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Abstract—An effective procedure is developed in this paper to
compensate the probe positioning errors when using a near-field to
far-field transformation technique with helicoidal scanning for long
antennas. It is based on a prolate ellipsoidal modelling of the antenna
under test and makes use of an iterative scheme to retrieve the
uniformly distributed helicoidal near-field data from the irregularly
spaced acquired ones. Once these data have been recovered, those
required to perform a standard near-field-far-field transformation with
cylindrical scanning are efficiently determined via an optimal sampling
interpolation algorithm. Some numerical tests are reported to assess
the accuracy of the approach and its robustness with respect to random
errors affecting the data. At last, the validity of the developed
technique is further confirmed by the experimental tests performed
at the Antenna Characterization Lab of the University of Salerno.

1. INTRODUCTION

In the last years, the antenna measurement community has spent
many efforts to reduce the time needed for the acquisition of the near-
field data, since such a time is currently very much greater than that
required to perform the near-field-far-field (NF-FF) transformation.
In the NF measurement facilities using mechanical scans, which
are generally more flexible than those employing the fast electronic
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ones [1], the measurement time can be reduced by using continuous and
synchronized movements of the positioning systems of the probe and
antenna under test (AUT) [2]. Accordingly, NF-FF transformations
employing innovative spiral scannings have been recently proposed [3–
12]. They rely on the nonredundant sampling representations of
electromagnetic (EM) fields [13] and exploit the optimal sampling
interpolation (OSI) expansions to recover the NF data needed by the
NF-FF transformation with the corresponding traditional scanning.
Besides the employ of continuous movements, the drastic time saving
characterizing them is due to the significantly reduced number of
required NF data. The OSI expansion has been obtained: a) by
assuming the AUT enclosed in a proper convex domain bounded
by a surface Σ with rotational symmetry; b) by developing a non-
redundant sampling representation of the voltage acquired by the
probe on the spiral; c) by choosing the spiral step equal to the
sample spacing required to interpolate the NF data along a meridian
curve. In particular, the AUT has been considered as enclosed in the
smallest sphere able to contain it in [3–6], whereas more effective AUT
modellings, that allow a further reduction of the required NF data
in the case of elongated or quasi-planar antennas, have been adopted
in [7–11] by properly employing the unified theory of spiral scans for
nonspherical antennas [12]. These modellings allow one to consider
measurement cylinders (planes) with a radius (distance) smaller than
one half the AUT maximum size, thus reducing the error related to
the truncation of the scanning zone.

In the practice, the errors due to an inaccurate control of the
positioning systems do not allow one to obtain regularly spaced NF
measurements, even though their position can be precisely read by
optical tools. Moreover, the finite resolution of the positioning devices,
as well as, their inaccurate synchronization prevent the possibility
to exactly locate the receiving probe at the points specified by the
sampling representation. Accordingly, the development of an accurate
and stable reconstruction algorithm from irregularly distributed data
becomes meaningful.

An approach based on the conjugate gradient iteration method
and using the unequally spaced fast Fourier transform [14, 15] has been
proposed in the planar [16] and spherical [17] classical scannings. In
any case, such an approach is not suitable for scanning techniques
taking advantage of the nonredundant sampling representations of EM
fields, wherein the “a priori” information on the AUT and proper OSI
formulas are employed to reconstruct the NF data required by the
corresponding standard NF-FF transformation. As stressed in [18]
wherein a more detailed discussion can be found, the formulas available
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in literature for the direct reconstruction from nonuniform samples
are valid only for particular sampling points distributions, are not
user friendly, and become more and more unstable as the sampling
points arrangement deviates from the uniform one. A viable and
convenient strategy is to retrieve the uniform samples from those
irregularly spaced and then determine the value at any point of
the scanning surface by an accurate and stable OSI formula. Two
approaches [18–20] have been proposed to this end and compared
and experimentally validated in [21]. The former [18, 19] is based
on an iterative technique which is resulted to be convergent only if
there exists a one-to-one correspondence associating at each uniform
sampling point the nearest nonuniform one. The latter [20] makes
use of the singular value decomposition (SVD) method and has been
applied when the two-dimensional problem can be tackled as two
independent one-dimensional ones. This occurs, e.g., in the cylindrical
scanning, wherein the non-uniform samples can be assumed to lie on
not regularly spaced rings [21].

This last hypothesis is not valid in the helicoidal scanning case
and, as a consequence, the iterative technique is applied in the
following to recover the uniformly distributed helicoidal samples from
the irregularly spaced collected ones, whose position is assumed known
since it can be determined, f.i., by using a laser tracker. In particular,
the helicoidal scanning technique [7] tailored for electrically long
antennas and using a prolate ellipsoidal AUT modelling is considered.
Obviously, the SVD-based approach could be generalized to such a
two-dimensional problem, but the dimension of the involved matrix
would become very large, thus requiring a massive computational
effort. The effectiveness of the iterative scheme for compensating
the positioning errors in the corresponding NF-FF transformation will
be here validated both by numerical simulations and laboratory tests
performed at the UNISA Antenna Characterization Lab.

2. VOLTAGE REPRESENTATION ON A CYLINDER
FROM UNIFORM HELICOIDAL SAMPLES

Let us consider an elongated AUT enclosed in a prolate ellipsoid Σ
having major and minor semiaxes equal to a and b and a nondirective
probe scanning a proper helix lying on a cylinder of radius d (Fig. 1).
The spherical coordinate system (r, ϑ, ϕ) is adopted to denote an
observation point P both in the NF and FF region. Since the voltage
V measured by such a probe has the same effective spatial bandwidth
of the field, the nonredundant representations of EM fields [13] can be
applied to it. Accordingly, when dealing with the representation on a
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Figure 1. Geometry of the problem.

curve C, it is convenient to adopt a proper analytical parameterization
r = r(η) to describe C and to introduce the “reduced voltage”

Ṽ (η) = V (η)ejψ(η) (1)

where ψ(η) is a proper phase function. The error, occurring when Ṽ (η)
is approximated by a bandlimited function, becomes negligible as the
bandwidth exceeds a critical value Wη [13], so that it can be effectively
controlled by choosing a bandwidth equal to χ′Wη, χ′ being an excess
bandwidth factor slightly greater than unity for a large AUT.

As shown in [7], a two-dimensional OSI algorithm to reconstruct
the voltage from a nonredundant number of its samples collected by
the probe along a helix can be obtained by developing a nonredundant
sampling representation of the voltage on a helix, whose step must
be chosen equal to the sample spacing required to interpolate the
data along a generatrix. In particular, the bandwidth Wη and
parameterization η relevant to a generatrix, and the corresponding
phase function ψ are [7]:

Wη = (4a/λ)E
(
π/2

∣∣ε2
)
; η =(π/2)

[
1+E

(
sin−1u

∣∣ε2
)/

E
(
π/2

∣∣ε2
)]

(2)

ψ = βa

[
v

√
v2 − 1
v2 − ε2

− E

(
cos−1

√
1− ε2

v2 − ε2

∣∣ ε2

)]
(3)

where β is the wavenumber, λ is the wavelength, u = (r1− r2)/2f and
v = (r1 + r2)/2a are the elliptic coordinates, r1,2 being the distances
from observation point P to the foci of C ′ (intersection curve between
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a meridian plane and Σ) and 2f its focal distance. Moreover, ε = f/a
is the eccentricity of C ′ and E(·|·) denotes the elliptic integral of second
kind. It is worth noting that in any meridian plane the curves ψ = const
and η = const are ellipses and hyperbolas confocal to C ′, instead of
circumferences and radial lines, as in the spherical modelling case. The
parametric equations of the helix, obtained as projection of a proper
spiral wrapping the ellipsoid Σ modelling the AUT on the scanning
cylinder by means of the curves at η = const [11] and imposing its
passage through a fixed point P0 of the generatrix at ϕ = 0, are:

{
x = dcos(φ− φs)
y = dsin(φ− φs)
z = d cot[ϑ(η)]

(4)

wherein φ is the angular parameter describing the helix, φs is the value
of φ at P0, and η = kφ. The parameter k is such that the spiral step,
fixed by two consecutive intersections with a generatrix, is equal to
the sample spacing ∆η = 2π/(2N ′′ + 1) needed for the interpolation
along a generatrix, where N ′′ = Int(χN ′) + 1 and N ′ = Int(χ′Wη) + 1.
Accordingly, being ∆η = 2πk, it follows that k = 1/(2N ′′ + 1). The
function Int(x) gives the integer part of x and χ > 1 is an oversampling
factor controlling the truncation error.

According to [12], a nonredundant representation of the
probe voltage along the helix is then obtained by enforcing the
parameterization ξ equal to β/Wξ times the arclength of the projecting
point on the spiral wrapping Σ and the phase function γ coincident
with that ψ relevant to a generatrix. Moreover, Wξ is chosen equal to
β/π times the length of the spiral wrapping the ellipsoid from pole to
pole [7].

According to these results, the voltage at any point of the helix
can be reconstructed [7] by means of the OSI expansion:

Ṽ (ξ) =
m0+p∑

m=m0−p+1

Ṽ (ξm) G
(
ξ, ξm,M, M ′′) (5)

where m0 = Int [(ξ − ξs)/∆ξ] is the index of the sample nearest (on the
left) to the output point, 2p is the number of retained samples Ṽ (ξm),
and

ξm = ξ(φs) + m∆ξ = ξs + 2πm
/
(2M ′′ + 1) (6)

with M ′′ = Int(χM ′) + 1 and M ′ = Int(χ′Wξ) + 1. Moreover,

G
(
ξ, ξm,M, M ′′) = ΩM (ξ − ξm) DM ′′ (ξ − ξm) (7)
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wherein

DM ′′ (ξ) =
sin ((2M ′′ + 1)ξ/2)
(2M ′′ + 1) sin (ξ/2)

;

ΩM (ξ) =
TM

[
−1 + 2

(
cos(ξ / 2)

/
cos(ξ̄ /2)

)2
]

TM

[−1 + 2
/
cos2(ξ̄ /2)

] (8)

are the Dirichlet and Tschebyscheff sampling functions, TM (ξ) being
the Tschebyscheff polynomial of degree M = M ′′ −M ′ and ξ̄ = p∆ξ.

The OSI formula (5) can be used to evaluate the “intermediate
samples”, i.e., the voltage values at the intersection points between
the helix and the generatrix through P . Once these samples have
been got, the voltage at P can be determined via a quite similar OSI
formula [7]. The following two-dimensional OSI expansion thus results:

Ṽ (η(ϑ), ϕ) =
n0+q∑

n=n0−q+1

[
G

(
η, ηn, N,N ′′)

m0+p∑

m=m0−p+1

Ṽ (ξm)G
(
ξ(ηn), ξm,M, M ′′)


 (9)

where 2q is the number of the retained intermediate samples, n0 =
Int [(η − η0)/∆η], N = N ′′ −N ′,

ηn = ηn(ϕ) = η(φs) + kϕ + n∆η = η0 + n∆η (10)

and the other symbols have the same or analogous meaning as in
(5). Expansion (9) can be employed to evaluate the voltage at any
point P on the cylinder and, in particular, at those required to carry
out the standard NF-FF transformation technique with cylindrical
scanning [22].

3. RECONSTRUCTION OF THE UNIFORM SAMPLES

Let us now turn to the case of nonuniformly distributed samples
(Fig. 1) and denote with (η̄i, ϕ̄i) the position, assumed known, of the
nonuniform sampling point corresponding to the nearest uniform one
ξi on the helix. By expressing the reduced voltage at each nonuniform
sampling point in terms of the unknown values at the nearest uniform
ones via the two-dimensional OSI expansion (9) and neglecting the
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truncation error, it results:

Ṽ(η̄i, ϕ̄i) =
n0+q∑

n=n0−q+1

[
G

(
η̄i, ηn, N, N ′′)

m0+p∑

m=m0−p+1

Ṽ (ξm)G
(
ξ(ηn), ξm,M, M ′′)


 i=1, 2, . . . , Q (11)

where Q is the number of sampling points. Such a linear system can
be rewritten in the matrix form

A x = b (12)
where A is the Q×Q sparse banded matrix whose elements are given
by

Aim = G
(
η̄i, ηn, N, N ′′) G

(
ξ(ηn), ξm,M, M ′′)

x is the vector of the unknown uniform samples, and b is the vector of
the acquired irregularly distributed ones.

By splitting A into its diagonal and nondiagonal parts, A
D

and ∆
respectively, it results (

A
D

+ ∆
)

x = b (13)

multiplying both members of the system (13) by A−1
D

and rearranging
the terms, we get

x = A−1
D

b − A−1
D

∆ x

The following iterative procedure thus results

x(ν) = A−1
D

b − A−1
D

∆ x(ν−1) = x(0) − A−1
D

∆ x(ν−1) (14)

where x(ν) is the vector of the uniform samples estimated at the
νth step. Necessary conditions for the convergence of such an
algorithm [18, 19] are that Aii 6= 0, ∀i, and |Aii| ≥ |Aim| , ∀m 6= i.
These conditions are certainly satisfied in the here assumed hypothesis
of biunique correspondence between each uniform sampling point and
the “nearest” nonuniform one. By straightforward evaluations, it
finally results:

Ṽ (ν) (ξi) =
1

Aii

{
Ṽ (η̄i, ϕ̄i)−

n0+q∑

n=n0−q+1

[
G

(
η̄i, ηn, N, N ′′)

·
m0+p∑

m = m0 − p + 1
m 6= i

Ṽ (ν−1) (ξm)G
(
ξ(ηn), ξm,M, M ′′)

]}
(15)
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wherein
Aii = G

(
η̄i, ηni , N, N ′′) G

(
ξ(ηni), ξi,M, M ′′) (16)

ni = Nint [(η̄i − η0)/∆η] being the index of the intermediate sampling
point nearest to the uniform one ξi.

4. NUMERICAL AND EXPERIMENTAL VALIDATION

In this section, the effectiveness of the proposed iterative scheme for
compensating the positioning errors in the NF-FF transformation with
helicoidal scanning is validated both by numerical simulations and
laboratory tests.

The numerical tests refer to a helix lying on a cylinder with radius
d = 12λ and height 2h = 180λ. The AUT is a uniform planar
array located in the plane y = 0, whose elements are elementary
Huygens sources polarized along the z axis. They are spaced by 0.7λ
and cover an elliptical zone with semi-axes equal to 30λ and 6λ, so
that the antenna can be very well fitted by a prolate ellipsoid. An
open-ended WR-90 rectangular waveguide at the frequency of 10 GHz
is chosen as probe. The nonuniform samples have been generated
by imposing that the distances in ξ and η between the position of
each nonuniform sample and the associate uniform one are random
variables uniformly distributed in (−0.3∆ξ, 0.3∆ξ) and (−0.3∆η,
0.3∆η), which represents a pessimistic occurrence in a real scanning
procedure.

Figures 2 and 3 show a reconstruction example of the voltage V
(the most significant one) on the generatrix at ϕ = 90◦, obtained by
0 and 6 iterations, respectively. As it can be seen, only 6 iterations
are enough to achieve a very good agreement between the exact curve
and the reconstructed one. The algorithm performances have been
assessed by evaluating the mean-square errors in the reconstruction of
the uniform samples. These errors (see Fig. 4) are normalized to the
voltage maximum value on the scan cylinder and have been obtained
by comparing the reconstructed uniform samples and the exact ones
in the central zone of the scanning surface, thus assuring the existence
of the guard samples. As it can be seen, the errors, on increasing
the number of iterations, decrease quickly until a constant saturation
value is reached. Such a value decreases on increasing the retained
samples number. Even better results are to be expected when the
nonuniform samples are closer to the uniform ones. The errors curves
can be employed as an effective aid to choose, for a given accuracy,
the proper values of parameters to be used in (15) as well as to fix the
number of needed iterations.
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The algorithm robustness has been assessed (see Fig. 5) by
adding random errors to the exact samples. These errors simulate a
background noise (bounded to ∆a dB in amplitude and with arbitrary
phase) and an uncertainty on the data of ±∆ar dB in amplitude and
±∆α degrees in phase.
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To provide an overall assessment of the proposed technique, it has
been applied to efficiently reconstruct the NF data needed to perform
the NF-FF transformation with cylindrical scanning [22]. The resulting
FF patterns in the principal planes E and H reconstructed from the
nonuniform helicoidal samples are shown in Figs. 6 and 7.

Note that the reconstruction process of the uniform helicoidal
samples has taken a CPU time of about 47.7 seconds on a PC equipped
with an Intel Core 2 Duo @ 3.33 GHz. Moreover, the number of
samples used to recover the NF data on the considered cylinder is
15 153 (guard samples included), significantly less than that (46 080)
needed by the standard cylindrical scanning [22] and by the helicoidal
scanning technique [23].

The experimental validation of the technique has been carried
out in the anechoic chamber available at the laboratory of antenna
characterization of the University of Salerno, which is provided with
a cylindrical NF facility system supplied by MI Technologies. The
probe is an open-ended rectangular waveguide WR90, whose end is
tapered for minimizing the diffraction effects. The AUT, located in the
plane x = 0, is a very simple H-plane monopulse antenna operating at
10GHz in the sum mode. It has been realized by using two pyramidal
horns (8.9× 6.8 cm) made by Lectronic Research Labs at a distance of
26 cm (between centers) and a hybrid Tee. According to the sampling
representation, the AUT has been modelled as enclosed in a prolate
ellipsoid with semi-axes equal to 27 cm and 5 cm. The helix lies on a
cylinder with d = 17.5 cm and 2h = 240 cm. In order to assess the
effectiveness of the technique in severe conditions as in the case of
measurements performed using bad positioners, we have enforced the
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acquisition of the NF data in such a way that the distances in ξ and
η between the position of each nonuniform sample and the associate
uniform one are random variables uniformly distributed in (−0.3∆ξ,
0.3∆ξ) and (−0.3∆η, 0.3∆η). Note that there was no need to use
any optical devices to read the actual sampling positions, since those
given by the employed positioners were more than safe.

The amplitude and phase of the probe voltage relevant to the
generatrix at ϕ = 0◦ reconstructed by employing 10 iterations are
compared in Figs. 8 and 9 with those directly measured. Note that
the phase is shown only in the range [−20 cm, 120 cm] to improve the
readability. As can be seen, in spite of the exaggerated values of the
considered positioning errors, there is an excellent agreement between
the reconstructed voltage (crosses) and the measured one (solid line),
save for the peripheral zone wherein the error is caused both by the
truncation of the scanning zone and the environmental reflections.
To assess the overall effectiveness of the proposed technique, the FF
pattern in the principal planes E and H, reconstructed from the
acquired irregularly distributed NF data, is compared in Figs. 10 and
11 with that (reference) obtained from the data directly measured on
the classical cylindrical grid. In both the cases, the software package
MI-3000 has been used to get the FF reconstructions. Obviously, once
the uniform helicoidal data have been retrieved, the OSI algorithm has
been employed for recovering the cylindrical data needed to carry out
the NF-FF transformation. As can be seen, in both the planes, there is
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a very good agreement, thus assessing the validity of the approach. It
is interesting to compare the number of acquired nonuniform NF data
(1 620) with that (5 760) required to cover the same measurement
zone by the standard NF cylindrical scanning and the half wavelength
helicoidal scanning technique [23].
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