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TION IN CONTROLLED-SOURCE ELECTROMAGNETIC
SOUNDING PROBLEMS

M. Parise

Faculty of Engineering, University Campus Bio-Medico of Rome
Via Alvaro del Portillo 21, 00128 Rome, Italy

Abstract—The forward problem of calculating the electromagnetic
(EM) field of a circular current loop in presence of a layered earth
structure, given the geometrical and EM parameters of the layers,
is solved fast. Efficient computation is obtained through a quasi-
analytical procedure that allows to transform the field integrals into
expressions involving only a known Sommerfeld Integral. The final
explicit forms of the fields are in terms of modified Bessel functions.
To validate the method, the magnitudes of the EM field components
versus induction number and versus frequency are calculated assuming
two- and three-layer earth models. The achieved results are in good
agreement with the ones provided by the commonly used digital filter
algorithms. The computational time taken by the application of this
technique is shown to be much less than that required by both digital
filters and other recently developed integration techniques for similar
problems. This paper is an extension of an earlier conference paper.

1. INTRODUCTION

The controlled-source electromagnetic (CSEM) sounding method
consists of acquiring information about the subsurface structure of a
layered earth medium by measuring the EM fields produced above
its surface by an intentional source [1–8]. Information may be the
thicknesses or the EM properties of the various layers. One way to
collect CSEM data is to measure the frequency-domain EM coupling
between a transmitting and a receiving insulated wire loop at a set of
discrete frequencies, typically spanning several decades [2, 3, 5, 6, 8, 9].
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The objective is then to solve the nonlinear inverse problem of
searching for a layered earth model that can acceptably reproduce the
recorded finite set of observations.

Conventional iterative solution algorithms for nonlinear inverse
problems require to solve a number of forward problems within
an optimization loop (as an example, see the Levenberg-Marquardt
method [10, 11]). This is the reason why the problem of the fast and
accurate calculation of the EM field generated over a layered earth
structure by a large circular loop source has attracted the attention
of scientists since the inception of EM prospecting methods [1–5]. In
particular, several recent papers document an extensive usage of the
digital linear filter technique for numerically evaluating the integral
expressions for the EM field components [3, 7, 12, 13]. The major
drawback of such technique is that it ensures high computational
accuracy only when the filter operator is an ad-hoc filter, that is
its coefficients (the weights and the sampling interval) are tailored
to the function to be transformed [12–14]. In other terms, a filter
may produce error-free or inaccurate results depending on whether it
is applied to one transform or another. What is typically done to
overcome this problem is to run an optimization algorithm which,
especially when designing very long filters, may take considerable
time [13].

An attempt to avoid the use of digital filters for evaluating similar
integral transforms has been made in [15], where a highly accurate
integration method based on the pole-residue approximation of part of
the kernel function has been presented. This method has the advantage
of being always matched to the specific transform to be calculated,
but every execution of it takes at least 8 seconds on a 1.6 GHz PC.
Since it is required one execution per frequency value, the method is
not recommended in the case of multi-frequency applications like the
frequency-domain CSEM sounding method, while it fits optimally to
single-frequency problems like that described in [15].

This paper introduces an efficient procedure for fast computing
the spatial distributions of the EM field components produced by the
loop source. Starting from the pole-residue approximation of the parts
of the integrands that do not depend on the distance from the loop axis,
in a similar fashion as discussed in [15], the field integrals are cast into
forms involving uniquely a known tabulated Sommerfeld Integral. The
radial distributions of the EM field components at a height z above
the medium are explicitly provided as linear combinations of modified
Bessel functions of the first kind (for in-loop observation points) or
second kind (for offset points).

The proposed technique inherits the advantages of the previously
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developed method of calculation of integral transforms based on the
rational function-fitting of the kernel functions. This means that it is
not tailored to a particular integral rather than another one, and it
allows the user to specify the desired accuracy of the numerical results
within the machine precision. What is more, the new integration
procedure does not require the poles of the rational approximations
to have negative real part. This feature is what makes it possible
to realize an enormous speed increase with respect to the previous
pole-residue based approach [15], which forces the fitting algorithm to
calculate new sets of poles and residues every time one or more of the
generated poles have positive real part.

Numerical applications are performed in order to validate the new
technique. The achieved results are in fairly good agreement with the
data provided by the digital filter formulation presented in [12].

It must be highlighted that the object of this research is to offer a
method for the high-speed computation of the forward solution, which
necessarily translates into a significant reduction of the execution time
of any iterative inversion algorithm [16–25]. Detailed considerations
about the inversion process itself or comparative evaluations of various
inversion techniques are outside the scope of this paper. The present
article is a revised and extended version of a previous conference
paper [26].

2. FORMULATION

Consider a current-carrying circular loop lying on the surface of an
M -layer medium. The geometrical dimensions, the EM parameters,
the loop current are as depicted in Fig. 1.

The frequency-domain integral expressions for the generated EM
field components at an observation point (ρ, ϕ, z) in the air region are
well known in literature [12, 27–29]. With the time-harmonic factor
ejωt suppressed for better clarity, they can be written in compact form
as

Eϕ = ωµ0IaΦ1,1, Hρ = −jIaΦ1,2, Hz = jIaΦ0,1 (1)

where

Φh,k(ρ, z) =
∫ ∞

0
f (k−1) (z, λ)J1(λa)Jh(λρ)λ2−hdλ. (2)

In Equation (2), Jh(·) is the Bessel function of order h, while

f (k−1) (z, λ) =
∂ k−1f (z, λ)

∂zk−1
, (3)
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with
f (z, λ) =

1
2ju0

[
e−u0(t+z) + RTEe−u0(t−z)

]
, (4)

being

RTE =
N0 − Y1

N0 + Y1
(5)

the transverse electric plane wave reflection coefficient RTE at the
air-ground interface [30–32]. The surface admittance Y1 is obtained
through the recurrence relation

Ym =Nm
Ym+1+Nmtanh[um(zm−zm−1)]
Nm+Ym+1tanh[um(zm−zm−1)]

, m=M−1, . . . , 1, (6)

with
YM = NM , (7)

while the intrinsic admittance Nm of the m-th layer is given by

Nm =
um

jωµm
, (8)

with
um =

√
λ2 − ω2µmεm + jωµmσm. (9)

The conventional approach to evaluate Fourier-Bessel transform
of the type (2) is the digital linear filter technique [13]. According to
such technique, Φh,k may be expressed as [13, No. 3]

Φh,k(ρ, z) ∼= 1
ρ

L∑

l=1

f (k−1) (z, λl)J1(λla)λ2−h
l Wh,l, (10)
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Figure 1. Geometry and coordinates for an M -layer planar medium
exposed to the field of a current loop.
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where Wh,l(l = 1, . . . , L) is a set of filter weights, and

λl =
1
ρ
10[a+(l−1)s], l = 1, . . . , L, (11)

is a set of L abscissae along the λ-axis, being a and s respectively the
position of the starting point for sampling the kernel function and the
sampling interval.

Some drawbacks arise from using (10). First, the weights of
a filter are predetermined and, as such, cannot be appropriate for
every integral transform [13, 14]. This means that the same set of
weights may offer high performances when applied to the computation
of particular transforms, and be completely unsuitable for other
transforms. Hence, only a theoretical estimation of the precision of
a filter operator can be made a priori, the validity of which needs to
be further tested case by case.

Second, some authors [13] noticed that it is always possible to
enhance the theoretical precision of a filter by increasing its length L,
but at the cost of running filter design algorithms that involve time-
consuming optimization processes.

The objective of this paper is to present a simple and robust,
semi-analytical method for evaluating integrals of the form (2), which
responds to the following requirements. First, it must provide highly
accurate results regardless of the transform to which it is applied. Such
feature allows to overcome the principal disadvantage of digital filter
technique. Second, the execution of the method has to take minimum
time consumption, and this is because the inversion of CSEM data
may require a huge amount of forward problems to be solved.

The first step consists of substituting two pole-residue representa-
tions for the even functions f (k−1) (z, λ), k = 1, 2, which decay without
oscillations with increasing |λ|.

Rational approximations of the form

f (k−1) (z, λ) ∼= gk (z, λ) =
Nk∑

n=1

rk,n(z)
jλ2 − pk,n(z)

, (12)

can be easily obtained via the fitting technique described in [33–36],
and combined with (2) to give

Φh,k = −j

Nk∑

n=1

rk,n

∫ ∞

0

J1(λa)Jh(λρ)
λ2 + jpk,n

λ2−h dλ, (13)

where the dependences of the quantities upon ρ and z have been
omitted for notational simplicity. To evaluate the integral on the right-
hand side of (13) it can be made use of the well known result [37, No. 6,
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P. 430]:
∫ ∞

0

λκ−1Jµ(λβ)
λ2+γ2

[cosψJν(λα)+sinψYν(λα)] dλ=−Iµ(γβ)Kν(γα)γκ−2,

(14)
valid for α ≥ β and <[γ] > 0.

Here Yν(·) is the Neumann function, Iµ(·) and Kν(·) are modified
Bessel functions of the first and second kind, while ψ = (κ+µ−ν)π/2.

When ρ < a, the left-hand side of (14) turns into the integral
in (13) only if α = a, β = ρ, γ = λk,n =

√
jpk,n, κ = 3 − h, µ = h,

ν = 1. It follows that ψ = π, and
∫ ∞

0

λ2−hJh(λρ)
λ2 + λ2

k,n

J1(λa) dλ = Ih(λk,nρ)K1(λk,na)λ1−h
k,n . (15)

Instead, for ρ>a it must be α = ρ, β = a, µ = 1, ν = h, and, as a
consequence, ψ = (2 − h)π. Since h is equal to 0 or 1, Equation (14)
becomes∫ ∞

0

λ2−hJ1(λa)
λ2 + λ2

k,n

Jh(λρ) dλ = I1(λk,na)Kh(λk,nρ) (−λk,n)1−h . (16)

Substitution of (15) and (16) into (13) provides

Φh,k(ρ, z) = −j

Nk∑

n=1

b
(≷)
h,k,n(z)C (≷)

h,k,n(ρ, z), (17)

where the symbols < and > indicate respectively the regions inside
(ρ < a) and outside (ρ > a) the loop, with

b
(<)
h,k,n(z) = rk,n(z) [λk,n(z)]1−h K1 [λk,n(z)a] ,

b
(>)
h,k,n(z) = rk,n(z) [−λk,n(z)]1−h I1 [λk,n(z)a] ,

(18)

and

C
(<)
h,k,n(ρ, z) = Ih [λk,n(z)ρ] , C

(>)
h,k,n(ρ, z) = Kh [λk,n(z)ρ] . (19)

Expressions (17)–(19) tell us that the distributions of the EM
field components at each z-plane are described by linear combinations
of modified Bessel functions, of the first or second kind depending on
whether the distance ρ of the observation point from the loop axis is
smaller or greater than the loop radius a. In particular, the behavior
of Kh (λk,nρ) as ρ increases satisfies the radiation condition, which
demands that the energy radiated by the source to distant observation



Progress In Electromagnetics Research, Vol. 111, 2011 125

points is outgoing and bounded [38–44]. Use of (17) in (1) leads to

Eϕ (ρ, z) = −jωµ0Ia

N1∑

n=1

b
(≷)
1,1,n(z)C (≷)

1,1,n(ρ, z), (20)

Hρ (ρ, z) = −Ia

N2∑

n=1

b
(≷)
1,2,n(z)C (≷)

1,2,n(ρ, z), (21)

Hz (ρ, z) = Ia

N1∑

n=1

b
(≷)
0,1,n(z)C (≷)

0,1,n(ρ, z). (22)

The solutions in the two regions must match at ρ = a. Thus, continuity
of Eϕ implies the equation

N1∑

n=1

b
(<)
1,1,n(z)C (<)

1,1,n(a, z) =
N1∑

n=1

b
(>)
1,1,n(z)C (>)

1,1,n(a, z), (23)

which is satisfied for any value of the coefficients r1,n and λ1,n

(n = 1, . . . , N1), as can be easily verified. Even the condition
Hρ (ρ → a−, z) = Hρ (ρ → a+, z) holds independently of the values
assumed by the r2,n’s and λ2,n’s.

Instead, from the continuity of Hz at ρ = a follows that
N1∑

n=1

b
(<)
0,1,n(z)C (<)

0,1,n(a, z) =
N1∑

n=1

b
(>)
0,1,n(z)C (>)

0,1,n(a, z), (24)

which, by making use of (18) and (19), becomes
N1∑

n=1

K1 [λ1,n(z)a] I0 [λ1,n(z)a] = −
N1∑

n=1

I1 [λ1,n(z)a]K0 [λ1,n(z)a] . (25)

The satisfaction or not of this condition depends on the choice of the
λ1,n’s. This means that the numerical discrepancy between left- and
right-hand sides of (25) is an index of the goodness of fitting. The more
the approximation (12) corresponding to k = 1 is refined, the nearer to
each other will be the two sides of (25). Thus, an indication about the
accuracy of the method can be obtained by checking for the continuity
of Hz at ρ = a. This will be done in an example in Section 3.

It should be noticed that the developed method does not require
that the poles pk,n to be extracted have negative real part, and this
constitutes an advantage with respect to the previous pole-residue
based approach for solving integral transforms similar to (2) [15],
which obliges the fitting algorithm to start a new iteration whenever
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the current set of poles is unsuitable and must be discarded, with
unavoidable increase of computational time.

Moreover, as the fitting procedure allows users to specify the
upper bound for the root-mean-square (RMS) relative error of the
rational approximation to be generated [33–35], the numerical results
achieved with the proposed method are as accurate as desired within
the machine-precision tolerance.

In some cases of geophysical interest, the loop source can be
treated as a vertical magnetic dipole (VMD), since its diameter is
small if compared to both the source-receiver distance and the free-
space wavelength. For instance, this is the case of the radiation
from a dipole antenna probe in presence of a lossy ground, which
can be used for sensing underground objects or inhomogeneities of
other kind [45–49]. In particular, when the soil properties do not
vary spatially, the presence of shallow buried objects such as mines,
metals, or mineral resources can be detected by the departure of the
measured EM field from the one calculated regarding the ground as a
homogeneous conducting half-space [9, 45].

The explicit expressions for the relevant EM field components
produced by a VMD placed at height t above the top surface of the
half-space are derived from (21), (22), and (23) under the assumption
of small loop, that is by retaining only terms with the superscript plus
(since a ¿ ρ) and applying the small-argument approximation

I1 [λk,n(z)a] ∼= λk,n(z)a
2

, (26)

as done in [27, 50, 51]. It yields

b
(>)
h,k,n(z) ∼= −a

2
rk,n(z) [−λk,n(z)]2−h , (27)

and, consequently,

Eϕ (ρ, z) ∼= −jωµ0IA

2π

N1∑

n=1

r1,n(z)λ1,n(z)K1 [λ1,n(z)ρ] , (28)

Hρ (ρ, z) ∼= −IA

2π

N2∑

n=1

r2,n(z)λ2,n(z)K1 [λ2,n(z)ρ] , (29)

Hz (ρ, z) ∼= −IA

2π

N1∑

n=1

r1,n(z)λ2
1,n(z)K0 [λ1,n(z)ρ] , (30)

where A = πa2, and IA is the dipole moment.
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3. RESULTS AND DISCUSSION

Before starting the discussion, the reader should note that the emphasis
in this paper is the proposition of a technique for fast calculating the
forward solution (1–2), not that of a new method of inversion. When
inverting EM data, solving fast the forward problem permits to save
computational time at each iteration of the chosen inversion algorithm,
whatever it is (see, for instance, the damped least-squares Levenberg-
Marquardt method [11]).

In order to test the validity of the developed theory, the amplitude
of the EM field components generated on the surface of a two-layer
earth by a circular loop carrying 1 A of current is computed. It is
initially assumed that µ1 = µ2 = µ0, ε1 = ε2 = 10ε0, σ1 = 0.01 S/m,
σ2 = 0.3 S/m, a = 5m, t = 2 m, d = 10 m, N1 = N2 = 80. At
first, the radial distributions of the field strengths are evaluated at the
frequency of 100 kHz. The 3D views depicted in Figs. 2–4 show that
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the maximum amplitudes of Eϕ and Hρ are localized on circular rings
approximately below the edge of the loop, while the Hz-field remains
confined in the in-loop region. It can be appreciated the continuity of
Hz in a neighbourhood of ρ = a = 5 m, which indicates excellent fitting
accuracy according to what has emerged at the end of Section 2. Next,
since in most cases inversion of Hz-field measurements is performed,
the amplitude of Hz is calculated and plotted against induction number
B (i.e., the ratio between the source-receiver distance ρ and the skin
depth δ1 in the top layer) for three distinct values of the thickness
d of the top layer. The same medium as in the previous analysis is
considered, with ρ = 100 m, a = 10 m and t = 0. The obtained results,
shown in Fig. 7, are in good agreement with the ones provided by
the optimized digital filter operator [12]. Notice that these profiles
are computed starting from the determination of a set of eighty-pole
rational functions of the form g1 (z, λ), each corresponding to a different
frequency.

The coefficients of each rational function are determined through
an iterative procedure which repeats the execution of the fitting
algorithm [33] until the RMS relative error of the generated
approximation falls below a user-specified admissible RMS relative
error, that is the relative error tolerance threshold rtol.

Figure 5 illustrates the computational time taken on a single-core
1.6GHz Pentium 4 PC to generate one of the rational approximations,
as well as the produced RMS relative error, as a function of the
tolerance rtol. The considered frequency is 100 kHz, even if varying
frequency between 1 Hz and 100 kHz is seen to have a negligible effect
on the plotted curves.

From the analysis of Fig. 5, it emerges that N1 = 80 poles are
sufficient to achieve high accuracy whatever is the desired tolerance. In
particular, for rtol= 10−4 the execution of the procedure terminates
after 13 iterations, that is when the RMS relative error of the
approximation becomes equal to 4.28 · 10−14. It turns out that 13
iterations must also be enough to stop the execution of the procedure
every time that the admissible error is greater than rtol∗ = 4.28·10−14.
This explains the piecewise-horizontal trend of the effective relative
error in Fig. 5. Conversely, when rtol<rtol∗ the execution of the
procedure cannot last 13 iterations, and 24 iterations are instead
necessary in order to get the error below the fixed tolerance. The
RMS relative error of the rational approximation obtained after 24
iterations is 5.18 · 10−15.

It is easily understood how a user, specifying rtol, can require
a more or less accurate solution. Yet, given the order Nk of
approximation of f (k−1) (z, λ) (k = 1, 2), there exists a lower bound
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for the error tolerance that can be imposed. Choosing rtol below
such limit therefore means running the fitting algorithm [33] an infinite
number of times without finding a solution. However, the lower bound
decreases with increasing Nk. This aspect is pointed out in Fig. 6,
which shows plots of the RMS relative error of the approximation
g1 versus N1, with the number of performed iterations I taken as
a parameter. Notice that, as I increases, the sequence of curves
converges to a limit curve (solid line), which corresponds to I ≥ 104

and represents the locus of the smallest error tolerances that can be
reached. Thus, the minimum achievable relative error decreases as the
order of approximation of f increases, and asymptotically approaches
the machine precision εmach. On the 32-bit computer used for the
purposes of this discussion, working in double precision arithmetic, the
machine precision (that is the smallest difference between two numbers
that the computer can recognize) is equal to 2−52 ∼= 2.2 ·10−16 [52, 53].

In Figure 6, it is possible to distinguish three intervals for the
choice of N1, each exhibiting special features. The leftmost region
(labelled with 1) includes all the values of N1 that are smaller than
50, which lead to poor accuracy of approximation (the minimum
relative error is at least 10−9) and very fast rate of convergence of
the iterative procedure. Moreover, since the slope of the limit curve
is approximately constant in the semi-logarithmic scale of Fig. 6, the
minimum relative error diminishes exponentially with increasing N1.
The same exponential behavior is maintained in the middle region
(50 ≤ N1 ≤ 70), with the result that the minimum error decreases
by five orders of magnitude, from 10−9 at N1 = 50 to 10−14 at
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N1 = 70. In particular, starting from N1 = 50 (rough fitting), the
addition of any new partial fraction to the rational function series (12)
improves significantly the accuracy of approximation, and this happens
at the price of an enormous reduction of the convergence rate of the
method. It is observed that 104 iterations of the fitting algorithm
are required in this region to minimize the relative error. When N1

becomes sufficiently large, say 66 or 68, this latter effect disappears
and error-curves associated with different numbers of iterations tend
to overlap again. For N1 > 70 (region 3), the technique offers optimal
performances in terms of either accuracy and rate of convergence. It is
noted that 50 iterations are enough to obtain a RMS relative error
smaller than 10−14. However, the slope of the limit curve suffers
an abrupt decrease when entering this region, thus implying that the
minimum relative error approaches very slowly εmach as N1 increases.

As to the computational time taken by the developed method, it
is expected to be proportional to the required number of iterations.
Fig. 5 clearly shows that, for N1 = 80, it is comprised between 3.5
and 4 s (3.7 s on average) or between 6.5 and 7 s (6.7 s on average),
depending on whether the number of iterations is 13 or 24. An estimate
of the time needed for executing one iteration can be found by dividing
each average time by the associated number of iterations. It yields
3.7/13 = 0.285 ∼= 6.7/24 = 0.279 s. The reason for which the cost of
each iteration keeps constant while changing rtol from 10−4 down to
10−14 is that it mainly depends on the number of partial fractions N1

which constitute the rational approximation g1, as discussed in [33].
Notice that Fig. 5 illustrates the total elapsed time, which includes the
CPU-time plus additional minor contributions completely unrelated to
the computational work, like the I/O wait. These small contributions
cause the elapsed time to fluctuate about the average value.

It has been seen that, correspondingly to rtol>rtol∗, the
duration of the whole fitting procedure does not exceed 4 seconds.
This is the operating condition to be preferred, even if it is not
associated with the maximum accuracy (rtol>rtol∗ensures 13 digits
of precision). As the only time-consuming step of the proposed method
is the fitting procedure itself, the calculation of the Hz-field strength
takes less than 4 seconds per frequency point.

The new method is thus faster than the previously developed pole-
residue based technique described in [15], which takes at least 8 seconds
on the same Pentium 4 processor mentioned above. The longer run-
time exhibited by the previous algorithm is explained by the fact that,
as anticipated in Section 2, it starts a new iteration whenever the real
part of one or more of the extracted poles is positive.

Some authors [14] pointed out that designing an optimized digital
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filter for evaluating Fourier-Bessel transforms of the type (2) requires
about 8 seconds on a 2.4GHz PC. In principle, this run-time cannot
be directly compared with that illustrated in Fig. 5, as a fair run-time
comparison of two algorithms is possible only if they are executed on
the same computer. On the other hand, to re-implement and run the
filter optimization algorithm described in [14] on the same computer
used for applying the present method would not be helpful, as there
is no guarantee of obtaining an implementation really similar to the
original code developed by the authors. For instance, they may have
used an efficient data structure or procedure to enhance a critical part
of the code, with the result of a substantial saving in computation
time.

While in general the execution of two distinct algorithms on
different computers renders any precise runtime comparison hard, in
the present case it is however possible to conclude that the proposed
procedure (task 1) is faster than the digital filter one (task 2). In fact,
running the source code of the filter optimization algorithm presented
in [14] on a single-core 1.6 GHz Pentium 4 processor would require an
execution time ET(2) that obeys the following constraint

ET(2)
P4, 1.6 GHz > ET(2)

PC, 2.4 GHz
∼= 8 s > ET(1)

P4, 1.6GHz, (31)

where the abbreviation PC denotes the computer used in [14]. The
first inequality (from the left-hand side) in (31) can be easily verified by
comparing the rates of execution, measured in floating-point operations
(FLOP) per second, at which a single-core 1.6 GHz Pentium 4 and a
wide assortment of 2.4 GHz computers run the so-called LINPACK
benchmark programs (see Table 1 in [54] for easy comparison). For
instance, the rate of execution of the LINPACK small size problem [54]
is 796 MFLOP/s for the 1.6 GHz Pentium 4, a value comprised
between 1055 and 1190 MFLOP/s for a generic single-core 2.4 GHz
computer. The last inequality in (31) is instead deduced from the
results illustrated in Fig. 5.

If it is considered that inversion of CSEM data involves the
repeated calculation of forward solutions, time savings resulting
from applying the new method rather than the preceding ones is
considerable.

When the parameters of the inverted model to be determined are
the thicknesses of the various layers, the inversion process is referred to
as induction depth sounding (IDS) method. As pointed out in [5, 28],
for simple layered earth models like the two-layer one considered in
the present analysis, one can deduce the thickness d of the top-layer
by directly matching response curves similar to those plotted in Fig. 7
with the recorded experimental data, without resorting to any inversion
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of Hz versus induction number,
computed on the surface of a
two-layer earth model (σ2/σ1 =
0.3) by applying the proposed
approach.

algorithm. In this case, it is the degree of dissimilarity exhibited by
the theoretically computed response curves that permits to interpret
the acquired measurements. The more the curves are distinct, the
higher is the resolution of IDS. The plots in Fig. 7 demonstrate how,
for the particular two-layer earth model considered, measurement of
the vertical magnetic field should be made at B > 0.6 (f > 911 kHz) in
order to deduce the depth of the electrical discontinuity. The resolution
dramatically worsens when using models in which the conductivity
contrast σ2/σ1 of the layers is less than one (conductivity decreases
with depth). This aspect is pointed out in Fig. 8, where Hz-field
response curves corresponding to σ1 = 0.01 S/m and σ2 = 0.003 S/m
are plotted.

Notice that the plotted curves do not exhibit a marked
dissimilarity, and interpretation is still possible only if the source-
receiver distance is at least twice the skin depth δ1 (log(B)>0.3, B>2).

In order to further investigate the effect of varying the conductivity
contrast on the magnetic field response over the two-layer structure,
profiles of the normalized amplitude of the Hz-field versus frequency
are computed for five different values of the conductivity contrast
(Fig. 9), with σ1 = 0.01 S/m, ρ = 100 m, a = 50m, d = 10 m. The
normalization factor is taken to be the vertical magnetic field in free-
space (H0

z ). The curves of Fig. 9 show that the free-space solution is
not valid over most of the frequency range for σ2 À σ1, while it holds
up to about 10 kHz when σ2 ¿ σ1. The peak field moves significantly
towards higher frequencies as the conductivity σ2 decreases, with the
result that a good resolution of the subsurface layering in terms of
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conductivity can be observed.
Since crust is not necessarily nonmagnetic, it may be required

to invert even for the magnetic permeability of one or more
layers. Thus, sizeable zones of buried magnetically permeable
metals or ferrimagnetic minerals, especially magnetite and/or titano-
magnetite, distributed in rocks throughout the crust, can be
located using simultaneous inversion for conductivity and magnetic
permeability [8, 11]. As an example, Figure 10 illustrates the Hz-
field response in presence of a two-layer earth model consisting of a
0.01-S/m magnetic layer overlying a nonmagnetic 0.3-S/m half-space,
with the permeability contrast µ2/µ1 = 1/µr1 taken as a parameter.
Titano-magnetite (µr1 = 2.55), pyrrhotite (µr1 = 1.5), basic igneous
rocks (µr1 = 1.025) [55] are the materials considered in this numerical
application. The plotted curves evidence an extended, although not
pronounced, dissimilarity, even at low frequencies. The observed low-
frequency offset from the free-space solution increases with incresing
µr1 , and is to be attributed to the necessity of satisfying the boundary
condition of continuity of the vertical magnetic induction Bz across
the interfaces between magnetic and non-magnetic layers.

Finally, two more problems are considered for further testing the
validity of the developed integration technique, that is those of a large
current loop lying on a three-layer earth and a VMD on a homogeneous
ground.

In the first case, curves of the Hz-field strength against frequency
are computed taking the ratio d2/d1 between the thicknesses of the
middle and the topmost layers as a parameter, and assuming µ1 = µ2 =
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µ3 = µ0, σ1 = 0.01 S/m, σ2 = 0.3 S/m, σ3 = 0.001 S/m, ρ = 100 m,
a = 50 m, d1 = 10m, and t = 0. The results achieved by applying
the proposed and the digital filter approaches, depicted in Fig. 11, are
seen to be substantially overlapping over the whole frequency range of
interest.

As for the second problem, expression (30) is used to compute the
real and imaginary parts of the Hz-field generated at 100 m from a unit
moment VMD on the surface of a 0.01-S/m homogeneous earth. The
obtained frequency spectra, presented in Fig. 12, agree well with the
ones illustrated in [27]. Notice that increasing σ (up to 0.4 S/m) makes
the two spectra shift leftwards, and allows to discover that they exhibit
multiple changes in sign, despite what has been asserted in [27]. More
in detail, the interval in which the real part of Hz holds the same sign
becomes smaller and smaller as frequency increases.

4. CONCLUSION

This paper presents an efficient quasi-analytical procedure for fast
solving the forward problem of a large circular current loop located over
a layered earth structure. The new procedure reduces the frequency-
domain integral representations of the EM field components produced
above the medium to expressions involving only a known tabulated
Sommerfeld Integral. It involves the rational function-fitting of the
parts of the integrands that do not depend on the distance from
the loop axis, but, differently from other least squares fitting-based
approaches for solving similar transforms, it does not require the
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real part of the poles of the generated rational approximations to be
strictly negative. It is seen how removing this constraint in the fitting
process translates into halving the computational time. Furthermore,
the proposed procedure presents advantages even with respect to the
commonly used digital filter operators. First, it permits to control
the accuracy of the result of the computation, since the maximum
admissible RMS relative error produced by the fitting process is a user-
defined parameter. On the contrary, the degree of accuracy provided
by filters cannot be controlled, and strongly depends on the function to
be transformed. Second, it involves a computational cost far less than
that implied by the design of optimized filters. Numerical applications
are performed in order to validate the method. The achieved results
are in fairly good agreement with the data furnished by filter operators.
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