposition. Eccentricity of a graph is the number of levels. The
GPS method allows finding the pseudo peripherals nodes that ensures
a maximum eccentricity for a graph, by searching pseudo peripheral
nodes. This method provides good results, but it heavily depends on
the choice of a good starting node [6].

Figure 1 highlights the application of this renumbering method
and its application on a cylindrical structure. The maximum
eccentricity is obtained for nodes 1 and 5 that are the peripherals
nodes of the graph, Figure 1(b). Renumbering the nodes according to
the levels of the graph results in a maximum eccentricity, Figure 1(c).

2.3. Proposed Method

Given a cylindrical structure, and perform a triangular Delaunay mesh.
The geometry is subdivided on even number Ns of angular sectors.
Each sector has an angular opening of 2π/Ns (Figure 2(a)). They
are numbered, by considering these sectors as nodes of graph in way
obtained in Figure 1(c).
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• The sectors are numbered in the trigonometric order with odd
numbers from 1 to Ns − 1. This operation concerns half of a
structure.

• The second part of the structure is numbered from Ns to Ns− 2
with even numbers in the watch needles order.

We number the nodes met sector by sector (according to the
classification of these sectors) by order of decreasing radius
(Figure 2(b)). In this case, we consider that radius of each node
corresponds to its level.

The algorithm used to carry out this classification is easy of
construction. The renumbering according to the geometrical position
of the nodes provides a vector permutation applied directly to the
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Figure 1. Maximum eccentricity for renumbering circular structure.
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Figure 2. Decomposition of meshing cylindrical structure in sectors.
(a) Renumbering the sectors according the levels like Figure 1(c). (b)
Renumbering the sector nodes according their radius.
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classification of the nodes of each element.
For proposed algorithm, the number of sectors is selected for

reducing the profile size and the bandwidth of the stiffness matrix. We
choose a number greater than 300, which insures optimal performances
for the proposed method.

3. APPLYING ON ROTATING ELECTRICAL MACHINE

Three methods are applied on a six pole surface mounted permanent
magnet machine (Figure 5). Four structures with different sizes of
mesh are considered and given in Table 1. The performances of the
proposed method are compared with those obtained with two classical
renumbering methods: GPS algorithm (coded in Fortran77 by George
and Liu [5]) and Sloan algorithm (also coded in Fortan77 by Sloan [7]).
The proposed algorithm is coded in Fortan90.

Figure 3 compared show results of the three methods. GPS
results are considered as the reference and its values (profile and
rms frontwidth) are fixed to 100%. The profiles obtained with Sloan
method equal 64% to 76% of those obtained with GPS method. We can

Table 1. Meshed structures renumbered with the both methods.

Structure Number of Nodes Number of elements

1 4645 9193

2 9193 18289

3 15440 30783

4 23872 47680

GPS method

Sloan method

Proposed method        

GPS method

Sloan method

Proposed method      

GPS method
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Figure 3. Compared characteristics of stiffness matrices obtained for
renumbered meshes of structures given in Table 1.



Progress In Electromagnetics Research B, Vol. 27, 2011 355

Static part 

Moving part 

s1

s3

s5sNs-5

s2

s4

sNs-3

mNs-1

sNs

sNs-2

m1

m3

m5

m2

m4

mNs-5

mNs-3

sNs-1

mNs

mNs-2

(a) (b)

Figure 4. (a) Six pole permanent magnet machine (b) portioning in
sectors.

then consider Sloan reduction as good. So, the profiles obtained with
the proposed method equal 9.1% to 29.4% of those obtained with GPS
results. Thus, the profile is more reduced with the proposed method
(see Figure 3(a)). We can consider the proposed method is better than
the two traditional methods.

The second factor of comparison is the rms wavefront defined by
(8). In Figure 3(b), we can see that this value is most reduced with
the proposed method, than with the other methods.

For band methods, the GPS method, which is a bandwidth
reduction method, presents an extreme reduced value of maximum
bandwidth (see Figure 4). The proposed method can be considered as
a profile reduction method. We can note that the bandwidth obtained
with the proposed method is smaller than obtained with Sloan method.

4. MOVEMENT CONSIDERING WITH THE MOVING
BAND METHOD

4.1. The Moving Band

The moving band is one of the first techniques to take into account
the movement in electromagnetic structures in Finite Elements
Analysis [16]. It consists to create, in the case of cylindrical structures,
a band in airgap. A local remeshing is done when the elements
deformation is important. This method presents some of numerical
problems [17]. One of these problems is that the bandwidth and
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Figure 5. Applying the moving band for the sectored structure. (a)
initial position, (b) beginning movement, (c) movement with a step
angular, (d) Reconnecting the elements band.

profile values increase with the movement. Instead, it is necessary
to apply a renumbering method with each remeshing of band. These
renumbering processes take a supplementary time coast in resolution.
The preferred methods for finite elements analysis are GPS for
bandwidth minimization for band methods and Sloan method for
profile reduction for envelope methods, which are the faster methods
in these applications [3]. Other problems are in boundary conditions
when we consider a portion of the structure (see [18, 19]). This
problem can be solved by considering the complete structure (in case
of rotating machines). Problems of distortion of elements can be solved
by choosing an appropriate step [17, 20] of moving, refine moving band
meshing [21], and to solve with direct methods such Gauss method [22]
for precision and no divergence.

For our application, we have take into account all these solutions,
and we have considered a complete structure with fine meshing moving
band. For storage of stiffness matrix, we choose envelope method
which is available with Cholesky method (this method is faster than
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Elimination Gauss method [5]).
We consider in following application (Figure 4(a)) for a six pole

surface permanent magnet structure (structure 4 in Table 1). In the
case of movement, we consider two parts for the cylindrical structure:
a moving part and a static part (Figure 4(b)). Sectors defined by
the proposed method are building directly with sectors of static and
moving parts.

Two matrices are created and contain the sectors of each part of
structure: matrix M for moving part and S for static part. These
are 1440 sectors by part (0.25 angular degree by sector. Each sector
constitutes a column of associate matrix (example, s3 is the third
column of matrix S). The formed columns contain like data the nodes’
numbers contained in their sectors.

The permutation vector is built like this:

Prm = {s1,m1, s2,m2, s3,m3, . . . } (11)

4.2. Adapted Method for Renumbering While Movement

When the elements of the moving band are reconnected (Figure 5(d)),
the “static” sectors si are displaced relatively of “moving” sectors mi.

The proposed method is then adapted by connecting in special
way these sectors. The sector s1 is then connected with sector m2,
sector s2 is connected with sector m4 . . . .

The new permutation vector is then given, for a first step of
rotation:

Prm = {s1,m2, s2,m4, s3,m1, . . . } (12)

At each step, after applying a local remeshing in moving band,
this vector is built and applied to renumbering the nodes of the
mesh. We have also applied the GPS method and Sloan algorithm
for renumbering the same structure in same conditions of rotation.

4.3. Results and Comparison

With applying this method for modification of vector permutation for
each step reconnecting (we consider all possible cases, then there are
1440 reconnections and 1440 renumbering elements of moving band, we
obtain a relatively constant profile (a maximal variation about 0.54% of
average value) for the proposed method (see Figure 6(a)). This result
is the same for the root mean square wavefront, which is relatively
constant on the 1440 steps. We can see that the proposed method is
stable. The Cholesky time resolution is then constant for each step.
Total resolution time can then be easily estimated.
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Figure 6. Applied methods on moving band with electrical machine.

Table 2. Times required by the system for a complete rotation (1440
steps) with mesh renumbering.

Sloan GPS Proposed

Geometrical operations (s) 15.03 15.03 15.03

Graph building time (s) 36.47 71.71 —

Permut. vector building (s) 247.17 13.36 0.81

Vectors s and m built (s) — — 0.03

Total time (s) 298.67 100.1 15.87

GPS and Sloan methods present a large variation in results with
movement, and gives profile and rms wavefront greater than proposed
method results (these values are divided at least by 3 for obtain the
proposed method results). We can note that Sloan provides results
better than GPS values. We can conclude then the proposed method is
more adaptive for moving band for cylindrical structures such electrical
rotating machines for solving with envelope methods.

4.4. Time Execution Comparison

A fortran90 program is compiled with a Pentium IV CPU 3.0GHz with
RAM 1Go. A complete rotation of rotor is done with reconnecting
elements of the band each degree geometrical. At each reconnection, a
renumbering is done, and the stiffness matrix is rebuilt with envelope
storage. In Table 2, we can see times required for a complete rotation
(360 angular degrees) of a structure with a step equal to 0.25 angular
degree.

In geometrical operations, we means: recalculate coordinates of
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moving part nodes, applying reconnections in moving band, applying
vector permutation obtained with the given renumbering method for
renumbering elements and redefine their coordinates. These operations
are the same for all methods and takes 15.03 s. For the proposed
method, this time is the major part and represents 94.5% of the
total time. The time required for renumbering is composed by sectors
partitioning of the cylindrical structure, which is executed only once
time (0.03 s), and the vector permutation built at each step of rotation
(0.81 s for 1440 steps, ie 0.56 ms by step and 2.35 10–8 s by node and
step).

Classical methods referenced in this work (GPS and Sloan
methods) are matrix graph renumbering. Thus, at each step, we need
a procedure to transform a mesh to graph. At each step, the mesh is
modified by the moving band. It is then necessarily to build the graph
associate to stiffness matrix at each step. For Sloan method, we have
used the GRAPH subroutine given by Sloan [7]. For GPS program,
we have developed our subroutine and used it.

For GPS method, the geometrical operations and permutations
vector building have approximately the same cost. The proposed
method is 16.5 time faster for building permutation vector than GPS
method.

Graph building is required, and its cost is very important (71,6%
of total cost). For actual CPU processors, these values are acceptable.
Unlike proposed and GPS method, the cost of building the permutation
vector for the Sloan method represents the major part of the simulation
(82.7%) and represents more than 300 time proposed method cost and
more than 18 time GPS method time.

For Cholesky factorization, with envelope methods, we can
estimate with f (rms frontwidth) ratio that proposed method can
reduce considerably the cost. Indeed, value of f in average is divided
in average by 7 for GPS results and by 5 for Sloan results. The
factorization time depends on the square of f . The Cholesky time
cost is then consequently reduced in the case of the proposed method.

5. CHOLESKY RESOLUTION WITH MOTION

In Table 3, we can see influence of the mesh renumbering for three
structures in the case of the three methods for the first step of compute
and solve the algebraic equation in linear magnetostatic case.

Sloan method gives for the three structures in solving better
results than GPS in order of half. But the proposed method permits
a more important reduction of cost in resolution. Moreover, Proposed
method gives rms frontwidth and profile constant during the rotation
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Table 3. Times required for the first step Cholesky resolution for the
three methods. (Fact. for factorization LLt, sol. for solving the system
factorized and Tot. for total time for Cholesky Resolution).

Studied

structure

Proposed (s) GPS (s) Sloan (s)

Fact sol Tot. Fact sol Tot. Fact sol Tot.

Struct. 2 0.18 03.79 0.04 03.83 02.09 0.03 02.12

Struct. 3 0.36 0.01 0.37 47.08 0.20 47.28 21.78 0.15 21.93

Struct. 4 0.97 0.05 1.02 57.25 0.28 57.53 31.53 0.21 31.74

Table 4. Times required in seconds by the structures for Cholesky
resolution in the case of one, ten and hundred steps of rotation.

Nb steps One step 10 steps 100 steps

Method Gps Slo Pro. Gps Slo Pro Gps Slo Pro.

Struct. 2 03.83 02.12 0.18 037.7 20.9 1.9 380.9 212.9 19.2

Struct. 3 47.28 21.93 0.37 432.7 222.5 4.1 > 1H 41.5

Struct. 4 57.53 31.74 1.02 541.5 321.4 11.1 > 1H ≈ 1H 114.8

(Figure 6). Thus, we can estimate correctly the total simulation time
contrarily to the two other methods.

In Table 4, we can see that the proposed method provides a very
large time reduction compared with GPS and Sloan methods. These
methods have a times costs in resolution which are about 50 times
those of proposed method for GPS method and about 30 times those of
proposed method for Sloan method. Geometrical operations represent
only 1% at the maximum of the total time resolution for the proposed
method.

6. CONCLUSION

A powerful renumbering mesh method for hollow circular structures
is presented. Its algorithm is very easy to code and compute, and it
is adaptive for movement method considerations with finite elements
method. Performances of method, compared with those of Sloan and
GPS methods, are better. It reduces considerably the profile and
the root mean square wavefront. The time coast is also considerably
reduced.

In movement consideration with moving band in circular
structures, the method is more adaptative than the compared methods.
Cost of graph associated to mesh is removed and the permutation
vector is obtained in very reduced time compared to GPS, which is
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one of the faster graph reordering methods at today. Indeed, for
each moving step, the permutation vector is obtained with special
circulation of vectors. This requires a minimum coast of renumbering.

A complete rotation with 1440 steps is given in total time which
is 6.3 time reduced than GPS algorithm and 18.8 time reduced than
Sloan results. If we introduce the Cholesky resolution, these times
are reduced by about 50 time for GPS method and 30 time for Sloan
method.

Moreover, the profile and root mean square and maximum
bandwidth obtained are relatively constant during the movement, as
opposed to the compared method. The Sloan average profile is reduced
with a factor around 5.

However, this method is adaptive only cylindrical structures in
2-D modeling, and then interesting field analysis with finite elements
methods in rotating electrical machines.
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