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Abstract—In this paper, we propose an optimization method based
on Gravitational Search Algorithm (GSA) for design of reconfigurable
dual-beam concentric ring array of isotropic elements with phase only
control of five-bit digital phase shifters. The problem is to find a
common radial amplitude distribution using four-bit digital attenuator
that will generate three different types of broadsided beam pair in
vertical plane: a pencil/pencil beam pair, a pencil/flat-top beam pair
and a flat-top/flat-top beam pair (sector pattern) with desired value
of side lobe level, first null beam width and ripple. The two patterns
differ only in radial discrete phase distribution while sharing a common
discrete radial amplitude distribution. The optimum sets of four-
bit discrete radial amplitude distribution generated by four-bit digital
attenuators and five-bit discrete radial phase distribution generated by
five-bit digital phase shifters for obtaining dual radiation patterns are
computed by Gravitational Search Algorithm.

1. INTRODUCTION

Multiple radiation patterns from a single antenna array are often
required in communication and radar related applications. Generally
multiple radiation patterns are obtained by switching between the
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excitation phase distributions of the elements while sharing common
amplitude distributions. The generation of multiple radiation patterns
by a single antenna array with prefixed or common amplitude
distribution greatly simplifies the hardware implementation of the
feed network, since it is technically easier to design a feed network
if the element excitations corresponding to different patterns differ
only in phase than if they also differ in amplitude. Several methods
of generating phase-only multiple pattern antenna arrays have been
described [1–6].

Design of phase-differentiated multiple pattern antenna arrays
based on simulated annealing algorithm have been described by Diaz
et al. [1]. Durr et al. proposed a phase only pattern synthesis method
to generate multiple radiations of pre-fixed amplitude distribution
with modified Woodward-Lawson technique [2]. Bucci et al. [3]
proposed the method of projection to synthesize reconfigurable array
antennas with asymmetrical pencil and flat-top beam patterns using
common amplitude and varying phase distributions. The design of
a phase-differentiated reconfigurable array [4] using particle swarm
optimization in angle domain has been described by Gies and
Rahmat-Samii. Mahanti et al. [5] synthesized fully digital controlled
reconfigurable linear array antennas. Synthesis of continuous phase-
only reconfigurable array was described in [6].

In this paper, we proposed to apply optimization algorithm to
generate dual radiation patterns from a concentric ring array [7–18]
with desired design specifications by switching the optimum 5-bit
discrete radial phase of the array elements while sharing a common
optimum 4-bit discrete radial amplitude distribution for both the
patterns. The optimum value of discrete radial amplitude and discrete
radial phase distribution are computed using Gravitational Search
Algorithm (GSA) [19] algorithm. The optimized radial amplitude
and radial phase distribution obtained by this method can be directly
implemented without further quantization.

2. PROBLEM FORMULATION

Phase-differentiated reconfigurable dual pattern antenna array is based
on finding a common optimum amplitude distribution shared by
both the patterns. While sharing the optimum common amplitude
distribution, the two patterns are generated by switching the optimum
phase distribution among the array elements. Three different cases
comprising a pencil/pencil beam pair, a pencil/flat-top beam pair
and a flat-top/flat-top beam pair with different desired specifications
have been considered. In case of a pencil/flat-top beam pair and a
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pencil/pencil beam pair, one of the pencil beams is generated with zero
degree radial phase distribution. Similarly, the array generates a flat-
top/flat-top beam pair by switching between the discrete radial phase
distributions of the array elements while sharing a common discrete
radial amplitude distribution.

Our objective is to find out common discrete radial amplitude
and differing discrete radial phase distributions to get dual radiation
patterns of a concentric ring array with desired specifications for all
the three cases. All the radial amplitudes are varied in the range of
0 ≤ Im ≤ 1 in steps of 1/24 of a 4-bit digital attenuators and the
radial phases are varied in the range of −180◦ ≤ φ ≤ 180◦ in steps of
360◦/25 or 11.25◦ of a 5-bit digital phase shifters. The free space far
field pattern of the concentric ring array [12, 13] as shown in Figure 1
on the x-y plane can be expressed as:

E(θ, ϕ) =
M∑

m=1

Nm∑

n=1

Imej[krm sin θ cos(ϕ−ϕmn)+φm] (1)

Normalized absolute power pattern P (θ, ϕ) in dB can be expressed
as follows:

P (θ, ϕ) = 10 log10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]2

= 20 log10

[ |E(θ, ϕ)|
|E(θ, ϕ)|max

]
(2)

Figure 1. Concentric ring array of isotropic antennas in X-Y plane.
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where, M = number of concentric rings, Nm = number of isotropic
elements in m-th ring, Im = excitation amplitude of elements on
m-th circular ring, dm = interelement arc spacing of m-th circle,
rm = Nmdm/2π is the radius of the mth ring, ϕmn = 2nπ/Nm is
the angular position of mn-th element with 1 ≤ n ≤ Nm, θ, ϕ =
polar, azimuth angle, λ = wave length, k = wave number = 2π/λ, j =
complex number, φm = excitation phase of elements on m-th ring.

The fitness functions can be defined as:
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2∑

j=1

(
P
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where Fitness1 represents the fitness function for the pencil/pencil
beam pair, Fitness2 is for the pencil/flat-top beam pair and Fitness3 is
for the flat-top/flat-top beam pair. The superscript p1 is meant for the
design specification of the pattern 1 and the superscript p2 is meant
for the design specification of the pattern 2 for all the three cases.

Pj,o and Pj,d represent respectively the obtained and desired values
of the parameters for all the three cases given in Table 1, Table 2
and Table 3. The third term of second summation in Equation (4)
and also the third term of both the summations in Equation (5)
are the ripple parameters for the flat-top beams of second and third
cases. The desired tolerance level of the ripple for the flat-top(sector)
beam pattern of pencil/flat-top beam pair in the coverage region
−14◦ ≤ θ ≤ 14◦ and for the flat-top beams of the dual flat-top beam
pair in the coverage region −13◦ ≤ θ ≤ 13◦ are kept at 0.5 dB from the
peak value of 0 dB.

H(T1) and H(T2) are Heaviside step functions defined as follows:

T1 =
(
P

(p1)
j,o − P

(p1)
j,d

)
(6)

T2 =
(
P

(p2)
j,o − P

(p2)
j,d

)
(7)

H(T1) =
{

0, if T1 < 0,
1, if T1 ≥ 0 (8)

H(T2) =
{

0, if T2 < 0,
1, if T2 ≥ 0 (9)
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Table 1. Desired and obtained results for the first case (pencil/pencil
beam pair).

Design parameters
Pencil beam 1 Pencil beam 2

Desired Obtained Desired Obtained

Side lobe level

(dB)
−30.00 −30.7824 −35.00 −35.7694

FNBW

(degree)
30.00 28.00 30.00 30.00

Table 2. Desired and obtained results for the second case (pencil/flat-
top beam pair).

Design parameters
Pencil beam Flat-top beam

Desired Obtained Desired Obtained

Side lobe level

(dB)
−25.00 −26.1881 −25.00 −25.8085

FNBW

(degree)
28.00 28.6000 60.00 55.6000

Ripple (dB)

(−14◦ ≤ θ ≤ 14◦)
−−−− −−−− 0.50 0.7344

Table 3. Desired and obtained results for the third case (flat-top/flat-
top beam pair).

Design parameters
Flat-top beam 1 Flat-top beam 2

Desired Obtained Desired Obtained

Side lobe level

(dB)
−20.00 −21.2295 −25.00 −25.1563

FNBW

(degree)
50.00 46.6000 50.00 47.4000

Ripple (dB)

(−13◦ ≤ θ ≤ 13◦)
0.50 0.9220 0.50 0.8917

The weighting factors associated with all the terms in Equation (3),
Equation (4) and Equation (5) are made equal to unity. For optimal
synthesis of dual-beam concentric ring array the fitness functions of
Equation (3), Equation (4) and Equation (5) are to be minimized.
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3. GRAVITATIONAL SEARCH ALGORITHM

Gravitational Search Algorithm is a population based search algorithm
based on the law of gravity and mass interaction. The algorithm
considers agents as objects consisting of different masses. The entire
agents move due to the gravitational attraction force acting between
them and the progress of the algorithm directs the movements of all
agents globally towards the agents with heavier masses. Each agent
in GSA is specified by four parameters [19]: position of the mass in
d-th dimension, inertia mass, active gravitational mass and passive
gravitational mass. The positions of the mass of an agent at specified
dimensions represent a solution of the problem and the inertia mass
of an agent reflect its resistance to make its movement slow. Both the
gravitational mass and the inertial mass, which control the velocity
of an agent in specified dimension, are computed by fitness evolution
of the problem. The positions of the agents in specified dimensions
(solutions) are updated with every iteration and the best fitness along
with its corresponding agent is recorded. The termination condition
of the algorithm is defined by a fixed amount of iterations, reaching
which the algorithm automatically terminates. After termination of
the algorithm, the recorded best fitness at final iteration becomes the
global fitness for a particular problem and the positions of the mass
at specified dimensions of the corresponding agent becomes the global
solution of that problem.
Step 1: Initialization of the agents:
Initialize the positions of the N number of agents randomly within the
given search interval as below:

Xi = (x1
i , . . . , x

d
i , . . . , x

n
i ), for i = 1, 2, . . . , N. (10)

where, xd
i represents the positions of the i-th agent in the d-th

dimension and n is the space dimension.
Step 2: Fitness evolution and best fitness computation for
each agents:
Perform the fitness evolution for all agents at each iteration and also
compute the best and worst fitness at each iteration defined as below
(for minimization problems):

best(t) = min
j∈{1,...,N}

fitj(t) (11)

worst(t) = max
j∈{1,...,N}

fitj(t) (12)

where, fitj(t) represents the fitness of the j-th agent at iteration t,
best(t) and worst(t) represents the best and worst fitness at generation
t.
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Step 3: Compute gravitational constant G:
Compute gravitational constant G at iteration t using the following
equation:

G(t) = G0e
(−αt/T ) (13)

In this problem G0 is set to 100, α is set to 20 and T is the total
number of iterations.
Step 4: Calculate the mass of the agents:
Calculate gravitational and inertia masses [19] for each agents at
iteration t by the following equations:

Mai = Mpi = Mii = Mi, i = 1, 2, . . . , N. (14)

mi(t) =
fiti(t)− worsti(t)
best(t)− worst(t)

(15)

Mi(t) =
mi(t)∑N

j=1 mj(t)
(16)

where, Mai is the active gravitational mass of the i-th agent [19], Mpi is
the passive gravitational mass of the i-th agent [19], Mii is the inertia
mass of the i-th agent [19].
Step 5: Calculate accelerations of the agents:
Compute the acceleration of the i-th agents at iteration t as below:

ad
i (t) =

F d
i (t)

Mii(t)
(17)

where, F d
i (t) is the total force acting on i-th agent calculated as:

F d
i (t) =

∑

j∈Kbest, j 6=i

randjF
d
ij(t) (18)

Kbest is the set of first K agents with the best fitness value and biggest
mass. Kbest is computed in such a manner that it decreases linearly
with time [19] and at last iteration the value of Kbest becomes 2% of
the initial number of agents. F d

ij(t) is the force acting on agent ‘i’ from
agent ‘j’ at d-th dimension and t-th iteration is computed as below:

F d
ij(t) = G(t)

Mpi(t)×Maj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
(19)

where, Rij(t) is the Euclidian distance between two agents ‘i’ and ‘j’
at iteration t and G(t) is the computed gravitational constant at the
same iteration. ε is a small constant.
Step 6: Update velocity and positions of the agents:
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Compute velocity and the position of the agents at next iteration (t+1)
using the following equations:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (20)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (21)

Step 7: Repeat from steps 2–6 until iterations reaches their maximum
limit. Return the best fitness computed at final iteration as a global
fitness of the problem and the positions of the corresponding agent at
specified dimensions as the global solution of that problem.

In this problem the algorithm is run for 400 iterations and number
of agents is taken 50.

Figure 2. Normalized power
patterns in dB of the concentric
ring array for the pencil/pencil
beam pair.

Figure 3. Normalized power
patterns in dB of the concentric
ring array for the pencil/flat-top
beam pair.

Figure 4. Normalized power patterns in dB of the concentric ring
array for the flat-top/flat-top beam pair (sector pattern pair).
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4. SIMULATION RESULTS

We consider a ten ring concentric array where the number of element in
each ring is taken as multiple of 4, i.e., 4m, where m is the ring number.
The inter-element spacing dm in each ring are taken as 0.5λ. The radius
of the m-th ring of the array when the number of elements in m-th
ring Nm and the inter-element distance dm is known, are determined
from the expression rm = Nmdm/2π. All patterns are optimized in

Table 4. Optimum common discrete radial amplitude and optimum
discrete radial phase distributions computed by GSA for the
pencil/pencil beam pair.

Ring Number

Pencil beam 1

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 1.0000 0

2 0.9375 0

3 0.8125 0

4 0.7500 0

5 0.5625 0

6 0.6875 0

7 0.1875 0

8 0.5625 0

9 0.1250 0

10 0.3750 0

Ring Number

Pencil beam 2

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 1.0000 −168.7500

2 0.9375 −180.0000

3 0.8125 −157.5000

4 0.7500 180.0000

5 0.5625 −168.7500

6 0.6875 −168.7500

7 0.1875 −168.7500

8 0.5625 −180.0000

9 0.1250 −56.2500

10 0.3750 180.0000
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ϕ = 0◦ plane. The design specifications of the reconfigurable array
for the first, second and third cases are shown in Table 1, Table 2
and Table 3 respectively. From Table 1, it can be observed that the
obtained values of the design specifications for the pencil /pencil beam
pair totally fulfill the desired design specifications. The normalized
power patterns of the pencil/pencil beam pair are shown in Figure 2.
From Table 2, it can be noticed that the value of the ripple (absolute
value) we obtained for the flat-top beam in the region −14◦ ≤ θ ≤ 14◦

Table 5. Optimum common discrete radial amplitude and optimum
discrete radial phase distributions computed by GSA for the
pencil/flat-top beam pair.

Ring Number

Pencil beam

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 1.0000 0

2 0.8750 0

3 0.6875 0

4 0.4375 0

5 0.4375 0

6 0.6250 0

7 0.2500 0

8 0.4375 0

9 0.1250 0

10 0.1875 0

Ring Number

Flat-top beam

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 1.0000 −146.2500

2 0.8750 −123.7500

3 0.6875 −146.2500

4 0.4375 −56.2500

5 0.4375 −123.7500

6 0.6250 11.2500

7 0.2500 −101.2500

8 0.4375 33.7500

9 0.1250 −78.7500

10 0.1875 78.7500
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is 0.7344 dB, which is 0.2344 dB higher than the desired tolerance of
0.5 dB. All the other obtained design parameters for the pencil/flat-
top beam pair fulfill the desired design specifications. The normalized
power patterns for the pencil/flat-top beam pair are shown in Figure 3.
Table 3 shows that the obtained values of the ripple for the flat-
top/flat-top beam pair in the region −13◦ ≤ θ ≤ 13◦ are 0.9220 dB
and 0.8917 dB, which are 0.4220 dB and 0.3917 dB higher than the
desire values. The other obtained design parameters totally fulfill the

Table 6. Optimum common discrete radial amplitude and optimum
discrete radial phase distributions computed by GSA for the flat-
top/flat-top beam pair.

Ring Number

Flat-top beam 1

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 0.9375 146.2500

2 0.9375 146.2500

3 0.5625 112.5000

4 0.6250 157.5000

5 0.3125 45.0000

6 0.2500 135.0000

7 0.3750 −11.2500

8 0.1875 56.2500

9 0.1250 −22.5000

10 0.1875 −22.5000

Ring Number

Flat-top beam 2

Common

Amplitude (4-bit)

Phase (5-bit)

(degree)

1 0.9375 67.5000

2 0.9375 56.2500

3 0.5625 56.2500

4 0.6250 56.2500

5 0.3125 −56.2500

6 0.2500 56.2500

7 0.3750 −67.5000

8 0.1875 −112.5000

9 0.1250 −45.0000

10 0.1875 −101.2500
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desired design specifications. The normalized power patterns for the
flat-top/flat-top beam pair are shown in Figure 4.

The common discrete radial amplitude and the discrete radial
phase distributions of the array computed by GSA for generating
radiation patterns: pencil/pencil beam pair, pencil/flat-top beam pair
and flat-top/flat-top beam pair with desired design specifications are
shown in Table 4, Table 5, and Table 6 respectively.

5. CONCLUSIONS

An optimization technique based on Gravitational Search Algorithm
(GSA) for the design of a fully digital controlled reconfigurable
concentric ring array antenna has been proposed in this paper. The
paper deals with radial variation of amplitude and phase distribution
of the elements instead of variation of amplitude and phase of all
the elements. This leads to simple feed network design and less
computational complexity.

The method presented here takes the values of digital attenuator
and digital phase shifter directly into account during synthesis. This
leads to better synthesis results, compared to conventional methods
where amplitudes and phases are subsequently quantized.

Results clearly show a very good agreement between the desired
and GSA synthesized pattern even with a 4-bit digital attenuator and
a 5-bit digital phase shifter instead of a continuous phase shifter and
an analog attenuator.

Moreover, for practical applications, the design of reconfigurable
antenna arrays with all digital control is preferred in order to keep costs
low, and maintain accuracy. It is also easier to control the output of
digital attenuator and digital phase shifter than its analog counterpart.

It can be easily embedded on printed circuit board and integration
with microwave monolithic integrated circuit (MMIC) is also easier.
This design method can be used directly in practice to synthesize
reconfigurable concentric ring isotropic antenna arrays with all digital
control. Results for a concentric ring isotropic antenna array have
illustrated the performance of this proposed technique. It can also be
used for synthesizing other array configurations.
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