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Abstract—A multi-scale (MS) approach combined to the generalized
equivalent circuit (GEC) modeling is applied to compute the input
impedance of pre-fractal structures with incorporated PIN diodes.
Instead of treating the whole complex problem at once, the MS
method splits the complex structure into a set of scale levels to be
studied separately. The computation is done gradually from the lowest
level. Each scale level is artificially excited by N modal sources to
compute its input impedance matrix. The MS method is based on
converting this input impedance matrix into an impedance operator to
achieve the transition toward the subsequent level. The PIN diodes
were easily integrated in the MS approach thanks to their surface
impedance model. The main advantage of the MS-GEC method is
the significant reduction of the problem’s high aspect ratio since fine
details are studied separately of the larger structure. Consequently, the
manipulated matrices are well conditioned. Moreover, the reduced size
of matrices manipulated at each level leads to less memory requirement
and faster processing than the MoM. Values obtained with the MS-
GEC approach converge to those given by the MoM method when a
sufficient number of modal sources are used at each scale level. For
frequencies between 1 GHz and 6.8 GHz, the agreement between the
two methods is conspicuous.
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1. INTRODUCTION

Since 1975 when Benoit Mandelbrot has defined fractals for the first
time [1], many new shapes and applications for fractals continue
to emerge [2]. The most well known examples are fractal-shaped
antennas and frequency selective surfaces [3, 4]. Recently, PIN Diodes
were integrated in active FSSs to obtain tunable frequency response
and superior performances compared to conventional structures [5–
9]. Since such structures combine fine details within large dimensions,
uniform and adaptive spatial grid-based approaches (Finite Element
Method, Transmission Line Matrix Method or Finite Difference Time-
Domain Method) have been used. However, the need to finely grid
the entire computational domain results in very long solution time
and important memory resources. For planar structures, the Moment
(MoM) method [10] remains interesting since it is employed in many
electromagnetic simulators. However, when the structure’s complexity
increases, the requirements (processing time and memory storage) are
important and the convergence is delicate to reach. To circumvent
the difficulties encountered with the above listed methods, a scale
changing technique (SCT) has been developed in [11–13]. Its key idea
is to dissociate the initial complex structure into scale levels separating
then fine details from larger dimensions. For each scale level, a Scale
Changing Network (SCN) is determined. The transition from the
lowest scale level to the highest one is done by cascading the SCNs
of the various scale levels.

Another technique called the renormalization approach has been
developed to treat the case of fractals at infinite scale [14–17]. It
is a powerful technique since the solution consists of a recurrent
relationship relating the lower scale to the one at infinite.

In this paper, we present the MS-GEC method and its advantages
when applied to study complex structures and especially pre-fractal
objects with incorporated PIN diodes offering tuneable characteristics.
The MS-GEC consists of a multi-scale approach (MS) combined to
the generalized equivalent circuit (GEC) modeling. Its main idea is
to dissociate the complex structure into scale levels to be studied
separately. The incorporated PIN diodes have been easily integrated in
the approach thanks to their surface impedance model. For each scale
level, a surface impedance matrix is computed and then converted to
an impedance operator who facilitates the derivation of the integral
equations describing the problem. The transition is done gradually
from a scale level Si toward the subsequent level Si+1 via the impedance
operator of scale level Si. When the structure complexity increases,
the described MS-GEC method guarantees a significant gain in the
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processing time and memory resources while preserving results close
to those obtained by the MoM approach.

The paper is organized as follows: Section 2 describes the
generalized equivalent circuits’ concept. The multi-scale approach is
detailed in Section 3. The MS-GEC method will be applied in Section 4
to some pre-fractal structures with incorporated PIN diodes; The PIN
diode modeling and the surface impedance operator derivation are
detailed. Section 5 presents the obtained numerical results compared
to those of the Moment method. A comparison between MoM and MS-
GEC in term of processing time and memory resources is performed
in Section 6.

2. DESCRIPTION OF THE GEC APPROACH

The concept of generalized equivalent circuits [18–20] is based on the
representation of the integral equations by an equivalent circuit in order
to alleviate the resolution of Maxwell’s equations. This electromagnetic
representation made it possible to extend the Kirchhoff laws generally
employed with the (V-I) concept to the Maxwell formalism (E-H).

The generalized test functions which describe the electromagnetic
state on the discontinuity interface are modeled by an adjustable
virtual source not storing energy. The environment of the studied
structure is expressed by an admittance (or an impedance) operator.
The excitation is depicted within the GEC using a field source or a
current source.

2.1. THE ADJUSTABLE VIRTUAL SOURCES

Lets S be a surface where the continuity conditions of the investigated
electromagnetic field have to be checked. Based on the field properties,
the surface S can be written as S = S01 ∪ S02 where S02 is the
sub-domain on which the field is null, S01 is the complementary sub-
domain where the field remains not null. This electromagnetic state
may be depicted by a virtual source defined over S01 and being null
elsewhere. In fact, a virtual source indicates by definition a non null
vector quantity on a domain included in S and whose dual size is null
in this domain. As an example, let consider a surface S consisting of
an insulating part S01 and a metallic part S02. As well known, the
conditions ~E 6= ~0 and ~J = ~0 are verified on the S01 sub-domain. The
dual condition ~E = ~0 and ~J 6= ~0 is established on the complementary
domain S02. The first condition can be represented by a virtual field
source while the second condition corresponds to a virtual current
source as depicted respectively in Figs. 1(a) and 1(b).
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Figure 1. Symbolic notation of virtual sources: (a) field source; (b)
current source.
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Figure 2. Representation of the impedance operator.
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Figure 3. Symbolic notation of excitation sources: (a) field source,
(b) current source.

2.2. THE ADMITTANCE OPERATOR

The admittance operator is used to compute the current ~J on an
oriented surface S when the tangential field ~E is known. The
impedance operator shown in Fig. 2 is used to compute the tangential
field ~E when the current distribution ~J on the considered surface is
known. The relation between ~E and ~J classically takes the form of
the ohm’s law: ~E = Ẑ ~J or ~J = Ŷ ~E. The impedance and admittance
operators are presented on a modal basis. Their detailed expressions
will be provided in Section 4.2. The unique definition of these operators
rises from the unicity of the (~E, ~H) or ( ~E, ~J) solution on the surface
S.

2.3. THE EXCITATION SOURCES

The excitation sources are the fundamental modes of the guides leading
to the discontinuity surface. The symbolic notation of the modal
excitation is given either by a field modal source, or by a current modal
source as shown respectively in Figs. 3(a) and 3(b). These excitation
sources are called real since they deliver power into the guide.
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3. DESCRIPTION OF THE MULTI-SCALE APPROACH

The multi-scale approach is based on decomposing the initial complex
problem into elementary sub-problems: the total structure is split
into sub-structures having almost the same dimensions; these sub-
structures are partitioned again to smaller ones until the smallest
dimension (called the generator pattern for pre-fractal structures) is
reached. At each step, a scale level Si is defined (Fig. 4). Lets attribute
scale level S = 1 to the generator pattern and scale level S = Smax to
the total structure. Once partitioned, the problem resolution starts by
computing the surface impedance matrix of the generator pattern. For
that, the considered level needs to be enclosed along its contour with
artificial boundary conditions. Therefore, the local modal basis of the
considered scale level is known and can be decomposed into two types
of modes: active modes and passive modes.

The second step is to artificially excite the studied scale level
with N active modes in order to determine its surface impedance
matrix. Next, this surface impedance matrix is converted to a surface
impedance operator which will ensure the transition to the next scale
level. To determine the surface impedance matrix of the subsequent
level, we replace the domain of the previous level by its impedance
operator and we follow the same steps as before. The same processing
will be repeated till the highest level.
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Figure 4. Partitioning of the pre-fractal structure at the 3rd stage of
growth.
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3.1. Choice of Boundary Conditions

The boundary conditions are defined on the contour of each sub-
structure. The conventional ones are: a) Periodic boundaries, b)
Perfect Electric boundaries (PE), c) Perfect Magnetic boundaries
(PM), or d) Combination of PE and PM boundaries. Any one of these
modal basis can be used since they are equivalent. However, a better
one can be chosen based on some criteria such as accuracy, rapidity
and numerical convergence. The more the modal basis respects the
electromagnetic state of the real structure, the more it is adequate.

3.2. DEFINITION OF ACTIVE AND PASSIVE MODES

A modal basis is composed of two sets of modes: lower-order modes
known as active modes, and higher-order modes called passive modes.
Passive modes are spatially localized and then useful to express abrupt
variations near and within discontinuities. On the other hand, lower-
order modes are used to describe the electromagnetic coupling between
scale levels. For that, a sufficient number of active modes are required
for a better computation of the coupling and to guarantee a transition
between levels with minimum error.

4. THE MS-GEC METHOD APPLIED TO PRE-
FRACTAL STRUCTURES WITH INCORPORATED PIN
DIODES

In this paper, the MS-GEC approach is used to compute the input
impedance of the pre-fractal structures depicted Fig. 5. They consist
of Nb perfect metallic strips with negligible thickness printed on a
lossless dielectric and related by PIN diodes. These structures are
located in the cross section of a parallel plates EMEM waveguide: two
perfect electric boundary conditions to the top and the bottom, lateral
conditions are magnetic.

The steps needed to compute the input impedance of the structure
depicted Fig. 5(b) using the MS-GEC method are detailed in Fig. 6.
The impedance operator Ẑsi is a linear representation of the surface
impedance matrix of scale level Si. Its detailed expression will be
provided in Sections 4.2 to 4.4.

Before starting the computation for the various scales, we need to
model the PIN diodes in order to include them in the GEC models.
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Figure 6. Steps of the MS-GEC approach: case of a pre-fractal
structure at the 3rd stage of growth with incorporated PIN diodes.

4.1. PIN DIODE MODELLING
The PIN diodes integrated in the studied structures are modeled using
the equivalent circuit models [8] presented Fig. 7. The forward and the
reverse bias equivalent circuits are shown in Figs. 7(a) and 7(b).

Figure 7(c) presents a reverse bias equivalent circuit converted to
a series RLC circuit. In this paper, the values used for forward bias are
R = 5Ω and L = 0.4 nH. For reverse bias, a capacitance C = 0.27 pF
is added.

According to its ON/OFF state, each PIN diode can be replaced
by a surface impedance ZD of width w and height d expressed using
its intrinsic (R, L, C) characteristics. In fact, ZD is an equivalent
representation of the diode impedance Z when considering the relation
between E and J derived from the relation between V and I for the
TEM mode.




E = V
d

J = I
w

E = ZD J
V = Z I

Z =
{ (R + jLω) : forward bias(

R + jLω − j
Cω

)
: reverse bias

⇒ ZD =

{
w
d (R + jLω) : forward bias
w
d

(
R + jLω − j

Cω

)
: reverse bias (1)
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Figure 7. The PIN Diode (a) forward bias equivalent circuit,
(b) reverse bias equivalent circuit, (c) reverse bias equivalent RLC
circuit [8].
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Figure 8. The generator pattern and its equivalent circuit.

4.2. SURFACE IMPEDANCE MATRIX OF THE FIRST
SCALE LEVEL

Lets consider the sub-structure of scale level 1 depicted Fig. 6. Based
on the equivalent circuit models of Fig. 7, each PIN diode has been
replaced by its equivalent surface impedance ZD expressed as given
by (1).

We choose to enclose the considered sub-structure by EMEM
boundary conditions: two perfect electric boundaries to the top and the
bottom, lateral boundaries are perfect magnetic. Due to the structure
symmetry with regard to the discontinuity surface, only the half of the
generalized equivalent circuit is needed [20]. The simplified GEC is
depicted in Fig. 8.

Lets
(
fs1

mn

)
be the local modal basis of the EMEM waveguide

enclosing the generator pattern. Es1
i = V s1

i f s1
i are the excitation

modal sources where f s1
i , i ∈ [0 . . . N − 1] represent the active modes
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of level S = 1. The impedance operator Ẑs1 is expressed as a
function of the higher-order modes

〈
fs1

m,n

∣∣ and their modes’ impedances
zs1
m,n [20].

Ẑs1 =
∑

m, n
(m, n) 6= actifs

∣∣fs1
m,n

〉
zs1
m,n

〈
f s1

m,n

∣∣ (2)

ZD stands for the diode surface impedance localized in the diode
domain. The problem’s unknown Js1

e is expressed as a series of known
test functions gs1

p weighted by unknown coefficients xs1
p . Js1

e exists on
the metallic and the diode domains and is zero on the lossless dielectric
domain. When applied to the circuit depicted in Fig. 8, the generalized
Kirchhoff and ohm laws lead to the equations system (3).{

Js1 = −Js1
e (3a)

Es1
e = Es1

0 + Es1
1 + . . . + Es1

N−1 +
(
Ẑs1 + ZD

)
Js1

e (3b)

The Equation (3a) can be interpreted as the continuity relation of the
current on the discontinuity surface. The Equation (3b) expresses the
continuity relation of the field at the discontinuity surface.

A formal relation between sources (real and virtual) and their
duals is then deduced.(

Js1

Es1
e

)
=

[
0 −1
1

(
Ẑs1 + ZD

)
](

Es1

Jes1

)
(4)

Next, we apply the Galerkin method to the system (4), the surface
impedance matrix [ZS1] of scale level 1 is expressed by (5).

[ZS1] =
1
2

(
[A] [Z]−1 [A]T

)−1

where
A (i, p) =

〈
fs1

i

∣∣ gs1
p

〉
, Z (p, q) =

[〈
gs1
p

∣∣∣
(
Ẑs1 + ZD

)
gs1
q

〉]
(5)

Once computed, the surface impedance matrix [ZS1] is converted to
a surface impedance operator ẐS1. In fact, the matrix representation
[ZS1] can be written in a linear form as an operator since the modal
basis is orthogonal.

The conversion of the surface impedance matrix [ZS1] into an
impedance operator is performed as expressed in (6).

ẐS1 =
N∑

i=1

N∑

j=1

∣∣fs1
i−1

〉
ZS1 (i, j)

〈
fs1

j−1

∣∣ (6)

(
f s1

i

)
i∈[0,N−1]

are the N active modes used as artificial excitation modal
sources at scale level s = 1.
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4.3. SURFACE IMPEDANCE MATRIX OF THE
SECOND SCALE LEVEL

Lets consider now the second step of the MS-GEC method illustrated
Fig. 6. As done before, the PIN diode was replaced by its
equivalent surface impedance ZD. The structure to be studied and its
corresponding GEC are presented in Fig. 9. Note that the used GEC
is simplified since we have taken into account the structure symmetry
with regard to the discontinuity surface.

Ẑs2 is the impedance operator of scale level 2 relating to its higher-
order modes. However, ẐS1 is the surface impedance operator deduced
from the surface impedance matrix of the previous scale level (S = 1).

The surface impedance matrix [ZS2] of scale level 2 is obtained by
a similar development as done for scale level S = 1.

[ZS2] =
1
2

(
[A] [Z]−1 [A]T

)−1

where

A (i, p)=
〈
fs2

i

∣∣gs2
p

〉
, Z (p, q)=

[〈
gs2
p

∣∣∣
(
Ẑs2 + ẐS1 + ZD

)
gs2
q

〉]
(7)

4.4. INPUT IMPEDANCE OF THE THIRD SCALE
LEVEL (S = Smax)

The third scale level corresponds to the highest level since the
considered structure is at the third stage of growth. To compute its
input impedance, only one excitation source is used. The equivalent
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Figure 9. (a) The equivalent structure at scale level 2, (b) its
simplified GEC.
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Figure 10. The third scale level: (a) structure with surface impedance
operator, (b) simplified GEC.

structure is obtained by replacing the previous scale level 2 by its
surface impedance operator ẐS2. The simplified GEC is as depicted in
Fig. 10.

The input impedance of the total structure using the multi-scale
approach is given by (8).

ZIN MS = ZS3 =
1
2

1

[A] [Z]−1 [A]T

where

A (1, p) =
〈
f s3
0

∣∣gs3
p

〉
, Z (p, q) =

[〈
gs3
p

∣∣∣
(
Ẑs3 + ẐS2 + ZD

)
gs3
q

〉]
(8)

For validation purposes, the results obtained by the multi-scale
approach were compared to those of the moment method.

5. VALIDATION OF NUMERICAL RESULTS

The results validation will be performed for the two structures
depicted in Fig. 5. Firstly, the input impedance has been computed
using the MoM and the MS-GEC methods at 2.45 GHz. Next, a
study of the mismatch between the two methods is performed for
frequencies ranging between 1 GHz and 6.8GHz. Lets ξ = 100 ×
ZIN MoM−ZIN MS

ZIN MoM
(%) be the relative error between the input impedance

ZIN MoM given by the moment method and ZIN MS computed by the
MS-GEC method.
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Figure 11. Variation of the relative error (%) with the number of
active modes: the structure is at the 2nd stage of growth (Fig. 5(a));
(a) the PIN diode state is ON; (b) the PIN diode state is OFF;
f = 2.45GHz, a = 10.2mm, b = 22.9mm, α = 1/3, w = 0.5mm.

Figure 11 presents the variation of the relative error with the
number of active modes at lower scale levels for the structure Fig. 5(a).
Using one active mode at lower scale levels, we notice that the relative
error is important. For example, if we consider the pre-fractal structure
at the 2nd stage of growth shown in Fig. 5(a), the error on the input
impedance is about 12%.

This important mismatch between the MoM and the MS method
is due to the inability of one active mode to fully describe the coupling
between subsequent scale levels. By adding more active modes at lower
scale levels, the error decreases. With more than 17 active modes, the
relative error is less than 1% whether the diode state is ON or OFF.
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Figure 12. Variation of the relative error (%) with the number of
active modes: the structure is at the 3rd stage of growth (Fig. 5(b));
(a) the PIN diode state is ON; (b) the PIN diode state is OFF;
f = 2.45GHz, a = 10.2mm, b = 22.9mm, α = 1/3, w = 0.5mm.

Figure 12 shows the error variation relating to the input
impedance of the pre-fractal structure at the third stage of growth
depicted Fig. 5(b). At 2.45 GHz, the relative error convergence is
studied by increasing the number of active modes at lower scale levels.
When the number of excitation sources is sufficient, the relative error
is less than 2.7% when the PIN diodes are ON and is less than 1.1%
when PIN diodes are OFF.

The error convergence is reached with more than 25 active modes.
Consequently, a better transition from a scale toward another can be
performed if the coupling is accurately computed.

We notice that the error between the MS and MoM methods
has increased when the structure contains more levels. In fact, for
the first structure, only one transition between scale levels has been
performed while the second structure requires two transitions. The
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error estimation of the surface impedance operator at each level will be
accumulated leading then to a little increase of the mismatch between
MS and MoM approaches. However, for the two studied structures,
the error remains less than 2.7%.

For further validation, the input impedance was computed for
frequencies ranging between 1 GHz and 6.8 GHz. Based on the relative
error variation with the number of active modes done in the previous
section, we choose to artificially excite all the lower scale levels with
28 active modes.

Figures 13 and 14 show that the values of the input impedances
found using the multi-scale method coincide with those given by the
MoM method. The agreement between the two methods is obvious.

The moment method was applied to the structures depicted in
Fig. 5. The distribution of the normalized diffracted field is as shown
in Fig. 15. We verify that the boundary conditions are respected. In
fact, the field is null on the Perfect metallic strips and on the diodes
domains. It is not null elsewhere. Consequently, since the boundary
conditions are verified, we proved the exactitude of the moment method
that we have implemented.

We notice also the existence of the Gibbs effect due to the
important value of the field localized at the interface between each
diode domain and the neighbouring metallic strips. In fact, these
interfaces are characterized by an abrupt and important variation of
the field leading then to a more remarkable Gibbs effect. Indeed, it
reflects the difficulty in approximating a discontinuous function by a
finite series of continuous waves.
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Figure 13. Variation of the input impedance with the frequency, the
structure is at the 2nd stage of growth; The PIN diodes state is ON.
a = 10.2mm, b = 22.9mm, α = 1/3, w = 0.5mm.
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Figure 14. Variation of the input impedance with the frequency, the
structure is at the 3rd stage of growth; The PIN diodes state is ON.
a = 10.2mm, b = 22.9mm, α = 1/3, w = 0.5mm.

6. EXECUTION TIME AND MEMORY RESOURCES
NEEDED BY MOM AND MS-GEC METHODS

The MS-GEC method is very interesting when applied to fractal-
shaped structures since it guarantees an appreciable gain in term of
CPU time and memory resources. To prove that, lets define the needed
time to compute the input impedance using the MoM method and the
MS-GEC method. The parameters used are the following:

- TS : Mean time to compute the scalar product 〈gp, fn〉.
- Tc: Mean time needed for an elementary operation of multiplica-

tion/addition.
- Ti(q): Mean time needed to invert a (q × q) matrix.
- Nf : Number of auto-similar elements in the generator pattern:

in our case, the generator pattern contains 2 auto-similar perfect
metallic strips and so Nf = 2.

- p: Number of trial functions per element in the generator pattern.
(We suppose that this number is the same for diodes and strips).

- N : Number of modes in the modal basis.
- Na: Number of active modes used at lower scale levels.

In the case of fractal structures with PIN diodes at scale level k, the
number of total auto-similar elements is Nk

f . The number of PIN
diodes is (Nk

f − 1). Consequently, the total number of trial functions
is: p(2Nk

f − 1).
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(a)

(b)

Figure 15. Distribution of the vertical component of the normalized
diffracted field, PIN Diode state ON, (a) structure at the 2nd stage
of growth, (b) structure at the 3rd stage of growth, a = 10.2mm,
b = 22.9mm, α = 1/3, w = 0.5mm.

Lets T k
MoM be the total time needed by the MoM method to

compute the input impedance of the pre-fractal structure with PIN
diodes at scale level k.

T k
MoM =

[
N

(
p

(
2Nk

f − 1
))

+ p2
(
Nk

f − 1
)]
× TS

+
[
(N+1)

(
p
(
2Nk

f −1
))2

+p
(
2Nk

f −1
)]
×Tc+Ti

(
p
(
2Nk

f −1
))

+δ(9)
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δ is a term which expresses the neglected residue including for example
the time for filling matrices.

When the scale k increases, the processing time will increase
exponentially making of the MoM method very time consuming. In
addition, the manipulated matrices are

[
p

(
2Nk

f − 1
)
× p

(
2Nk

f − 1
)]

requiring then huge memory resources when k increases.
Lets T k

MS be the total time needed by the MS method to compute
the input impedance of the pre-fractal structure with PIN diodes at
scale level k.

T k
MS =

[
N (p (2Nf − 1)) + p2 (Nf − 1) + Na (p (2Nf − 1))

]× TS

+
[
(N + Na + 2) (p (2Nf − 1))2 + p (2Nf − 1)

]
× Tc

+Ti (p (2Nf − 1)) + T k−1
MS + δ (10)

At each iteration of the MS method, we deal with a structure composed
of two strips (perfect conductors or surface impedance operators) and
a PIN diode. Each level needs[

N (p (2Nf − 1)) + p2 (Nf − 1) + Na (p (2Nf − 1))
]× TS

+
[
(N + Na + 2) (p (2Nf − 1))2 + p (2Nf − 1)

]

×Tc + Ti (p (2Nf − 1)) CPU time.
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Figure 16. Variation of the processing Time with the scaling factor
k.
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The recursive expression (10) can be reduced as given in (11)

T k
MS =k




[
N(p (2Nf−1))+p2(Nf−1)+Na(p (2Nf−1))

]×TS

+
[
(N+Na+2) (p (2Nf − 1))2+p (2Nf−1)

]
×Tc

+Ti (p (2Nf − 1))


+δ (11)

As expressed in (9) and (11) and shown in Fig. 16, it is obvious
that the MS method uses a CPU time which varies linearly with the
scaling factor k contrary to the MoM which varies exponentially with
k. Moreover, the manipulated matrices are [p (2Nf − 1)× p (2Nf − 1)]
which need reduced memory storage resources compared to the MoM.

7. CONCLUSION

In this paper, we have applied the multi-scale approach combined to
the generalized equivalent circuit modeling to study some pre-fractal
structures with incorporated PIN diodes. The importance of active
modes to model the coupling between subsequent scale levels was
investigated. In fact, we proved that a sufficient number of active
modes have to be used at the lower scale levels to improve the multi-
scale results accuracy compared to the moment method.

The MS method is based on the generalized equivalent circuit
modeling. For that, the PIN diodes have been easily integrated in
the MS approach thanks to their surface impedance model computed
based on their intrinsic characteristics, their width and height.

To validate the MS approach, numerical results were compared to
those of the MoM method for frequencies ranging between 1GHz and
6.8GHz. The developed method seems to be very interesting when
applied to fractal-shaped structures since it guarantees an appreciable
gain in term of CPU time and memory resources.

In further work, the PIN diode will be used as a semiconductor in
order to take into consideration the physical characteristics of the PIN
diode. Moreover, the MS-GEC will be extended by being combined
to the renormalization approach in order to be applied to fractal
structures with PIN diodes at infinite scale.
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